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Figure 1. Time dependence of the hardening rate in collisional simulations
of galaxy mergers with different particle number N, up to one million.

Hernquist model (Hernquist 1990). We adopt standard N-body units
M = G = a = 1.

We perform one set of simulations of equal mass galaxies with
γ = 1 and different N from 215 ∼ 32k to 220 ∼ 1 million. Each
model contains a supermassive black hole of mass 0.005, in units
of the galaxy mass. The galaxies are placed on a bound elliptical
orbit with eccentricity e = 0.4 and at an initial distance D = 5. The
softening length is set to ε = 10−4. We follow the evolution of the
binary for a time tend = 200. In these units, the formation of a hard
binary occurs at t ∼ 50.

We monitor the evolution of the binary’s semimajor axis a and
compute the hardening rate by fitting a straight line to a−1(t) in small
time intervals, from the time of binary formation to the end of the
integration. The result is shown in Fig. 1 for models with different
particle numbers. Naturally, low-N models show considerable noise
but we include them for completeness. As the binary shrinks due to
gravitational slingshot ejections of interacting stars, the loss-cone
angular momentum Jlc decreases and the hardening rate decreases
slowly with time. However, it does so for all considered choices of
N, and shows no significant N dependence. We also consider the
hardening rate averaged over a given time-interval: specifically over
50 < t < 100, 100 < t < 150 and 150 < t < 200. The first is meant
to capture the phase of quick hardening after the binary becomes
formally bound and then reaches the hard-binary separation, while
the second and third represent the late phases of hardening, once all
the stars initially in the loss cone have been ejected and hardening
is due to refilling of the loss cone. The averaged hardening rates are
shown in Fig. 2 as a function of particle number. Despite the noise
that plagues low-N simulations, there is essentially no dependence
of the hardening rate on particle number. This is in agreement with
the results of earlier simulations of galaxy mergers (Khan et al.
2011; Preto et al. 2011; Gualandris & Merritt 2012). We find a
similar result for a second set of simulations of mergers of equal
mass galaxies with a γ = 1.5 density profile.

We also compute the hardening rate in the merger simulations
directly from the N-body data, according to equation (10), both
summing up the contributions of all stars and considering only stars
with χ ≤ 1. For the computation of C(χ ), we adopt the fitting
function given in Vasiliev et al. (2014, equation 5) which well
approximates the results of Sesana et al. (2006) in the case of a

Figure 2. Binary hardening rate in direct collisional simulations of galaxy
mergers with different particle number N, averaged over different time in-
tervals: 50 ≤ t ≤ 100 (circles), 100 ≤ t ≤ 150 (triangles) and 150 ≤ t ≤ 200
(squares).

Figure 3. Binary hardening rate versus time measured in a galaxy merger
with N = 106 (solid line) and estimated from the stellar angular momenta
according to equation (10) including all stars (dashed line) and only stars
with χ ≤ 1 (dotted line).

circular, equal mass binary. The radial orbital period of each star is
computed by solving numerically the integral

Pi = 2
∫ ra

rp

dr√
2[E − �(r)] − J 2/r2

, (12)

where E and J are, respectively, the energy and angular momentum
of the orbit, �(r) is the gravitational potential and the pericentre rp

and apocentre ra are computed by solving numerically the equation
for the turning points in a spherical potential

1

r2
+ 2[�(r) − E]

J 2
= 0. (13)

The hardening rates computed for the N = 220 ∼ 106 merger
simulation are shown in Fig. 3, and compared with the rate measured
from the binary’s semimajor axis according to the definition given
in equation (2). The agreement is quite good, also in the case when
the contribution from stars with χ > 1 is neglected.

