University of Surrey

Test tubes in the lab Research in the ATI Dance Research

Inertial manifolds for semilinear parabolic equations which do not satisfy the spectral gap condition.

Kostianko, Anna (2017) Inertial manifolds for semilinear parabolic equations which do not satisfy the spectral gap condition. Doctoral thesis, University of Surrey.

Anna Kostianko thesis.pdf - Version of Record
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (1MB) | Preview


An inertial manifold (IM) is one of the key objects in the modern theory of dissipative systems generated by partial differential equations (PDEs) since it allows us to describe the limit dynamics of the considered system by the reduced finite-dimensional system of ordinary differential equations (ODEs). It is well known that the existence of an IM is guaranteed when the so called spectral gap conditions are satisfied, whereas their violation leads to the possibility of an infinite-dimensional limit dynamics, at least on the level of an abstract parabolic equation. However, these conditions restrict greatly the class of possible applications and are usually satisfied in the case of one spatial dimension only. Despite many efforts in this direction, the IMs in the case when the spectral gap conditions are violated remain a mystery especially in the case of parabolic PDEs. On the one hand, there is a number of interesting classes of such equations where the existence of IMs is established without the validity of the spectral gap conditions and, on the other hand there were no examples of dissipative parabolic PDEs where the non-existence of an IM is rigorously proved. The main aim of this thesis is to bring some light on this mystery by the comprehensive study of three model examples of parabolic PDEs where the spectral gap conditions are not satisfied, namely, 1D reaction-diffusion-advection (RDA) systems (see Chapter 3), the 3D Cahn-Hilliard equation on a torus (see Chapter 4) and the modified 3D Navier-Stokes equations (see Chapter 5). For all these examples the existence or non-existence of IM was an open problem. As shown in Chapter 3, the existence or non-existence of an IM for RDA systems strongly depends on the boundary conditions. In the case of Dirichlet or Neumann boundary conditions, we have proved the existence of an IM using a specially designed non-local in space diffeomorphism which transforms the equations to the new ones for which the spectral gap conditions are satisfied. In contrast to this, in the case of periodic boundary conditions, we construct a natural example of a RDA system which does not possess an IM. In Chapters 4 and 5 we develop an extension of the so-called spatial averaging principle (SAP) (which has been suggested by Sell and Mallet-Paret in order to treat scalar reaction-diffusion equation on a 3D torus) to the case of 4th order equations where the nonlinearity loses smoothness (the Cahn-Hilliard equation) as well as for systems of equations (modified Navier-Stokes equations).

Item Type: Thesis (Doctoral)
Subjects : Mathematics
Divisions : Theses
Authors :
Kostianko, Anna
Date : 31 July 2017
Funders : University of Surrey
Contributors :
Depositing User : Anna Kostianko
Date Deposited : 11 Aug 2017 08:04
Last Modified : 31 Oct 2017 19:23

Actions (login required)

View Item View Item


Downloads per month over past year

Information about this web site

© The University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom.
+44 (0)1483 300800