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SUMMARY

_ This work is concerned with the conflguration and deformation

| of prestressed cable nets treating the nets as discrete systems.

The treatment is as follows.
Chapter 1 describes Briefly the three main different types of
cable systems used in the design of cable.roofs, viz.

1) Simply suspended cables,

2) Cable girders, and

3) Cable nets.

Chapter 2 deals with the initial configﬁration of hets for which

~ the prestressing forces are assumed known. The main emphasis is

given to closed forms of solutions because of their sultabllity to .
electronlc computation. .

In Chapter 3 is developed ‘a theory whlch w111 calculate the dis-
placements and forces in any type of pinjointed link assembly, both
rigld and non-rigid, subjected to any type of loading. The appli-

cation of the method is based .upon the minimization of the total

. potential By the method of steepest descent.

‘Since the method of steepest descent was found to converge vefy

slowly a great deal of time was spént investigating this method with

a view to increasihg the rate of convergence. The result of this

work is given in chapter 4. = Inthis chapter it is also shown that

another possible way of locating the minimum total potential 'is by

the Runge-Kutta method. - The validity of the deformation theory

 was demonstrated by testiog a flat net and a doubly curved net.




The design of the model, the test results and corresponding
theoretical values are given in chapter 5.
In chaptervé are given the results of an analysis of the behaviour

of small saddle shaped nets carried out.to_inveétigate how the

" stiffness is affected by curvature and intensity of prestress.

In chaptér 7 it is shown how a chosen configuration can be calculated

by thé theory given in chaptef 3. Where appropriate, conclusions

on the'different aspects of the work are gi#en at the end of each

chapter. A summary of thése conclusions is given in chapter 8

together with suggestions for future work.

"Because of the very large number of tables, graphs and diagrams,

these have, as far as possible, been included at the end of the

~ thesis, as shown in the contents.
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1.1l

CHAPTER 1
Cable Roofs

Introduction.

During the last 20 years a number of large roofs have been built

" in which the main load carrying elements are subjected to tensile.

“forces only. Since all the members are in tension there are no

stability problems and it is natural‘to use high tensile steel
cables in which case very large spans can be achieved. - Roofs built
so far have had spans up to 100 metres and spans up to 500 metres

have been projected.

" Roofs in which the main load carrying elements are steel cables are

inhérently cheap. The total cost of such constructions, however,

- are often édversely affected by the size and cost of the foundations

required to resist the'tensi;e forces in the cables.

‘Cable roofs can bé divided into three categories based upon whether

the roof cladding is supported by: =
a) simply suspendeé‘cables‘
b) prestressed cable gifders
c) prestréssed cable nets
This work is concerned with prestressed cable nets and especially
with the development of algeneral and accuratektheoretical method

for the célculation of the ititial configﬁfation and the deformation

due to applied load. Before, however, proceeding to¢ the theoretical

part of the work, a short description is given of the main cable

systems which so far have been used in the design of cable roofs.

12
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Roof cladding supported by simply suspended cables

Simply suspended cables in pafallel planes

In this type of roof the roof cladding is supported by a series

of simply suspended cables hanging in parallel planes as shown in

‘fig. l.la. Such systems have no stiffness. To reduce the move-.

‘ments caused by any applied load, the roof cladding must be heavy

using such materials as reinforced concrete slabs. Unless the
spaces between the slabs are filled with concrete, thus forming

a concave concrete shell, the roofs are still easily deformed and

Another method of stiffening roofs using simply suspended cables
is by intrdducing internal ties as shown in fig. l.1lb.. In this way
the roof cladding can be made much lighter. The disadvantage is

that the free volume inside the building is reduced.

~ Cable roofs of this type can also be stiffened by suspending beams

1.2,2

from the cables as shown in fig. lc. To achieve sufficient stiff=

ness the beams have to be quite heavy resulting in a relatively

‘expensive design compared with other methods of cable construction.