We now look for a simple proxy for the binary hardening rate
that depends only on the angular momenta of the stars. Given that,
at any time, the hardening of the binary is due to stars with angular
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Figure 4. Top: total number of stars with angular momentum J ≤ Jlc, repre-
sentative of the loss-cone angular momentum at the hard-binary separation
for binaries with different total mass. NJ was computed in the merger simula-
tions with initial γ = 1.0 profile. Each star satisfying the condition is counted
only once and stars satisfying the condition at the start of the simulations
are discounted. Bottom: refilling parameter, as defined in equation (14), in
the merger simulations.

momentum smaller than the loss-cone angular momentum J ≤ Jlc,
we consider as proxy for the hardening rate the parameter

RJ ≡ NJ

N
= N (J ≤ Jlc)

N
, (14)

where NJ is the total number of stars with initial angular momentum
larger than the loss-cone angular momentum at the hard-binary
separation J > Jlc(ah) but which reach J < Jlc at some point in the
simulation. In particular, stars moving in and out of the loss cone
are counted only once, to account for the fact that they would be
ejected after a close encounter with the BHB. We will refer to RJ

as the refilling parameter.
We compute the loss-cone refilling parameter in the merger sim-

ulations, where we assumed three different values for the loss-cone
angular momentum, representative of binaries with different total
mass in units of the galaxy mass. The results, shown in Fig. 4,
indicate that while NJ is a strong function of N for all considered
values of Jlc (see top panel), the refilling parameter RJ is effec-
tively independent of N (see bottom panel). The refilling parameter
is therefore a reliable proxy for the binary hardening rate: if RJ is
independent of N, so is the hardening rate.

3.2 Simulations of isolated models

The refilling parameter depends only on the number of stars with
angular momentum smaller than a given critical value, i.e. only on
the fraction of stars able to interact with the binary during the hard-
ening phase. This, in turn, depends on the level of non-sphericity
of the gravitational potential. Therefore, it is not necessary to per-
form simulations of galaxy mergers with MBHs in order to model
collisionless loss-cone refilling. Such simulations are required for
a precise determination of the hardening rate and the coalescence
time-scale, but not to ascertain the fate of BHBs in the broader
context of the final parsec problem. Simulations including BHBs
are computationally very expensive because of two main reasons:
(i) direct summation is usually implemented for the computation
of gravitational forces and (ii) a small gravitational softening is
adopted to follow the evolution of the binary to very small separa-
tions, well below the hard-binary limit.

Table 1. Parameters used to estimate the loss-cone angular momentum in
spherical (S), axisymmetric (A) and triaxial (T) models. The columns indi-
cate, respectively, the model name, the axis ratio, the mass of the hypothetical
BHB in units of the total galaxy mass, the influence radius of the BHB, the
hard-binary separation and the resulting loss-cone angular momentum.

Model Axis ratios Mbin/M rm ah JLC

S 1:1:1 0.001 0.13 0.008 0.004
S 1:1:1 0.005 0.22 0.014 0.012
S 1:1:1 0.01 0.28 0.018 0.018

A 1:1:0.8 0.001 0.13 0.008 0.004
A 1:1:0.8 0.005 0.22 0.014 0.012
A 1:1:0.8 0.01 0.28 0.017 0.019

T1 1:0.9:0.8 0.001 0.25 0.015 0.0055
T1 1:0.9:0.8 0.005 0.41 0.025 0.016
T1 1:0.9:0.8 0.01 0.50 0.032 0.025

T2 1:0.8:0.6 0.001 0.26 0.016 0.0057
T2 1:0.8:0.6 0.005 0.44 0.027 0.016
T2 1:0.8:0.6 0.01 0.55 0.034 0.026

Here, we take a different approach in which we simulate isolated
galaxy models without MBHs and estimate the collisionless loss-
cone refilling rate by measuring the refilling parameter in models
with increasing N. We adopt both a direct summation technique,
with particle numbers up to 221 ∼ 2 millions, and a tailored fast
multiple method, with particle numbers up to 226 ∼ 64 million. For
the former set of simulations we use the φGRAPE code (Harfst et al.
2007), adapted to run on a GPU cluster by means of the Sapporo
library (Gaburov, Harfst & Portegies Zwart 2009). For the latter
set of simulations we adopt the collisionless N-body code GRIFFIN,
which employs the fast multipole method (FMM). To allow for
softened gravity, the FMM is implemented in Cartesian coordinates,
but otherwise is very similar to the method reported in Dehnen
(2014), in particular the computational effort at a given accuracy is
minimized while maintaining a well-behaved distribution of errors.
In this way, the code can be made as accurate as direct summation
with a O(N ) scaling. The simulations reported here use multipole
expansion order p = 5 and a relative force error of 5 × 10−5 for
each particle. Initially, we attempted to use the public N-body code
GADGET2, but could not obtain converged results (see Appendix A),
most likely owing to insufficient force accuracy of the tree method.

