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Abstract—Since the advent of multitouch screens users have
been able to interact using fingertip gestures in a two dimensional
plane. With the development of depth cameras, such as the
Kinect, attempts have been made to reproduce the detection of
gestures for three dimensional interaction. Many of these use
contour analysis to find the fingertips, however the success of such
approaches is limited due to sensor noise and rapid movements.
This paper discusses an approach to identify fingertips during
rapid movement at varying depths allowing multitouch without
contact with a screen. To achieve this, we use a weighted graph
that is built using the depth information of the hand to determine
the geodesic maxima of the surface. Fingertips are then selected
from these maxima using a simplified model of the hand and
correspondence found over successive frames. Our experiments
show real-time performance for multiple users providing tracking
at 30fps for up to 4 hands and we compare our results with state-
of-the-art methods, providing accuracy an order of magnitude
better than existing approaches.

I. INTRODUCTION

Multitouch technology is now commonplace across mod-
ern devices but limited to the two-dimensional plane of the
display. The detection and tracking of fingertips in three
dimensions, opens up multitouch to new applications. Tracking
the fingertips in three space independently of display plane
has applications in areas of computing ranging from medical
analysis in sterile environments, to home entertainment and
gaming. Detecting and tracking the fingertips in real-time
is difficult due to the variability in environment, the fast
motion of the hands and the high degree of freedom of finger
movement. We propose a robust real-time approach that uses
geodesic maxima instead of visual appearance which is both
efficient to compute and robust to both pose and environment.

With the arrival of time-of-flight (TOF) and structured light
cameras, depth information has become available, and has
brought about pioneering methods of capturing user interac-
tion. It also facilitates simplified techniques to background
subtraction and clustering; processes pertaining to robust
tracking. Using the depth information, we use a graph-based
approach to find the geodesic extrema of the hand showing that
these extrema correspond to the tips of extended fingers. We
also demonstrate a method for eliminating points incorrectly
identified as fingertips.

II. RELATED WORK

There is a large body of work that focuses on the task of
analysing hands for use in computer interaction. This includes

systems developed to track hands or fingertip locations as hand
tracking is often the first stage in finding the fingertips. Using
a region-growing technique Chen et al [4] locates and tracks
the center of the hand. Nanda and Fujimura [11] uses Potential
Fields to track a model contour over depth sequences that can
be applied to hands. Van Den Bergh and Van Gool[22] track
hands using depth segmentation and a broad RGB color model
to segment the hand.

Model-based tracking is a popular approach capable of
inferring the location of the fingertips [12], and can account
for large scale occlusion [7]. These techniques can achieve 15
frames per second, for a single hand but this is still too slow
for smooth interaction. Our approach is capable of four hands
at 30 frames per second.

Many researchers have chosen to optimise model fitting with
the assistance of devices that are attached to a user. Motion
capture is a common example of this, and works using markers
placed at key locations across the hand, sometimes including
the wrist. Aristidou and Lasenby [2] use markers to reduce
the complexity of mapping a model to the full structure of the
hand. A colored glove is employed by [24] to simplify pose
inference from a colour image to a dataset of “tiny” images.
Matching is performed using nearest neighbor, providing an
approximate pose of the hand, which is then improved using
blending.

One prerequisite of seamless interaction is the use of
gloveless detection, which relies on the structure of the hand,
often constraining the palm to have to face the camera. Many
systems examine contour curvature to determine the most
probable location of the finger tips. Lee and Hollerer [10]
improve on Argyros and Lourakis’s [1] method of finger
detection by fitting an ellipse to candidate points, and selecting
the tip as the furthest point of the ellipse’s principle axis. Pan
et al [14] uses curvature analysis to initialise a multi-cue hand
tracker which, once initialised, tracks using 100 KLT features.
A scanning window can also find candidate fingertips, Oka
et al uses a template of a rectangle with a semi-circular tip
[13]. Oka et al demonstrates a method for tracking assignment,
using the hand’s orientation to reduce the permutations of
matching points from one frame to another. The space between
fingers also aids in detection when using a convex hull around
the hand [5]. Other methods use detection based on finger
edges [19] and the narrow nature of fingers [8][20][6].