Simply suspended cables in radial planes

In the same way that simply suspended cables can be used for roofs -

over rectangular buildings, so they can also be used in the construc- ,

~tion of rcufs over circular and oval buildings. The cables are sus—
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pended in planes passing through the centre of the building and attached

at the outer bouﬁdary to & compression ring and at the centre to a

- tension ring as shown in fig. 1.2, The resultant shape is that of

1.3

- 1.3.1

an inverted dome. The circular stadium in Montevi@eo,.Uruguay;?s
of this type. The roof ciadding was made by placing 5 Em.’rein-
forced concrete plates on the cables, then a.temporary%§i§0verload
in the form of bricks was placed on the slabs after which the sbace

between the slabs was filled with concrete. When the concrete had

set, the bricks were removed, resulting in a kind of prestressed

éonerete shell,

~ Roof claddiﬁg_ggpported by cab1e>girders

Prestressed cable girders

By connecting a second cable of reverse curvature to the suspended

- cable as shown in fig. l.3a and then tensioning the two cables to-

such a degree that under‘anylapplied load the two cables and the

fies connecting them are dlways in tension, a cable girder is formed,
This provides a lighter and stiffer system than the heavily loaded
cable, but since the girder has a large degree of- mechanical freédom,

relatively large dispiacements take place when a non-symmetric loading

is ‘appliied.

4 stiffer girder is achieved by clamping the top and bottom cables
together at the centre as shown in fig. l.3b. The increased sﬂiff-

ness is due t6.the reduced mechanical freedom of the system.
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éﬁQ stiffest type of cable zirder developed 80 far is shown in figJl.ice
The vertical ties in the previously described girder have been replaced
by diagonal members changing the girder from a mechanism intb a struc-
tures This type of cable girder Las been éeveloped by the Swedish
engineer Jawerth and successfully used in a large number of buildi:zs,

one of which is the ice~hockey stadium in Stockholm, which has a span

of 83 meilrese.

o Finally in fig. 1.3d is shown a'type of cable girder in which the top

cable is convex and the bottom cable concave. This system is again

a mechanism and the vertical members separating the two cables will

always e in compression.

Cable girders in parallel planes

Examples of roofs in which the cable girders are positioned in parallel

‘ planes are shown in figs. l.4a and l.4b. Since the roof cladding

is not required to increase the stiffness it can be light making it

possible to cover greéter spans than when using simply suspended cables.

. The main cables in the: examples shown are supported on columns and the

tensile forces in the cables are transmitted by anchorage cables to

" the foundations.

Cable girders in radial planes

By placing cable girders in planes which all pass through a vertical

axis, roofs can be designed which in plan are either circular or oval.

As in the case of round buildings with simply suspended cables the

girders are usually positioned between an outer compression ring and
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a central tension ring. The sports hall in Utica in U.S.A. having

a spah of 75 metres and built in 1959 and the American pavillion

‘at the world exhibitioh at Brussels héving a span of 100 metres built
" in 1958, are both examples of this type of construction. Cross—
‘seétions of the two buildings are shown in figs. l.5a and 1.5b, res—-

- pectively. Fig. 1l.5c¢c shows how the pre-tension in cable girders can

reduce the bending moments in cantilevered parts of a building.

Fig 1l.6a shows how the girder in fig{3d. can be used to construct

a'threé-way grid over a circular building. The author does not know

of any roof designed in this way.  An inﬁestigation of this type

- of roof and a comparison of its stiffness and cost of construction with

other types of circular cable roofs would be of great interest.

In fig: 1.6b is éhown a three dimensional view of the roof in fig.l.5b.

Roof cladding supported by cable nets

Andther class of cable roofs contains those in which the cables form

large nets’;f double curvature as’shoyn in fig. 1.7.,v The cohcave cablesAy
are usualiy referred to as suspension cabies énd the convex ones as
prestressing cables., 1S£iffness of the nets is achieved by pretensioning
of the cables before placing the rgof claddiné. To prevent relative.
moveﬁent of the cables they are clamped at their points §f intersection. |
For highly curved nets, the clamping must take place beforé any tensio#
is applied to the cables as otherwise it is extremely difficult to

position the cables‘accurately.