Very large particle numbers are required to eliminate collisional
effects and measure collisionless repopulation of the loss cone,
as these occur on a relaxation time-scale, which scales as N/lnN.
However, we also perform direct summation simulations to validate
the results of the fast multiple method code and to compare with
existing results.

We consider galaxy models following a generalization of the
Hernquist (1990) profile

ρ(r) = M

2π abc

1

r (1 + r)3 (15)

to allow for non-sphericity, where a, band c represent the axes of a
triaxial ellipsoid. Units are such that M = 1, where M is the total
mass of the galaxy, and abc = 1.

The parameters of all the models are listed in Table 1, including
spherical models, axisymmetric models with axis ratios 1:1:0.8 and
two sets of triaxial models, moderately triaxial with 1:0.9:0.8 and tri-
axial with 1:0.8:0.6. All models were generated with the SMILE soft-
ware (Vasiliev 2013), a recent implementation of the Schwarzschild
orbital superposition method, using 2 × 105 orbits.
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Figure 5. Refilling parameter RJ as a function of particle number for different models assuming a loss-cone angular momentum Jlc = 0.005 (left) and
Jlc = 0.02 (right). In both panels, the dotted line shows the 1/

√
N slope expected for collisional loss-cone repopulation.

We adopt an N-dependent value of softening appropriate for the
FMM code of the order

ε ≈
(

2π

N

)1/3

(16)

and apply the same to the φGRAPE simulations. While this choice
is larger than the values generally employed in direct summation
simulations, it is appropriate for the collisionless process to be
studied here. A more detailed description of the effect of softening
is given in Section 3.3. Fig. 5 shows the refilling parameter RJ

as a function of particle number for all the models and with both
codes, assuming a loss-cone angular momentum Jlc = 0.005 and
Jlc = 0.02. These values correspond to the cases of binary to galaxy
mass ratio of 0.001 and 0.01, respectively (see Table 1). We find that
for spherical models RJ decreases with N as 1/

√
N , a signature

that in these models collisional effects are responsible for loss-cone
refilling. This holds true even at the largest N reached with GRIFFIN. In
triaxial models, instead, the behaviour is dramatically different. Not
only is RJ much larger in the triaxial models than in the spherical
ones, there is essentially little or no N dependence, as expected
if a collisionless process is responsible for refilling the loss cone.
The systematically larger values of RJ in the more triaxial models
(T2) compared to the moderately triaxial ones (T1) also support the
interpretation that the shape of the potential is the key element in
the refilling process. Axisymmetric models show a behaviour which
is intermediate between that of the spherical and triaxial models,
with a refilling parameter which decreases as a function of N as in
spherical models, but much more slowly. This can be interpreted as
a consequence of the nature of orbits in an axisymmetric potential,
where the total angular momentum J of individual particles is not
conserved but JZ is, and there is therefore a lower limit to how small
J can become during the evolution. In the case of the largest Jlc,
there is evidence for flattening at the largest N, but convergence
is certainly not yet reached in these models. The implication for
BHBs in merger remnants is therefore that flattening of the system
may not be sufficient to sustain orbital decay to the gravitational
wave phase, but that a certain, even moderate, degree of triaxiality
may be needed to drive the binaries to coalescence within a Hubble

time. This is in good agreement with the findings of Vasiliev et al.
(2015). Fig. 6 shows the refilling parameter computed for just the Jz

component of stellar angular momentum. Because this component
is conserved for stars in an axisymmetric potential, RJz shows the
same N dependence in axisymmetric models as in spherical models.
On the other hand, there is no N dependence in triaxial models, as
expected. Our computation of the refilling parameter as a proxy for
the hardening rate relies on the assumption that stars whose angular
momentum falls below the binary angular momentum populate the
loss cone and will eventually interact with the binary, contributing
to its orbital decay. In order to verify this assumption we compute
the number of stars within a given distance from the centre of the
system and look for correlations between this quantity and NJ. In
particular, we define Nr as the number of stars initially within a
distance r > rh equal to the hard-binary separation which obtain
r < rh at some time during the simulation. For our fiducial choice
of mass ratios Mbin/M = 0.001, 0.005, 0.01 this corresponds to
rh = 0.008, 0.014, 0.018.