Using depth information obtained from a structured light



camera Raheja et al first removes the background. Following
this he uses a large circular filter to remove the palm and obtain
the fingers’ masks. Each finger’s tip is located by finding
the closest point to the camera under each finger mask [16].
Hackenberg et al [6] uses the understanding that the fingers
comprise of tips and pipes, to find fingers. Keskin et al [9]
uses features first applied to body pose estimation, to train a
random forest using a labeled model. This random forest then
classifies the regions of a captured hand on a per pixal basis.
Pose is then estimated using a support vector machine. For
simple single finger interaction Takahashi et al [21] takes the
closest region to the camera.

In terms of real-world interaction, these methods heavily
constrain the hand to facing the camera. This is due to the
requirement for clear separation between fingers and limits
gestures to two-dimensions coplanar with the image plane. By
using depth we can relax this constraint, allowing fingertip
detection for complex out-of-plane hand poses using the
geodesic distance along the surface of the hand.

The use of geodesic distance was applied to the task of
locating the body skeleton by Plagemann et al [15] using a
time of flight camera. Later work by Schwarz et al [18] and
Baak et al [3] built on this work proposing optimisation and
recovery schemes. We employ the same idea of using geodesic
extrema but in the context of finger detection and use Dijkstra’s
algorithm to efficiently identify these candidate regions.

A. Contribution

In this paper we propose a system for the detection and
tracking of multiple hands and fingertips acquired using a
Kinect that operates at 30fps. Running on a multi-core desktop
PC it is capable of processing four hands simultaneously
while maintaining this performance. The first contribution
incorporates a graph based approach, to accurately retrieve
candidate fingertips. Our implementation of Dijkstra’s uses
less depth heuristics than those previously applied in body
pose estimation [3] reducing the need to compute a graph
union while maintaining robustness. Secondly, we demonstrate
an approach to filtering wrist points wrongly identified in the
process of selecting fingertips. Finally we use euclidean real
world coordinates to eliminate retrieved points on the fist and
closed fingers and provide smoother trajectories than filtering
in the image domain.

The remainder of this paper is organized as follows:
Sect. III, defines the methods used in the detection and tracking
framework. Sect. IV details our experimental findings and
parametric validation. Sect. V discusses potential future work
and concludes. The resulting approach is both faster and more
accurate by an order of magnitude than competing approaches.

III. METHOD DESCRIPTION

Depth images are captured using a Microsoft Kinect through
OpenCV, which provides calibrated depth information. For the
purpose of formulation we define each pixel in this depth
image as a point tuple, containing the pixel and corresponding
real world coordinates, defined as p = (xc, yc, xw, yw, zw).

w(p) = (xw, yw, zw), to access individual world coordinates,
and use c(p) = (xc, yc) for image coordinates. In both cases
we use subscript wi(p), i ∈ {x, y, z} as short hand for a
specific coordinate.

A. Method Overview

We begin by capturing the depth image and calibrated point
cloud, derived from the intrinsic properties of the kinect. We
locate and separate hand blobs with respect to the image
domain. Processing each hand in parallel, we build a weighted
graph from the real world point information for the surface of
each hand. Our method uses an efficient Dijkstra’s shortest
path algorithm to traverse the graph in order to find N
candidate fingertips. These candidates are then filtered based
on their location relative to the center of the hand and the
wrist. Points that remain are then used in a Kalman-smoothed
model of the fingertip locations. The correspondence between
the model’s prediction and detected points is found using the
least sum of squared differences. Detected points are added to
the model as a new finger if no corresponding point is found in
the model. Points in the model that do not have an assignment
either receive a blind update, or are removed.