~ To the best of the author's knowledge, nearly all cable net roofs erected

so far have had cables positioned in two orthdgonal‘setsybf’parallel
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planes forming a rectangular grid iﬁ plan;. This does not include cable
‘ zets used for the construction éf some concrete shells for which cable
nets were first erected to form the main steel reinforcement;
In fig. l.7a the suséension.cables are positioned betweeﬁ vertical or
nearly vertically placed arches. The foundations resist the preétressing
forceé in the cables and also any additional fqrcés set: up due to the |
weight of the roof cladding, snow and ﬁind loading. 'Unless the sus=—
pension and anchorage cables are conﬁected by saddies having the szme:
effect as those used in the towers qf suspension bridges, the arches
may have to resist overtufning moments of considerable magnitude,
Aidesign project of a cable net roof covering an area of 180 x 180 ft.
with parabolic arches having a rise 6f 45 £t at the crown along two
sides and with the suspension cables and anchorage cables connected.
. by saddles, was carried out under the author's supervision. ThQ.
- use of saddles resulted in arches of a véry_slender and elegant appearance
~ as the bending moments set up.in the archés.were reduced to negligible.
 magnitudes.
- The iée-hockey stadium at Tammerfors in Finland, covefing an area of
“92.1 63 metres has the configufation sﬁown in fig 1.7a. In this
building, however, the suspension‘cableé are continued through the
arches and downbto the féundaﬁions. “
1f the arches are inclined to the horizontal as shown in fig. 1.70,
the self-weight of the arches may be sﬁfficient to resist the tensilg
forces in the suspénsion §ab1es. Thevresult of this is to reduce the
Size and cost of the foundations. The Raléigh Arena in U.S.4., built
in 1952, is des;gned on this principle.f The arches are inclined

at 22° to the horizontal and the building has a maximum span of 92 metres.
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Finally in fig 1.7¢c. is shown a roof in which the edge members are

straigite The configuration resembles that of a hyperbolic paraboloid.

' Because of the large bending moments set up in the edge members by

the cable forces this configuration is only suitable fop roofs having
coﬁsiderably smaller spans than those previously mentioned.

if the roofs are only of a semi permanent nature and stiffness is a
minor consideration it is possible to replace the edge members shown

in fig., 1.7c by cables. This may alsa be possible for cable ne£ roofs
of different‘configurations. | |

Roof's builtvinlfhe form of cable nets are inherently cheap and can cover
larger épans than is possible with canventibnal metﬂods af construcivions
Their disadvantage is their lack of stiffness. The sﬁiffness for any
configuration can, as is shown in chaptea 6, only be impro#ed‘by
increased prestressing of the cables. ~Aé, howevef, the size of the
edge members and the founaations ané oonaequently the cost of ther

whole vroject are functions of the intensity of prestress, it should

" be appreciated by any engineer and architect contemplating such s

"~ design that the stiffness of a net is also a function of the curvature

and_that an ill chosen architectural form ﬁay greatlyiinoreasé the cost
of any projects In the past, increased stiffness to prevent flutter
of cable roof nets.has been sought by increasing the weight of the roof>

cladding and/or by attaéhing internal ties to the nets. The firstf

'bmethod increases the cost of the project; - the latter ﬁethod giﬁes an

untidy appearance.
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CHAPTER 2

. Configuration theoni

The configuration of unloaded prestressed cable nets.

In the last decade several papers have been published on the con=

figuration of prestressed cable nets by Dean and Ugarte (10), Hussey-

'(16), Schleyer (26) and Siev (30). Summaries of these ‘theories are :

given in sectlon 2.1.1 below.

Summaries of configuration theories for prestressed cable nets.

By regarding a net with cables suspended in two orthogonal sets of
paréllel planes as a continuuﬁ having zero bending stiffness and
self-weight, Schleyer developes the equation

o'z %
oy 7O

o

ox*

~ for the configuration of the net, where X and Y are the horizontal

. and Z the vertical coordinate for any point on the surface. Hy, and .

- Hyo are the horizontal components of the prestressing forces per

unit width of the membrane in the Y and X-directions respectively.

An 1mprovement in the theoretlcal approach is given in Siev's paper
in which he establishes the follow1ng flnlte dlfference equation

for a net whose cables form a square mesh in planz

(A2 An2)
Hpy———¢ *+Ey——7 =0
WA X)) m,n (45m2)2 m,n
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Here suffixes m and n count the cables ie the X and Y-directions
respectively andl , [&n‘denotes the forward difference operators
in these directions.-
Siev, however, fails in solving the finite difference equatien and'f.
proceeds to’ consider the net as a continuum with the above equetion

replaced by »
| 0%z 5%
) o TR e T O

7 where H(y) and H( ) are defined in the same way as H ~and Hy' re=

spectlvely in Schleyer% equation. The two equatlons are therefore

identical. -

' The work carried~out by Dean and Ugafte is a further‘step forward
"theoretlcally. They establish the flnlte difference equatlons for
the configuratlon when loaded in the cases of '
a) doubly threaded nets
‘b) triply threaded nets -
" ¢) quadruply threaded nets.
The eolutione'to'the finitevdifference equations are given in deuble
 finite series by assuming | |
a) flat boundaries, quadrilaterai and triangular in plan
. b) cables which are straight in plan and equallyvspaced in
each direction. | |
The assﬁmptions thet the boundariee are flat,Ahowever, makes the
~ solutions of littie'practical value.

