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ABBTRACT

Thig work investigates brass instruments in the time domain, rather than
- the .t;aditional frequency domain, and considers first, impulse measurements
and secondly, their analysis.

An existing apparatus for measuring the response to an acoustic impulse
at the input of a brass instrument has been refined. Problems of impulse
inconsistency, ambient temperature variation and source.reflections have been
resolved.

Developments of the above equipment are used to test the quality of brass
instruments on a factory production line. A prototype and a test instrument
are compared by taking the arithmetical difference of their impulse responses.
The equipment has detected small faults missed by normal inspection methods.
The usefulness of this technique to brass instrument manufacturers is dis-
tussed.

Links -between the instrument’'s measured transient response and its bore
geometry have been developed. The stages involved are deconvolution and bore
reconstruction. Various deconvolution methods have been studied systematicaly
by applying them to simulated noiseless and noisy data. Noise introduces
errors, particularly at high frequencies, so deconvolution of real measured
data is distorted. Techniques to reduce the effects of noise have been inves-
tigated. Attempts to employ the Gerchberg -restoration algorithm ‘to restore
high frequency information proved unsuccessful.

A new inverse nefhod, based on an iterative z-transform procedure, of
reconstructing an instrument‘s bore shape and damping profile from its tran-
sient response has been developed. It produces perfect results for noiseless
rodel data, but even the smallest amount of noise renders the method unstable.
Regﬁlarisation is therefore required. The corresponding direct‘ process of

predicting the transient response from bore and damping data is stable and



produces results which compare well with measured responses.

The work strengthens relationships between an instrument's shape and its
musical quality, and will enhance the design of better inétruments. Further
research on the link between transient response and subjective quality is

recommended.
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With trumpets and the sound of the harn
make a joyful noise before the King, the Lord!

Psalm 98, Verse 6



CHAPTER 1
INTRODUCTION

A better instrument is the goal of both the musical acousfician and the
instrument manufacturer, not to mention the player and the listener. In this
thesis ways in which progress towards this goal may be made <for brass wind
instruments are considered.

At the outset it is necessary to consider what 1is meant by a  "better
instrument"., Many different factors determine how goad an instrument is.
Edwards (197B) asked over 120 professional. trombone players which features
they considered to be of critical importance for a high\quaiity instruhent.
For convenience, these are divided into two categories - first, wmusical
teatures and secondly, non-musical features.

Musically, the timbre is considered most important. It shoﬁld be pleasing
and the instrument should be such that the player can vary the timbre to suit.
different types of music if he so desires. Good "responsiveness" or ‘"ease of
blowing" is also necessary so that the player can start and change a note
easily and-swiftly. The intonation should be good, although good players can
compensate for intonation‘deficiencies. Note production should be consistent,
and there should not be certain notes (“duff notes") which do not sound prop-
erly. Investigation bf these musical qualities is the concérn of the acousti-
cian. ‘ |

Important non-musical features include smoothness of slide and valve
action, balance, comfort, weight, appearance and price. These qualities are
the concern of the manufacfurer. |

- For the purposes of this thesis, a better instrument will be considered
to be one in which one or more of the above musical qualities has improved. To
determine whether an improvement has occurred, some method of subjective
assessment must be used. Pratt (1978) has carried out pioneering work in this

field. The manufacturer has an additional concern. He needs to be able to
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assure customers of the consistency of given instrument models. At brésent
this cannot be guaranteed. |
The evolution of a bet{er instrument will be facilitated by rationally-
based methods of designing and developing new instruments. Traditional design
procedures have been largely empirical rather than scientific, in that modifi-

cations have been made using "craftsman‘s intuition" instead of an accurate

understanding of how the acoustics will be affected.

The major influence on the acoustics of an instrument is the shape of its
internal bore. An understanding of the direct relationship between the bore
geometry and the acoustics would greatly enhance development _procedufes, but
such a relationship is not easy to establish., Instead, attempts have been made
to forge links by way of an'intermediate, physicélly-measurable quantity.

