University of Surrey

Test tubes in the lab Research in the ATI Dance Research

A Novel Approach to the Assessment of Aerospace Coatings Degradation: The HyperTest

Watts, John, Moghim, TB and Abel, Marie-Laure (2016) A Novel Approach to the Assessment of Aerospace Coatings Degradation: The HyperTest Progress in Organic Coatings, 104. pp. 223-231.

1-s2.0-S0300944016307603-main.pdf - Version of Record

Download (1MB) | Preview
Text (licence)
Available under License : See the attached licence file.

Download (33kB) | Preview
[img] Text
A Novel Approach to the Assessment of Aerospace Coatings Degradation - The HyperTest (003).docx - Accepted version Manuscript
Restricted to Repository staff only
Available under License : See the attached licence file.

Download (1MB)


Protecting an aircraft from the extremes of environments during service begins at the interface between topcoat and environment. The topcoat considered here is an aliphatic polyurethane (PU) based matte coating. This paper examines the degradation of the PU topcoat through the use of a novel HyperTest which combines ultra-violet (UV) and ozone as the degradation method. To benchmark the technique against accepted accelerated testing methods, QUV was used and samples were tested between two and 56 days. For The HyperTest, samples were degraded at increments between one to 120 minutes. X-ray photoelectron spectroscopy (XPS) determined that 56 days of UV exposure was equivalent, in terms of the extent of the chemical degradation of the topcoat, to one to two minutes of UV/ozone (UV/O3) exposure. There was a significant increase in carbonyl component with increasing oxygen concentration for samples treated with The HyperTest, whereas no clear degradation trend was observed for the samples exposed to UV alone. After 60 minutes of UV/O3 exposure a steady-state mechanism is established as the oxidative decomposition of the PU coating. The proposed degradation mechanism of the PU topcoat, through UV/O3 exposure, is the reaction of atomic oxygen with the polymer matrix/binder through hydrogen abstraction producing a hydroxyl group. This further decomposes to produce a carbonyl component observed in the XPS analysis. The products of degradation are simple volatile molecules such as CO2 and H2O for both testing methods used here. However, the efficient nature of The HyperTest, requiring only minutes to degrade samples as shown here, proves it to be a viable complementary technique to established methods of laboratory accelerated testing.

Item Type: Article
Subjects : Mechanical Engineering Science
Divisions : Faculty of Engineering and Physical Sciences > Mechanical Engineering Sciences
Authors :
Date : 25 November 2016
DOI : 10.1016/j.porgcoat.2016.11.008
Copyright Disclaimer : © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (
Uncontrolled Keywords : XPS, polyurethane coating, aerospace coating, accelerated test.
Related URLs :
Depositing User : Symplectic Elements
Date Deposited : 22 Nov 2016 16:36
Last Modified : 16 Jan 2019 17:10

Actions (login required)

View Item View Item


Downloads per month over past year

Information about this web site

© The University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom.
+44 (0)1483 300800