For doubly threaded nets with quadrilateral boundaries a solution
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‘ 1 L
- is also given in the form of a single Fourier series. In this case

only two of the boundaries are assumed flat.

The most useful of the configuration theories developed so far is
~'HusseY's development of the general finite difference equation for

doubly threaded nets. For the case where the cables form a>r;ctan-

gular mesh in plan and are paréllel to the boundaries the solution

is given in terms of dﬁuble Fourier series which are further ekpres—.

" sed as a product of matrices making the solution very convenient for

computation by electronic computér.n

All the‘thedries advanced by the above authors assume, for a numeri-
cal solution to be possible, that the horizontal components of the
forces in the cables are known. To achieve any desired configuration

is therefore a matter of trial and error..

2.2 TFourier series solution for configﬁration of'cable~n¢ts~w1th repeating

pattern and rectlineaf boundaries.

24¢2.1 The configuration of nets with cables forming a rectangﬁlar grid ir plan,

The following account summarises Hussey's method of“solutidn;.
Assumptionss |
a) The projectionsvéf the cables on the horizontal plane are
straight lines..
B) The two:sets of planes in which the cables hang are érphogonal.
c) The»weight of the cables aét at their points of interéection.

Taking a right-handed ortogonal system of coordinate axes (X, Y, 2)
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with X and Y in directions of the two sets of cable projeétions,

the cables ljring in the X-direction are enumerated by a- general

suffix n and in the Y-direction by m, so that n,m represents a typi-

" cal joint and (X, Y, Z) its coordinates. ( See fig. 2.la)

Since the cables are straight in plan and the planes in which inter-
;ecting cables are suspended are at right angles it follows that the
horizontal‘components_of the forces Hy and V, in cables m and n re-

spectively aLre constant throughout their length. |

The tension coeffiéients for the forces iz_i the cables are; denoted

as shown in fig. 2.la.

Frdm the equilibrium of the forces acting upoh joint n,m we get, for

the X-direction,

n . n-l : R N _ -

'trg )( Xpel,m = Xn,m)"’ tn(l )( L,m = Xn—l,m) =0

i.e. o S ' S :
n n-1 ' —

tl$1 n n*n,m ~ trg ' )Anxn-fl,m =0

- (n) - (n) o : ;
or Vn( th Aan’m) = 0, | ty Aan’m =H (2.1)_
where A denotes the forward difference operator and ‘

Vdenotes' the ‘backward difference operator.

' Similarly for the Y-direction:

. (m _ 4 (m - S
Vul tMay, D=0, WAy =v (2.2)
and for the Z-direction: o

ot + Vol ey = wp @)

‘where w h,m is the load on the joint.

Substituting

i V.
: . n
T oam 1™ o
Aan,m . . Z}mYn,,m

£{8) =

(2.4)



23

in equation (R.4) we gets

Ay g -
Hy Vi (“’"_'—' PV V| Zn,m =Wa,m (2f5)
. Aan’m Am n,m|j. o :

* The differencing operations in (2.5) may be written in the form

; 2 2 7
v AnZn,m) 3 o Zn,m (3 Xn,m)(vnzn,m)
n , = = :
' AnKn,m A.an,m (Anxn,m)(vnxn,m)
Amzn,m) _ 5m2'Zfi,m _ (Z’mzyn,m)(vmzn,m)
m - .
- AmYn,m AmYn,ni (Amyn,m)(van,m)

where » denotes the central difference operator.
Hence equation (2.5) may be written: ,
2 2 ' 2 2
B, oy _ (o Xn,m)vn a on (3, Yn,m)vm
n
Aan,m (Anxn,m)(Yan,m) AmYn,m (AmYn,m)(van,m)
' ‘ | =Wpnom (2.6)

, This result pi'ovides in con&enient-form }avsystem of equétions

 for Zn,m' | o |

If the spacings of the‘ cables are constant in the X and Y-ﬁirections,
E theﬁ '

z>ann,m = z>m:zxn,m = O‘

In this case, when the cables are presﬂressed so that

tl

gy =sAx

constant for all m

-and T, = tém)AmYn,m‘ = constant for all n
- then tn(ln)_ = constant for all m = t_, say
and S tém) = constant for all n = -ty, say,

~and equation (2.6) reduces to the elliptic difference equation.