We find that Nr correlates with NJ in all models, both spherical
and non-spherical, as shown in Fig. 7. We also find the expected
difference between spherical and triaxial models, with the latter
showing much larger values of Nr than the corresponding spherical
models with the same N. The same holds for models T1 and T2,
where the more triaxial set systematically has larger values of Nr.
As usual, axisymmetric model lie in between the spherical and the
triaxial models.

To determine the final fate of BHBs, we also computed the numer-
ical hardening rate sNB as given in equation (10), assuming a starting
value of the binary semimajor axis equal to the one measured in the
merger simulation with γ = 1 and N = 106. In order to mimic the
erosion of the stellar cusp produced by a BHB, we assume that stars
are lost after a time equal to their radial orbital period and therefore
do not contribute to the hardening rate at later times. The rates for
spherical and non-spherical models with N = 106 are shown in Fig. 8
as a function of time. We find that the triaxial models well reproduce
the time evolution of the hardening rates measured in the merger
simulation, while the spherical model shows a hardening rate that is
more than one order of magnitude lower. The axisymmetric model
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Figure 6. Refilling parameter RJz as a function of particle number for different models assuming a loss-cone angular momentum Jlc = 0.005 (left) and
Jlc = 0.02 (right). In both panels, the dotted line shows the 1/

√
N slope expected for collisional loss-cone repopulation.

Figure 7. Correlation between the number of stars Nr within a given dis-
tance from the centre and the number of stars NJ with angular momen-
tum smaller than the loss-cone angular momentum, for spherical (circles),
axisymmetric (triangles) and triaxial (diamonds) models. All models were
evolved with GRIFFIN and the refilling parameter is computed with Jlc = 0.02,
while Nr is computed for a distance rlc = 0.018 from the centre, correspond-
ing to the hard-binary separation of a BHB with mass of 1 per cent of the
galaxy mass.

is intermediate, with rates significantly lower than the merger sim-
ulation. The rates for the merger simulation lie in between those
of model T2, with axis ratios 1:0.8:0.6 and model T1, with axis
ratios 1:0.9:0.8. At the time of binary formation, the merger rem-
nant can be best fit by a triaxial ellipsoid with axis ratios 1:0.8:0.6
at a distance D = 0.5 from the binary’s centre of mass, and by a
triaxial ellipsoid with axis ratios 1:0.9:0.7 at a distance D = 1. The
shape of the remnant is therefore consistent with an isolated model
of triaxiality that is intermediate between that of models T1 and T2.

Figure 8. Hardening rate in the spherical (dotted line), axisymmetric (short
dashed line) and triaxial (dot–dashed and long dashed lines) isolated models
as a function of time. For a comparison, the hardening rate measured in the
merger simulation with γ = 1 and N = 106 is also shown (thick solid line).

On the other hand, one might expect the hardening of the merger
remnant to be enhanced compared to that of an isolated model due
to rotation, which has been shown to lead to higher hardening rates
(Holley-Bockelmann & Khan 2015). The small discrepancy might
be due to the fact that the simple semi-analytic approach used to
compute sNB assumes that any star with χ < 1 will interact with
the binary within an orbital period, and this might not always be the
case.