B. Hand and Forearm Segmentation

For each colour frame provided by the Kinect, the user’s
face is located using a standard Viola Jones detector [23].
The face detection provides a point location for each frame,
with multiple face detections removed using non-maximal
suppression. Using a point cloud derived from the calibrated
depth information (distance from the Kinect), the bounding
box of the closest face f is found and is considered the
working user. The depth is smoothed over a small temporal
window of 20ms, and defines the back plane for segmentation,
which allows the removal of the body and background from
the depth image. The remaining depth space is considered the
working area for interaction. Any points within this space are
clustered into connected blobs for further analysis. Each point
in a blob forms p = (xc, yc, xw, yw, zw), hence a hand can be
described as the following set;

P = {pi}|P|i=1 (1)

Blobs that are smaller than potential hand shapes are ignored
using wz(f) to account for the users distance from the Kinect.
The remaining blobs are considered candidates for the user’s
arms. Points in P are then divided as belonging to either a
hand subset or wrist subset defined as PH ⊂ P,PW ⊂ P and
P = PH∪PW . The classification of these points is performed
using a depth cut-off Wdepth positioned at one quarter of the
arms total depth which is calculated using the following:

Wdepth = Zmax −
(Zmax − Zmin)

4
(2)

where,
Zmax = max

p∈P
(wz(p)) (3)



(a) Open Palm (b) Pinching (c) Open Pinching (d) Pointing (e) Self Occlusion (f) Extrema Paths

Fig. 1. Multiple hand shapes and their first seven extremities: (a) Open hand with two extrema belonging to the wrist. (b) and (c) Are examples of pinching.
A single pointing finger where only one other extrema approaches the tip (d). (e) Demonstration of a hand with self occlusion. (f) Shows the paths for each
extrema

and,
Zmin = min

p∈P
(wz(p)) (4)

This heuristic was found experimentally while being con-
strained anthropometrically to lie between the forearm and
wrist. This also ensures that |PW | 6= 0 . Points in P further
from the camera than Wdepth form the forearm set defined as;

PW = {p | p ∈ P, wz(p) >=Wdepth} (5)

Points closer than Wdepth belong to the hand,

PH = {p | p ∈ P, wz(p) < Wdepth} (6)

1) Wrist Centroid: We model the wrist using the set of
points P to form an elipse detailed in section III-D that is
centered around the wrist centroid. This wrist Centroid pŴ is
found as the average;

pŴ =

 1

|PW |
∑

p∈PW

cx(p),
1

|PW |
∑

p∈PW

cy(p)

 (7)

2) Hand Centre Localisation: Finding the centre of the
hand is necessary as it is used later as the seed location for
Dijkstra’s algorithm. Simply using the centroid of points

∑
pH

|pH |
would result in the seed point shifting when the hand is opened
and closed. We use the chamfer distance of the set of points
PH from the external boundary to find a stable centre for the
hand[13]. Using this, a hands center pĤ is found to be the
point in PH with the greatest distance in the chamfer image.

C. Candidate Fingertip Detection

The fingertips can be considered as extremities of the hand.
This means that by mapping the surface of the hand and
searching for five extremities, the fingertips can be found,
excluding those that are closed. In practice however, the wrist
also forms additional extremities that are of similar geodesic
distance. For this reason we greedily compute the first seven
extremities, hence each fingertip is accounted for, including
two false-positives. In the case where fingers are closed, we do
not consider the tip to be of interest, as the finger contributes to
the formation of the fist. This coincides with the understanding

that it is no longer an extremity, and is no longer found using
Dijkstra’s approach. The extremity normally associated with
a folded finger now forms an additional false-positive to be
filtered at a later stage.

In order to find the candidate fingertips we first build a
weighted undirected graph of the hand, based on the points of
PH discovered in section III-B. Each point present in the hand
represents a vertex in the graph. These vertices are connected
with neighbouring vertices in an 8-neighbourhood fashion,
with the edge cost being derived from the euclidean distance
between their world coordinates.