(bxbn® + by n,m = Wn,m (2.7)
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For.a rectangular domain with boundaries n = 0, N and m = O, M-on

- which zn,m is given, a solution of equation (2.7) may be obtained

" in double finite Fourier series as follows.
Let C Zy,m = Zayn *Zn,m ‘
where Zn,m assumes the given boundary values onn = 0, N and m = 0O,
M and is zero at interior nodal points and Zﬁ,m is zero at the boun-
daries. Equation (2.7) may then be written as: _
L . .2 ' — - £ 5 2 >

( tx35* + ty3,%)2) =Wy g L( tydn® + ty3,% )2 o \(2'8)

where the right hand side is a known function which can be calcu~

lated for any given problem. ’
If we put
Wn,m = Wn,m = ( tx3® + t'yz’mz)zn,m
equation (2.8) may be writtenas:

; (‘tx§n% * tybinz)zn,m = wn,m‘. - (29)

0 along the boundaries.

" where Zﬁ’m
Since Zn,m = Zﬁ’m at all interior poipts, the solution of equation

(2.9) 1is the required solution to the problem.

To solve this’equation, first consider the ordinary linear difference
-equation |

¥*f, = Af,
with boundary conditions £, = fyy = O.

. Assuming a solution of the form

£ o= sine2,  (p=1, 2,ee.,(N-1)) - (2.10)

n N2

1[ .
'ﬁl we have:

i

- If we let. Ca




and substitute the expressions (2.12) and (2.13) for 2, .and W
- ’

N=1 M-l © M=l M=1 N=1 M-l

d fn = fn'i'l + fn_l"' an

i

( sin(n+l)a - sin(na)) - ( sin(na) - sin(n-1)a)

i

2{ cosa = 1)sin(na)
and hence (2. lO) is the solution of the given difference equat;on

provided ;Lassumes the eigenvalues

)le = 2( COST$ -1), ( p=1, 2,...,(N—l))‘ o (2.11)

: Géneralizing this result to two dimensions; the solution of equation

(2.9) can be found in the form

N~1 M-l

e L < nmp . muq E -
Zn,m = §=£ éziapq81n-ﬁis1n M . (2.12)
If we now let .
N-1 M=1 o
B p . mxq o
Wn,mdf ; g—l pq51n—N_Sln7T— | o (2.13)

n,m

in equation (2.9) we obtain:

"N—-1 M-,L V N=1 M=1 | ‘
25 s1n = 12 ) upotn R Retn S

tx/\.pN + t )\qM)apqsin N

UpqSiny M

p=l q=1 ‘
(2.14)

p=l =l

and hence

a —w. (2.15)
If we now multiply both sides of equatlon (2.13) by the produot
nup | M
sin—ﬁ*s1n M
and sum over n and m, ve get,-on applying a suitable change of dummy

subscripts:

S rAn Smm
Wy mnpg s:.nq-—M- = Z Z: Z Z‘unmmn-ﬁ—s:mpﬁrmn-ﬁ—sinq%g

Cr=l s=1 ‘ n=1 m=l r=1 s=l

NM

= 7 Ypq
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and therefore

R = par . gms
Upg = N%z:j E:j g9insin=o ' (2.16)
r=1 s=1

Substituting the expressions for the coefficients aéq, Upq given by

(2.15) and (2.16) in (2.12) we get the solution

N-1 M-1 N-1 M-l
. A { 1 . _prnr ., gms nRp |, mig
Zn,m = Wrgsin—t7sin<—(sin—7*~sin——
oy NMg;; q—l‘txApN +t )\qMZ::—‘i Z;; N M N M ) |
' ' (.17

This form of solution has the advantage‘from a computational point of
view that the vertical coordinates can be expressed as a product of
matricec.

The matrices are defined as follows:

S, = [éinggz], ( symmetric, of order (N~1)x(N-1))
Sy = l}ingﬁfl, '( symmetric, of ofder_(M-l)x(M-l))
W = E&ré]‘i sy ( of order (N-1)x(M-1))
B = [bpq]..—. S1WS,

| bpq

A = : = :
o [apq] bty vty gqu
whence - : '

ZI

1}

A . V . 7 B ..‘ . *
[Zﬁ,m] =VNM—'81ASZ : S  (2.18)
. " This completes the account of the conflguratlon theory as developed

'by Hussey.

iThe ihfluence of the weight of the cables on the configuration is best -

taken into'account by an iterative process in which initially the net
~ 1is assumed to be welghtless. At the end of each iteration the current

values of wiare computed and used in the next iterétiqn.
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Differernt cases éolved have shown that accuracy in the first four

decimal places have been achieved after three iterations.

