University of Surrey

Test tubes in the lab Research in the ATI Dance Research

The eburnated bone-cement interface

Kamat, YD, Crocombe, A and Bradley, WN (2014) The eburnated bone-cement interface Current Orthopaedic Practice, 25 (5). pp. 484-487.

Full text not available from this repository.


© 2014 Wolters Kluwer Health | Lippincott Williams & Wilkins.Background: The cement-bone interface has been well studied as the weakest link where initiation of long-term aseptic loosening occurs in cemented arthroplasty. During total knee replacement, one is often confronted with eburnated bone in patients with severe arthritis. We aimed to study shear strength of the eburnated cement-bone interface and the effect of varied surface topology of eburnated bone on this interface strength. Methods: We used blocks of ebony wood to simulate eburnated bone. They were engineered to produce three surface topologies: smooth, drill holes, and cross-hatch pattern. These were cemented to metal (steel) blocks. Each specimen was then mounted onto a loading machine that created a shear force at the simulated cement-bone interface. Force displacement curves were recorded for all specimens until interface failure. Results: The smooth surfaced blocks were found to fail at the cement-wood (bone) interface at an average force of 0.5 MPa. Both the other surface topology alterations resulted in an increased ability to withstand force (average 3.7 MPa) before failure. Examination of the failed specimens revealed a combination of failure at both interfaces as well as cement deformation. Conclusions: One must alter the smooth surface of eburnated bone when dealing with bone defects in cemented arthroplasty. The pattern employed does not make a difference to the strength of the construct. The resulting mechanical bond of the cement with bone is as strong as any component in the metal-cement-bone construct.

Item Type: Article
Divisions : Surrey research (other units)
Authors :
Kamat, YD
Bradley, WN
Date : 1 January 2014
Depositing User : Symplectic Elements
Date Deposited : 17 May 2017 13:37
Last Modified : 25 Jan 2020 00:10

Actions (login required)

View Item View Item


Downloads per month over past year

Information about this web site

© The University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom.
+44 (0)1483 300800