Early attempts to assess brass instruments physically are reviewed in
Chapter 2. Initially these invnlvedvthe measurement of resonance frequencies
(Webster, 1947). Later Kent (19536) built an impedance measuring device, and
input impedance then became the focus of attention for many years. Many work-
ers have been able to compute numerically the input impedance of a given bﬁre
shape. The link between input impedance and intonation is now also well under-
stood (Wogram, 1972). However, the relationship between inpuf impedance and
otherv subjective qualities is not so clear (Pratt, 1978), and sa the link
between the bore and the acoustics remains incomplete.

Returning to the manufacturer’'s requirement of guaranfeed consistent high
qualit} of instruments, the method of physical assessment of instruments
should be such that small inconsistencies between instruments can be detected.
There are indications that input impedance is not help{ﬁl in this respect
(Pratt, 1978, Section 4.9.4). Therefore, a more suitable method is needed.

In this thesis, the use of trapsient response as an alternative (or com-

plement) to input impedance is proposed. The aims of the research may be out-

lined as follows :



(1)

(2)

(3)

(4)

(3)
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to devise a means of measuring acﬁurately,an approximation of the tran-
sient response (Cﬁapter 3
to develop a method whereby measured transient responses are used to com-
pare instruments and detect inconsistencies between them (Chapter 4);
to process the measured transient response in order to obtain the true
transient response, that is, the response to a Dirac delta function (this
process is termed deconvolution) (Chapter 5);
to investigate the direct and inverse relationships between transient
response and bore geometry (Chapter 5);j
to examine links between transient response and subjective quality

(Chapter 6).



CHAPTER 2
REVIEW OF THE FIELD OF RESBEARCH

This chapter consists of a review of the relevant literature. Section 2.1
contains va general summary of brass instrument research, concentrating mainly
on frequency response.

In Section 2.2, transient measurements are discussed. These must be pro-
cessed in order to extract the true transient response, and varipus methods
for doing this are‘explained in Section 2.3,

Finally in Section 2.4, ways of calculating the profile of a duct from
its transient response are examined; such a relationship provides a valuable

link between the bore of an instrument and its acoustical properties{

2:1. Brass Inetrument Research in the Frequency Domain

Most investigations on brass instruments to date have involved the fre-
quency domain. Therefore, although the bulk of this thesis is devoted to time
domain work, the frequency domain research in the field must first be

reviewed,

2.1.1. Wave Motion {n Brass Instruments

| A brass instrument consists of an air column of varying cross-sectional
area, confined by tubing. This tubing has distinct sections, starting with the
mouthpipe. , then the main bore and finally the bell section (or flaring part).
The mauthpiece acts as a coupler between musician and instrument. Brass

instruments are sometimes referred to as cup-mouthpiece instruments.

4
.

Oscillations are set up in the instrument when the player blows into it.
and his lips vibrate within the mouthpiece cup. The frequency of these oscil-
lations is controlled by the tension and inertia of the player‘s lips. Most of
the resulting pressure wave is ref]gcted back when it encounters the marked
change in wave‘impedance at the instrument bell; frequencies above a certain

limit are»radiatéd out of the bell. At certain frequencies, called resonance
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frequencies, the returning and incoming waves -reinforce each other and a
standing wave is set up; here, large preséure variations in the mouthpiece
actually aid the lip vibration, causing "self-sustained oscillations" (a vterm
coined by Benade (1973)). At other frequencies, the reflected Wave is com-
pletely out of phase with the incident wave, producing a minimum response. In

a later section (2.1.2.5), the frequencies at which resonance occurs [¥] are

examined more closely. This model of instrument behaviour 1is termed the
pressure-controlled lip-valve model.

For convenience, wave propagation in brass instruments is normally
assumed to be planar. A.G. Webster (1919) made this simplifying assumption
(and various others) when he derived the weli-known Horn Equation. It is known
that waves travelling in a cylinder are plane and those travelling in a cone
are spherical. However, the pfecise shape of the wavefront in a rapidly #lar-
ing tube cannot be calculated analytically, because of the non-separability of
the Wave Equation. Benade and Jansson (1974) undertook a close study of this
problem. They reduced Webster's Horn Equation so that it became identical in
form to Schrl@dinger's Time Independent Equation, and postulated the existence
of a "horn function barrier” in the flaring part of the instrument. They used
this barrier to estimate various horn properties; the predicted harn behaviour
varied according to which wavefront shape was assumed - plane or spherical.
After comparing predicted and measured instrument behaviour, Benade concluded

that the true wavefront shape at the bell lay somewhere between plane and

spherical because of "mode conversion" in the bell region. Further investiga-
tions of the wavefront have been attempted at the University of Surrey by
measuring the isophase contour just outside the instrument bell (Downes, 1980;

Lewis, 1981).

