University of Surrey

Test tubes in the lab Research in the ATI Dance Research

Recognition using tagged objects.

Soh, Ling Min. (2000) Recognition using tagged objects. Doctoral thesis, University of Surrey (United Kingdom)..

Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (6MB) | Preview


This thesis describes a method for the recognition of objects in an unconstrained environment with a widely ranging illumination, imaged from unknown view points and complicated background. The general problem is simplified by placing specially designed patterns on the object that allows us to solve the pose determination problem easily. There are several key components involved in the proposed recognition approach. They include pattern detection, pose estimation, model acquisition and matching, searching and indexing the model database. Other crucial issues pertaining to the individual components of the recognition system such as the choice of the pattern, the reliability and accuracy of the pattern detector, pose estimator and matching and the speed of the overall system are addressed. After establishing the methodological framework, experiments are carried out on a wide range of both synthetic and real data to illustrate the validity and usefulness of the proposed methods. The principal contribution of this research is a methodology for Tagged Object Recognition (TOR) in unconstrained conditions. A robust pattern (calibration chart) detector is developed for off-the-shelf use. To empirically assess the effectiveness of the pattern detector and the pose estimator under various scenarios, simulated data generated using a graphics rendering process is used. This simulated data provides ground truth which is difficult to obtain in projected images. Using the ground truth, the detection error, which is usually ignored, can be analysed. For model matching, the Chamfer matching algorithm is modified to get a more reliable matching score. The technique facilitates reliable Tagged Object Recognition (TOR). Finally, the results of extensive quantitative and qualitative tests are presented that show the plausibility of practical use of Tagged Object Recognition (TOR). The features characterising the enabling technology developed are the ability to a) recognise an object which is tagged with the calibration chart, b) establish camera position with respect to a landmark and c) test any camera calibration and 3D pose estimation routines, thus facilitating future research and applications in mobile robots navigations, 3D reconstruction and stereo vision.

Item Type: Thesis (Doctoral)
Divisions : Theses
Authors :
Soh, Ling Min.
Date : 2000
Contributors :
Depositing User : EPrints Services
Date Deposited : 09 Nov 2017 12:16
Last Modified : 20 Jun 2018 11:21

Actions (login required)

View Item View Item


Downloads per month over past year

Information about this web site

© The University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom.
+44 (0)1483 300800