The hardening rate may also be artificially increased by Brownian
motion, a wandering of the binary which leads to an enlarged loss
cone (Merritt 2001; Chatterjee, Hernquist & Loeb 2003). Using
dedicated N-body simulations, however, Bortolas et al. (2016) find
that Brownian motion does not affect the evolution of BHBs in
simulations with N in excess of one million.
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The time-scale for coalescence from a separation a due to emis-
sion of gravitational waves is, for a circular binary,

TGW = 5

256

c5a4

G3M1M2Mbin

≈ 5.8 × 108 yr

(
a

10−3 pc

)4 (
106 M


Mbin

)3

. (17)

Therefore, for a given binary mass the separation corresponding to
a time shorter than a Hubble time is

aGW ≈ 2 × 10−3 pc

(
Mbin

106 M


)3/4

. (18)

This corresponds to approximately aGW ∼ 0.01ah for all considered
models. The total time to coalescence is given by the time spent in
hardening down to a separation of the order of aGW plus the time TGW

for inspiral. For the models considered above for the computation of
sNB with Mbin = 106 M
 and extrapolating the evolution of a(t) to
later times, we find that both the triaxial and axisymmetric models
would be able to reach coalescence within a Hubble time. However,
for typical systems with Mbin ∼ 108 M
 only the triaxial models
have hardening rates large enough to ensure coalescence. The rates
for the axisymmetric models are too low to bridge the gap to the
gravitational waves dominated regime. These results are in good
agreement with those of Vasiliev et al. (2015).

3.3 Effect of numerical softening

The refilling parameter measured in the isolated models depends
on the numerical softening chosen in the simulations. Softening
reduces the collisionality of a stellar system by suppressing the
importance and the effect of close encounters. Therefore, it is nat-
ural to expect a dependence of the refilling parameter on softening
in spherical systems, in which loss-cone refilling is dominated by
collisional effects. In triaxial models, collisional and collisionless
modes of loss-cone repopulation coexist at the modest particle num-
bers typical of direct summation simulations. If a small softening
is used, as in the simulations of Vasiliev et al. (2014) including
the BHB, very large particle numbers are required for collisionless
refilling to become dominant. Hence, their conclusion that much
larger N values than affordable by direct summation are necessary
to suppress relaxation effects. On the other hand, adopting a larger
value of softening, as done in this work for models without MBHs,
allows the effects of global torques to become apparent at smaller
particle numbers.

Fig. 9 shows the dependence of RJ on softening in φGRAPE in-
tegrations of spherical and triaxial models. We consider cases in
which a fixed softening is adopted for models of different N (empty
symbols) and the case of N-dependent softening defined in equa-
tion (16) [filled symbols]. In the spherical models RJ decreases with
increasing softening as expected, and the choice of the variable soft-
ening works well at reducing collisional effects. In triaxial models,
the effect of a larger softening is to reduce scatterings into the loss
cone and the flattening of RJ appears at smaller N.

4 D I S C U S S I O N A N D C O N C L U S I O N S

BHB hardening in simulations of galaxy mergers is believed to be
sustained by a collisionless mode of loss-cone refilling which owes
to global torques in non-spherical potentials. This is necessary to en-
sure hardening down to separations where emission of gravitational
waves becomes dominant and leads the black holes to coalescence.

Figure 9. Refilling parameter as a function of particle number in direct
summation integrations of spherical (circles) and triaxial (squares) models
with different values of softening. Empty symbols refer to fixed values
of softening for all particle numbers, while filled symbols refer to the N-
dependent prescription defined in equation (16).

Merger remnants typically show a significant degree of flattening
and a modest departure from axisymmetry (Khan et al. 2011; Preto
et al. 2011; Gualandris & Merritt 2012), which argues for a signif-
icant population of stars on centrophilic orbits. However, if this is
indeed the case then binary hardening should also be efficient in
isolated triaxial models. Simulations by Vasiliev et al. (2014) show
that collisionless loss-cone refilling is masked by collisional refill-
ing due to stellar scatterings in simulations with modest particle
numbers and small softening. Here, we take a different approach to
the problem and study loss-cone refilling in isolated galaxy models.
In order to reduce the effects of collisionality we perform simu-
lations with the fast multiple method code GRIFFIN (Dehnen 2014),
which allows us to increase particle number to 64 million. We find
a proxy for binary hardening that is given by the refilling parameter,
i.e. the fraction of stars with angular momentum smaller than the
angular momentum of a hypothetical BHB of given mass, where
each star is counted only once per simulation.