[#] It should be noted that the intervals between resonance .
frequencies are too large (up to five tones) for musical
purposesy the notes between them are produced by lengthening the
instrument using valves or slides.
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The accuracy of some of Benade's theoreﬁically predicted results could be
questioned. He used Euler’'s Method for a step-by-step numerical investigation;
yet Euler ‘s Method involves only a first order approximation and can have a
sizable cumulative error. More accurate methods exist, eg. Euler’'s Improved
Method or the Runge-Kutta Method (see, for example, Feckham, 1971),

Ranade and Sondhi (unpublished work, referred to in Sondhi and Resnick,
1983) have also looked at the effect of non-planar wave motion. They used a
finite-element technique to solve a two-dimensfonal wave equation for an axi-

ally symmetric tube of variable cross-sectional area.
2.1:2. Physical Assessment of Instruments using Input Impedance

2.1:.2,1. Introduction

A means of quantifying the acoustical behaviour of brass instruments 1is
essential if ways of improving instruments are to be fbund. The existence of
resonance frequencies suggests that measurement of the frequency response of
~an instrument will be useful. Early resonance measurements involved excitation
of the instrument at the mouthpiece and measurement of pressure variation at
the bell end, eg. J.C. Webster (1947), Carmichael (1968). R.A. Smith and
Daniell (1976) measured resonance frequencies by placing a microphone in the
mouthpiece and comparing the phases of thé incident and reflected waves.

Meésuring input impedance as a function of frequency was subsequently
discovered to be a more satisfactory way of assessing instrument response.
Input impedanfe, Z(f) in kg m-4 ¢.=.—1 is the complex ratio of pressure, P(f) to

valume velocity, U(f),

I(f) = P(f) / U(4) {(2.1)
When measuring input impedance, both excitation and measurement take place at
the nmouthpiece end. The development of methods of measuring input impedance-

will now be examined.
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2.1.2.2, Measursments with Constant Input Volume Velocity

When volume velocity is kept constant in the mouthpiece, a measurement of
pressure response will be proportional to the magnitude of the input
impedance. One way of maintaining constant volume velocity is to excite the
instrument by feeding a sinusoidal loudspeaker signal of controlled constant
amplitude through a fine cylindrical capillary into the mouthpiece cup. A
probe microphone within the cup measures the amplitude of the resulting pres-
sure variations. As the fregquency of.the loudspeaker siénal is varied, a chart
recorder plots the amplitude of the pressure response against frequency. The
first such system was built by Kent (1954) at Conn Ltd. Since then there have
been various developments of the system. Coltman (1948) and Merhaut (1949)
maintained caonstant volume velocity by monitoring fhe motion of a diaphragm
which was directly connected to the loudspeaker driver. Wogram (1972) and

Benade (1973) have built systems similar to Kent's. Backus (1976) used a sys-

tem identical to that of Kent except that he used a specially devised annular
capillary to connect the loudspeaker to the instrument. Earlier, Backus and
Hundley (1971) had used an impedance tube method. More recently, Caussé et al
(1§84), Kriger (1984), Agulld and Badrinas (1985), and Kergomard and Caussé
(1984} have used methods similar to that of Backus.

The inventors of the STL ionophaone (Fransson and Jansson, 1978) «claim
that it is a constant vo;ume velocity source, and Dekan (1974) has used it for
brass instrument resonance measurements. However, Gant (1983) found that it is
not, in fact, a constant velocity sourte.

All the above methods are limited by the fact that volume velocity is not

measured directly.

2.1.2,3, Direct Measuremant of Velocity using Anemometer
A major step forward was the establishment of an acoustic impedance meas-
urement system at the University of Surrey by Pratt (1978), with later

developments by Elliott (1979). In this system, acoustic pressure and particle
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velocity are measured simultaneously wusing a probe microphone and hot-wire
anemometer respectively, allowing calibrated data for the acoustic impedance,
both modulus and phase, to be obtained. The plane of measurement is the throat
of the mouthpiece. A minicomputer controls the apparatus, records the pressure
and velocity data, and calculates the input impedance from it. Careful cali-
bration pruceddres are carried out (Pratt, Elliott and Bowsher, 1977).

