University of Surrey

Test tubes in the lab Research in the ATI Dance Research

Uptake of acetylene on cosmic dust and production of benzene in Titan’s atmosphere

Frankland, Victoria, James, AD, Carrillo Sánchez, JD, Mangan, TP, Willacy, K, Poppe, AR and Plane, JMC (2016) Uptake of acetylene on cosmic dust and production of benzene in Titan’s atmosphere Icarus, 278. pp. 88-99.

Full text not available from this repository.


A low-temperature flow tube and ultra-high vacuum apparatus were used to explore the uptake and heterogeneous chemistry of acetylene (C2H2) on cosmic dust analogues over the temperature range encountered in Titan's atmosphere below 600 km. The uptake coefficient, γ, was measured at 181 K to be (1.6 ± 0.4) × 10-4, (1.9 ± 0.4) × 10−4 and (1.5 ± 0.4) × 10−4 for the uptake of C2H2 on Mg2SiO4, MgFeSiO4 and Fe2SiO4, respectively, indicating that γ is independent of Mg or Fe active sites. The uptake of C2H2 was also measured on SiO2 and SiC as analogues for meteoric smoke particles in Titan's atmosphere, but was found to be below the detection limit (γ < 6 × 10−8 and < 4 × 10-7, respectively). The rate of cyclo-trimerization of C2H2 to C6H6 was found to be 2.6 × 10-5 exp(-741/T) s−1, with an uncertainty ranging from ± 27 % at 115 K to ± 49 % at 181 K. A chemical ablation model was used to show that the bulk of cosmic dust particles (radius 0.02–10 µm) entering Titan's atmosphere do not ablate (< 1% mass loss through sputtering), thereby providing a significant surface for heterogeneous chemistry. A 1D model of dust sedimentation shows that the production of C6H6 via uptake of C2H2 on cosmic dust, followed by cyclo-trimerization and desorption, is probably competitive with gas-phase production of C6H6 between 80 and 120 km.

Item Type: Article
Divisions : Faculty of Engineering and Physical Sciences > Chemistry
Authors :
James, AD
Carrillo Sánchez, JD
Mangan, TP
Willacy, K
Poppe, AR
Plane, JMC
Date : 17 June 2016
DOI : 10.1016/j.icarus.2016.06.007
Copyright Disclaimer : © 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
Uncontrolled Keywords : Titan, atmosphere; Kuiper belt; Interplanetary dust
Depositing User : Melanie Hughes
Date Deposited : 23 Aug 2017 13:09
Last Modified : 16 Jan 2019 18:55

Actions (login required)

View Item View Item


Downloads per month over past year

Information about this web site

© The University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom.
+44 (0)1483 300800