University of Surrey

Test tubes in the lab Research in the ATI Dance Research

Investigation of Alzheimer's Disease EEG Frequency Components with Lempel-Ziv Complexity

Simons, S, Abasolo, D and Hughes, M (2015) Investigation of Alzheimer's Disease EEG Frequency Components with Lempel-Ziv Complexity In: 6th European Conference of the International-Federation-for-Medical-and-Biological-Engineering (MBEC), 2014-09-07 - 2014-09-11, Dubrovnik, CROATIA.

Simons_Abasolo_and_Hughes_MBEC2014_final_version.pdf - Accepted version Manuscript
Available under License : See the attached licence file.

Download (254kB) | Preview
Text (licence)
Available under License : See the attached licence file.

Download (33kB) | Preview


. This pilot study applied Lempel-Ziv Complexity (LZC) to 22 resting EEG signals, collected using the 10-20 international system, from 11 patients with Alzheimer’s disease (AD) and 11 age-matched controls. This allowed for frequency band analysis as the EEG signals were first prefiltered with a third order Hamming window in the ranges F to F+WHz with both F and W equal to 1-30Hz respectively. Control subjects were found to have a greater signal complexity than AD patients with statistically significant bands seen at various ranges in all 16 electrodes. The maximum statistical significance (Student’s t test, p<0.01) was increased over the findings with traditional signal filtering techniques allowing the whole range, with a maximum significance of p=3.50e-6 at electrode T4 between 7-18Hz. Electrode F4 also showed significantly high statistically significant differences. The maximum accuracy, both controls and AD patients correctly identified, found with Receiver Operating Characteristic Curves was 95.45% (21 of 22 subjects correctly classified) at T4 (7-18Hz and 7-20Hz), Fp2 (8-32Hz) and F4 (6-21Hz), which is significantly more accurate than the most accurate methods previously applied to this dataset. The beta band (13-30Hz) was found to be most influential in separating the two test groups in this study with the best range suggested to be 5-26Hz, combining traditional theta, alpha and beta bands. These findings suggest pre-filtering has a significant effect on method outcomes and can be successfully tailored to improve the statistical effectiveness of LZC at distinguishing between these two EEG groups. However, more testing is required to investigate the effectiveness at distinguishing other signal dynamics.

Item Type: Conference or Workshop Item (Conference Paper)
Subjects : Biomedical engineering
Divisions : Faculty of Engineering and Physical Sciences
Authors :
Simons, S
Abasolo, D
Hughes, M
Date : 1 January 2015
DOI : 10.1007/978-3-319-11128-5_12
Contributors :
Lackovic, I
Vasic, D
Uncontrolled Keywords : Science & Technology, Technology, Life Sciences & Biomedicine, Engineering, Biomedical, Medical Informatics, Neurosciences, Engineering, Neurosciences & Neurology, Alzheimer's disease, Electroencephalogram, Non-linear analysis, Lempel-ziv complexity, Frequency component analysis, NONLINEAR DYNAMICS, ENTROPY
Related URLs :
Additional Information : © Springer International Publishing Switzerland 2015. The final publication is available at Springer via
Depositing User : Symplectic Elements
Date Deposited : 11 Mar 2016 11:49
Last Modified : 31 Oct 2017 18:06

Actions (login required)

View Item View Item


Downloads per month over past year

Information about this web site

© The University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom.
+44 (0)1483 300800