Our key findings are as follows.

(i) The refilling parameter, i.e. the fraction of stars which can be
counted at least once to have angular momentum smaller than the
loss-cone angular momentum, is a good proxy for the hardening
rate in merger simulations.

(ii) Loss-cone refilling in spherical models depends critically on
particle number, a clear signature that it is driven by two body scat-
terings. In real galaxies, this process becomes extremely inefficient
and BHBs are not expected to reach the gravitational wave phase.

(iii) There is no N-dependence of the refilling parameter in tri-
axial models above N ∼ 107. Refilling is more efficient in triaxial
models than in spherical models, and a higher degree of triaxiality
also leads to more efficient refilling.

(iv) Axisymmetric models have properties in between spherical
and triaxial models. While refilling is consistently more efficient
than in spherical cases, we observe a marked N-dependence with
no obvious flattening even at the largest N values.

(v) Hardening rates computed directly from the N-body data in
isolated triaxial models match those computed in merger simula-
tions. On the other hand, spherical isolated models and axisymmet-
ric models have significantly lower hardening rates.

(vi) The hardening rates measured for the triaxial models are
large enough to ensure coalescence of the binaries within a
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Hubble time for Milky Way-type galaxies as well as more massive
ones. Hardening rates in axisymmetric models are only marginally
sufficient to bridge the gap to the gravitational waves regime in
the case of low-mass binaries (Mbin � 106 M
) but imply coales-
cence times that are longer than a Hubble time for typical binaries
(Mbin ∼ 108 M
). Spherical models are generally characterized by
hardening rates too low to lead to coalescence.
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A P P E N D I X A : O N T H E I M P O RTA N C E
O F F O R C E E R RO R S

Moving from a direct summation force calculation to a faster ap-
proximate method may seem like a natural step when trying to
increase particle number in order to reduce collisional effects. How-
ever, we caution the reader that care needs to be taken when choos-
ing an approximate method for this type of problem. In order to
study diffusion in angular momentum driven by global torques, the
force errors need to be sufficiently small. Dehnen (2014) presents
an analysis of the force errors for the fast multiple method (or tree
code) with a conventional geometric multipole-acceptance crite-
rion (based on an opening angle θ ). When using sufficiently large
expansion order p and small θ , the relative force errors of such a
method can be reduced to 10−7, the same level as contemporary
implementations of direct summation. However, the approximated
methods show extended tails towards large force errors, a direct
consequence of the simple geometric opening criterion. This tail
of a few stars with large force errors does not compromise global
energy conservation but may seriously affect the validity of simu-
lations, in particular if accurate representation of orbits is required.
Our method of choice, GRIFFIN, uses another type of opening crite-
rion, which is informed by an error estimate based on the multipole
moments themselves (see Dehnen 2014, for details), and produces
a well-behaved distribution of force errors while minimizing the
computational costs to obtain a scaling better than O(N ).

Fig. A1 shows a comparison between GADGET2 (a conventional
tree code with geometric opening criterion), φGRAPE and GRIFFIN for
the calculation of the refilling parameter in spherical and triaxial
models of varying N (using the same N-dependent softening for all
codes). Values of RJ agree remarkably well between φGRAPE and
GRIFFIN. For a collision-dominated scenario (spherical), GRIFFIN errs
slightly towards too small RJ , which can be understood by a less
accurate time integration of two-body encounters, resulting in less
scattering. For the collisionless scenario (triaxial), GRIFFIN agrees
very well with φGRAPE, despite relative forces errors which are
∼500 times less accurate (× 10−7 versus 5 × 10−5). The results
from GADGET2 are markedly different and do not reproduce the ex-
pected scaling with increasing N, but give too large RJ with consid-
erable scatter. This erroneous behaviour is exactly what one expects
from a few large force errors, which act like a random relaxation
process.
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Figure A1. Repopulation parameter versus particle number in spherical (left) and triaxial (right) models, evolved with three different codes: GADGET2 (triangles),
φGRAPE (circles) and GRIFFIN (stars).
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