The Surrey system has several advantages over other systems. One is the
well-defined plane of measurement. Other investigators have used the mouth-
piece rim as the plane of measurement. Here the volume of air displaced by the
players lips was neglected. Usually the microphone was just beyond the rim,
leading to an effective increase in mouthpiece cup volume. Having the plane
of measurement at the throat of the mouthpiece eliminates the effect of the
nouthpiece cup, but the measured impedance can be modified to include it by
modelling the mouthpiece cup as a lumped element (Elliott, 1979, Section
2.4.7).

The microphone and anemometer are in the same plane, meaning that meas-
ured impedance is indepehdent of what is happening upstream (Elliott, Bowsher
and Watkinsan, 1982).

Keefe and Benade (1981) discuss problems of source and microphone proxim-
ity effects. The source produces a local disturbance caused by evanescent
modes, and the microphone must be carefully placed to avoid these. Such prob-

lems do not arise in the Surrey systenm.

2.1.2.4, Comparison of Computad and Measured Input Imapedance Values

The ability to predict the input impedance of a given bore configuration
would be wuseful, particularly in the area of improving the design of brass
instruments. (Instrument design is discussed further in Chapter é4.) The prob-
lem is not straightforward because of the complicated shapes of brass instru-

ments.
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The input impedance of a simple straight-sided cyl{hder can be predicted
by treating it as a 2-port network and using standard traﬁsmission line
theary. Here, one must assume a linear system and plane wave propagation. For

a lossy cylinder of length 1,

7,4 1_ tanh(y1)
z=1 1+ 1, tanh(y) (2.2

Here, Z is input impedance, Zc is characteristic impedance, Y is propagation

coefficient, and Z1 is load impedance. Pratt (1978, Section 2.15) has conm-
pared measured and fheuretical input impedances for a simple cylinder5 In his
case, measured values were higher, but he had neglected to take account of the
presence of the mouthpiece in his theoretical forﬁulatidn. Watkinson (1981)
also attempted such a comparison; an interesting consequence of his work was
the development of a techniqﬁe for determining acoustic losses at tube walls.

To derive the input impedance of a brass instrument, oﬁe has to approxi-
mate it as a series of simple geometrical shapes. The air column of the
instrumenf is linear, and any linear system can be represented as a 2-port
network. The whole 2-port network can be broken down into a succession of
simpler 2-port networks. One starts at the load end (bell) of the instrument;
the input impedance of each element is calculated and used to load the next
element until the mouthpiece is reached.

Much work has been'&one in this area. The fundamental elements have taken

on various shapes. Young (1968, 1944) used cylindrical elements when calculat-

ing the input impedance of smooth horns with no side holes or losses. Plitnik
and Strong (1979), when findiﬁg the input'impedance of an oboe, used cylindri-
tal elements to approximate the conical bore, and treated each as a lossy
transmission line. Goodwin (1991) termed this process the "Look Back Method".
His theoretical results were comparable with measured values, the greatest
source of error being temperature variation - a factor not normally referred

to in the literature. Wogram (1972, Section 3.1) has made measurements which
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confirm that ambient temperature variations have a significant effect on
instrument intonation,

Some recent reseafchers have used truncated cones as the fundamental ele-
ments - in particular, Caussé et al (1984). Wogram (1972) constructed an
experimental instrument consisting of a cylindrical tube and an exponential
horn, and compared measured and computed iﬁput impedance.

. All these te;hniques have served to predict input impedance to a reason-
able degree of accuracy. In this way the acoustics of a given bore shape can
be anticipafed to a certain extent before any acoustical measurements are

made.

2.1.2.5. Relationship between Input Impedance and Playing Freguencies

To examine this relationship, it is neceésary to look more closely at how
the player interacts with the instrument. Helmholtz (1895) suggested a linear
interaction whereby the lip-valve collaborated with a single impedance maxiaum
to maintain a stable oscillation, and each vibrational mode operated indepen-
dently of other modes. One would therefore expect that the éasiest freduencies
to play would correspond to the tallest of the impedance maxima. This does not
necessarily happen.

