University of Surrey

Test tubes in the lab Research in the ATI Dance Research

New levels of sophistication in the transcriptional landscape of bacteria

van Vliet, AH and Wren, BW (2009) New levels of sophistication in the transcriptional landscape of bacteria GENOME BIOLOGY, 10, 233.

Full text not available from this repository.


An extra layer of complexity in the regulation of gene expression in bacteria is now apparent through previously unanticipated roles of noncoding and antisense RNAs. Bacteria are the great survivors on planet Earth, where they can adapt and flourish in harsh environments ranging from deep-sea vents to acidic mine shafts. A feature of many bacteria, particularly pathogenic bacteria, is their ability to adapt and thrive in multiple environments, which provides them with a competitive advantage. For example, the facultative intracellular pathogen Listeria monocytogenes happily survives in the ambient environment as a saprophyte, but on occasions it has an inherent capacity to turn nasty and cause brain and materno-fetal infections in humans [1]. This requires the bacterium to switch genes on and off as it traverses different environments, ranging from a saprophytic lifestyle to the gut lumen after ingestion to invasion of epithelial cells and intracellular survival. The key to the survivalist success of pathogens is their ability to coordinate, redirect and fine-tune their genetic repertoire as and when required. Traditionally, transcriptional reshaping in bacteria has been considered to be controlled by a hierarchical network of interconnected global transcriptional regulators, such as sigma factors and one- and two-component regulatory systems [2]. In the past decade it has become apparent that the various forms of noncoding regulatory RNA (previously considered as intergenic junk) play important roles in the global regulation of cellular functions, and may represent connecting links between many cellular networks [3, 4]. As such, noncoding RNA also plays a subtle but crucial role in the coordination of the expression of bacterial virulence determinants [5]. Two recent papers from Pascale Cossart and colleagues [6, 7] present a comprehensive microarray analysis of the trans-criptome of Listeria monocytogenes in different conditions, uncovering an unsuspected variety of regulatory roles for noncoding RNAs in controlling changes in gene expression that characterize the transition from saprophytic to pathogenic lifestyle.

Item Type: Article
Subjects : Veterinary Medicine
Divisions : Surrey research (other units)
Authors :
van Vliet,
Wren, BW
Date : 3 August 2009
DOI : 10.1186/gb-2009-10-8-233
Copyright Disclaimer : © BioMed Central Ltd 2009
Depositing User : Symplectic Elements
Date Deposited : 17 May 2017 10:46
Last Modified : 24 Jan 2020 20:02

Actions (login required)

View Item View Item


Downloads per month over past year

Information about this web site

© The University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom.
+44 (0)1483 300800