University of Surrey

Test tubes in the lab Research in the ATI Dance Research

Emission tomography in the determination of the spatial distribution of neutron induced radionuclides.

Davies, Glyn. (1989) Emission tomography in the determination of the spatial distribution of neutron induced radionuclides. Doctoral thesis, University of Surrey (United Kingdom)..

Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (9MB) | Preview


Work has been carried out to investigate the applicability of Neutron Induced Emission Tomography (NIET) to areas of non-destructive testing within the nuclear industry. The principal application was the scanning of irradiated nuclear fuel rods. In addition to its medical uses, tomography has been employed in many areas of non-destructive testing. However, the applications have generally used transmission tomography to examine structure. NIET provides a method of determining the spatial distribution of radionuclides produced by the action of neutrons by activation or fission processes. This has applications as an extension of neutron activation analysis and as a method of non-destructive testing for use in the nuclear industry. The work has involved the use of a number of experimental tomography scanners. Various test objects have been scanned using both emission and transmission tomography and computer programs were developed to collect, process and reconstruct the data. High resolution detectors were used to scan single and multi-energetic radionuclides in test objects designed to model various characteristics of nuclear fuel rods. The effects of scattering on image quality were examined and a method of scattering correction based upon the use of an additional energy window was applied. The work showed the viability of using NIET to study the distribution of radionuclides within objects such as irradiated fuel pellets. It also demonstrated the need for reducing the scattering component within images. The use of narrow energy windows and a high resolution detector were shown to be succesful in reducing the effects of scattering. The employment of scattering correction using additional energy windows was shown to be necessary when scanning multi-energetic radionuclides.

Item Type: Thesis (Doctoral)
Divisions : Theses
Authors :
Davies, Glyn.
Date : 1989
Contributors :
Additional Information : Thesis (Ph.D.)--University of Surrey (United Kingdom), 1989.
Depositing User : EPrints Services
Date Deposited : 22 Jun 2018 13:00
Last Modified : 06 Nov 2018 16:52

Actions (login required)

View Item View Item


Downloads per month over past year

Information about this web site

© The University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom.
+44 (0)1483 300800