Benade and Bans (1968) pointed out that the equation governing the flow
through the lip orifice is non-linear. This leads to a non-linear interaction
between the lip-valve and the air column, whereby several impedance maxima
collaborate with the 1lip-valve mechanism. Benade <calls this a “"reqime of
oscillation", and -the resulting stable  oscillation cnntainé several
harmonically-related components. Therefore, values of impedance at the harmon-
ics of the fundamental frequency are also important.

Worman (1971) analysed this non-linear interaction for clarinet-like sys-
tems. He found that as the dynamic level of a note increased, the harmonics
made up an increasing proportion of the sound, and that the note produced lwas

more stable. For quiet playing levels, the linear theory of Helmholtz holds
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true. ]

Fletcher (1979) and Elliott (1979) have both re-analysed thé regeneration
process. Elliott made some simplifying assumptions, and his model was based on
a model of speech production. He found that the relative magnitudes of the
"average" resistance of the lip opening and the input impedance of the instru-
ment played a large part in determining the harmonic structure of the note
produced.

It is worth mentioning at thfs point the similarities which exist between
the vocal tract and brass instruments. Measurements of the input impedance of
the vocal tract at the lips h#ve been made - <see,  for example, Schroeder
(1947) - and the relevance of the work on vocal tract area function recaovery
to the preseht work on brass instruments will be seen later (Section 2.4).

Wogram (1972) introduced the now well-known "Sum Function", calculated by
sumhing the real pafts of the impedance at the fundamental frequehcy anﬂ its

integral multiples (up to a certain maximum frequency). He postulated that

frequencies of Sum Function maxima, that is, frequencies of maximum energy
transfer from the instrument to the surroundings, corresponded to playing fre-
quencies. His measurements confirmed this quite well. However, Pratt (1978)
found Wogram's theory deficient as it was not satisfied by cylindrical tubes,
and suggested a refinement whereby the dynamic level of the played note was

taken into account.

2,1.3. GBubjective Assessment of Instruments

In addition to physical measurements, another equally important way of
assessing brass instruments is to find out what the listener or player himself
thinks. If relationships between subjecti?e qualities and bore shape or some
physically measurable acoustical properties could be established, this could

well pave the way towards the design of better instruments [#1,

[#] For explanation of "better", see Chapter 1.
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This aspect has received little attention. The only systematic subjective
studies carried out on brass instruments have been at the University of Surrey
(Pratt, 1978; Pratt and Boﬁsher, 1978; Pratt and Bowsher, 1979), and in
Czechoslovakia (Melka, 1981), |

AL Surrey, a way of quantitatively evaluating subjective quality has been
sought. A survey (Edwards, 1978) identified the most important factors govern-
ing instrument quality as timbre and responsiveness, and Pratt (1978)
developed Semantic Differential Scaling (SDS) and Multidimensional Scaling
(MDS) techniques for assessing these qualities. R.A.Smith (19B4) describes how
Pra£t's techniques have been used to assist greatly in the development of a
new Boosey and Hawkes cornet. Their usefulness was also demonstrated during an
investigation into an intonation fault in a bass trombone (Pratt, Bowsher and
Smith, 1978).

Pratt also sought to relate subjective quality to some physically measur-
‘able attribute, in this case input impedance. However, no clear relationship
was found; Bowsher noticed that in certain cases-the gradients of lines join-
ing the peaks of the input impedance curves can be used to make a fair predic-
tion of the responsiveness and richness of tone of trombones (see Pratt, 1978,
Section 4.7); but the physica1 basis of such a relationship is not apparent.
Further discqssion of the relationship between physical and subjective charac-
teristics will be given in Section 6.5.‘

In recent years, it has come to light that the player himself can exert a
iarge influence on the behaviour of an instrument. Therefore, in the latest
work by Bowsher (1983, 1984) and Simpson (1983) the emphasis has changed 4from
making accurate physical measurements of the instrument alone to studying the
ways in which the sound production can be controlled by the player. A compli-
cated model of the control structure governing the player/instrument interface
has been formulated by Bowsher (1983). However, this thesis has concentrated

solely on the instrument, rather than the player/instrument combination,














































































































































































































































































































































































































































