Re2.2 Fouriefvseries solution for doubly threaded cable nets with any. .

guadrilaieral boundary.

~Up ﬁo the présent it has been assumed that equation (2.17) is epplic= -
able oniy-to doubly tﬁreaded nets with rectlinear boundaries and
,réctlineaf repeating pattern in plan.‘An inspéction of fig. 2.1b,
however, éhbwé that the above équation can also be used té calculate
‘the configuration of doubly threaded nets whicﬂ in plan have any
'qQAdrilateral boundary provided the cables in plan ére straight and
 >équally spaced along each boundary.
In such a copfiguration each cable is diviaed by the intersecting
cables into links which prbjections ih plan are of equal length.
Also, since the horizontal component of the cable force for any cable
remains constant along the length of the cable it follows tﬁat the
value of the téhsibh'coefficient for any cable is constant through-
;ut the 1ength of the cable. Thus the vertical equilibrium condifion
for a typical joint n,m ﬁay be writtenvas | | |
| ( trdn” +-'t"n‘z’mz)zn,m = Wpm
The above equation is identical with equation (2.7) except for the
suffixes of the tension coefficients. If, as previously, the tension
coefficients in each of the two sels of cables are assumgd constant
the solution to the above equation ié‘given by equation (2.17) provided

~ we replace ty and to by t and t, respectively.

J
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4 flow diagram for the calculation of 2Z' for nets with rectangular
boun darles 1s shown in fig. 2.2 where a and b denotes the spacing -

of the cables in the X and Y-directions respectlvely, w is the self-

bweight of cables per unit length ard K counts the number of iterations.

The configuration of nets with rectlinear boundaries and cables

diagonal in plan.

In this and the following sections we.shall consider a generalization
of the method to cover cases where the nets have reguiaf repeating

patterns in plan. Slnce we are in practlce restricted to contlnous

Acables, however, this llmlts the application of this method to di-

"agonal nets forming diamond and trlangular - shaped patterns.‘Tnese

constitute the most general combinations which can Ye solved by -

double Fourier synthe31s and gives rise to blquadratlc dlfference

: equations as compared with the elllptlc difference equation conside-

red by Hussey.

The type of net considered in this section and the notgtions used

for a tyﬁical joint n,m are shown in fig; 2.3,

‘Writing S E Zn,m = Zn+l,m ‘

-1,  _
E Zn,m - Zn—l,m
F Zn, =12

F—l

n,m+1l

Zo,m = Znym-1

- where E and F denote shift operatorp, the condltions for vertical

-equilibrium at j01nt n,m may be wrltten as followsz

t'( EF + B~ Y - 2)2, o * n(glp 4 mF L - - 2)Zy o =Wy o (2. 19)

where t', denote the respectlve tension coefficients in the two
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sets of cables as marked in the diaéram.
' In the case t' =t" = t equation (2.19) reduées tos
t( EF + BF L + E0F 4 2 - 4)z =4uin’m  (2.20)
- Considering the product
(E+EL-2)(F+ FL-2)=(EF I T LR o B
{ | —2(E+E+-2)=2(F+Ft- 2)

we see that equation (2.20) may be written in the form

t((E+ET =2)(F+FT=-2)+2(E+E> =2) +2(F+F2T =2))2,,
. o = mn,m
or t( z’nzbmz + 2( 5n2 + z>mz))zn,m? Wn,m ' - {R.21)

As in section 2.2.1 we express the solution in the form
Zn,m = Zn,m * Znym

b

where Z assumes the given boundary values for even values of n

n,m
and m fromn = 0 to N and m = 0 to M'énd is zero elsewhere,_aﬁd :

Zﬁ,m is zerd at thé boundaries.

From equation‘(z.Zl)‘we then have: _

1 dpfe % 4 2( 5% 4 bmz))zg, = wmy - t( %0, % +-2( isn’ +,z>m'2))-z'n,m
whére the fight hand side is a known function which can bé calcula-
ted for any given problem.

If we put o

| Faa( a8,

L L il e 2
Wo,m = Wn,m t( 8y %0,

then the problem reduces to
t( opey? + 2( 3p* + 6mz))zn, = En, . . (2.22)
where ZA, =0 along the boundaries.’ |

Now consider’the product of the two functions

€2 = Inym






















































































































































































































































































































































































































































































































































































































































































































































































