Using the hand’s centre pĤ as the seed point, we compute
the first geodesic extremity of the hand graph. The remaining
extrema are then found iteratively using Dijkstra’s with a
non-initialised distance map [3] reducing the computational
intensity. The seven extremities found for various hand shapes
are shown in figure 1. We define these first seven extremities
as E = {e1, ..., e7}, ei ∈ PH . Each extrema is associated
with its shortest path, shown in figure 1f . Formally we define
this path for the ith extrema (ei) as an ordered set of vertices
Vi = {v1, ..., v|Vi|} where, v1 = ei and v|Vi| = pĤ .

D. Non-Fingertip Rejection

Once the set E of fingertip candidates has been found
the next stage is to filter these points to a subset of valid
fingertips. This is performed using a combination of a penalty
metric derived from the path taken during Dijkstra’s and
a candidate’s position relative to the centre of the hand.
The aforementioned penalty criterion, is used specifically to
remove falsely identified tips that reside around the wrist.

Finding the penalty for each candidate requires the covari-
ance of the hand and arm points, after it is translated to
the wrist location. Using the covariance to map the wrist in
this manner, takes in to consideration the variability of hand
shapes. The covariance cov(P) is found using,

cov(P) =
1

|P|
∑
p∈P

(c(p)− c(pĤ))(c(p)− c(pĤ))T (8)

This covariance is then translated to form a masking ellipse
centred around the wrist. Pixels that have a Mahalanobis
distance within three standard deviations of the wrist are
marked as 1, while pixels outside of this boundary are marked



(a) Open Palm (b) Closed Fist (c) Two Extended Fingers

Fig. 2. Covariance of several hand shapes once it is translated to the wrist.
(a) Shows a long principle axis for a full hand and arm. A circular boundary
can be seen for a closed fist in (b). (c) demonstrates rotation in the wrist.

as 0, which is shown in Figure 2. The following equation
details the formulation of this mask,

M(p) =

{
1 if (c(p)− pŴ )cov(P)−1(c(p)− pŴ ) < 9,

0 Otherwise.
(9)

Using both the path from the extrema to the hand’s centre,
and the elliptical mask, the penalty S(V) can be found. The
paths score is incremented for each vertex with increasing
depth through the mask ellipse, and is then normalised using
the complete path’s length. It is important to mention that
when moving along this path, a vertex is only included in the
penalty if the current vertex’s vi depth is less then the next vi+1

ie, wz(vi) < wz(vi+1). This heuristic is consistent with the
understanding that the wrist has a greater depth than the centre
of the hand, hence we only consider vertices that traverse with
increasing depth. This is found for the path associated with
each candidate in E with the following;

S(V) =
1

|V|

|V|∑
i=1

M(vi)I[wz(vi) < wz(vi+1)] (10)

Figure 3 shows the vertices in red that contribute to an
increased score.

(a) (b)

Fig. 3. The complete shortest path for each extrema. The points along each
path that contribute to an increase in score are coloured in red. (a) shows that
vertices outside of the ellipse do not contribute to the penalty. The path of
the thumb in (b) demonstrates the need to only penalise vertices that traverse
with increasing depth.

The candidates are then filtered using Equation 11 down to
a subset of candidates E′ ∈ E, that exclude wrist extrema,

where the value of θ is determined using parameter tuning
detailed in section IV.

E′ = {e′ : e′ ∈ E, S(V) < θ} (11)

The remaining candidates are reduced using the euclidean
distance of the fingertip, to the centre of the hand E′′ ∈ E′;

E′′ = {e′′ : e′′ ∈ E′, d(w(e′), w(pĤ)) > β} (12)

where distance d() is the L2 Norm and β is the cut-off radius.
This in practice forms a sphere around the user’s hand. When a
fingertip is detected outside of this sphere, the tip is considered
a true-positive. This hard cut-off was chosen so as to give a
clear condition of when a fingertip is detected, to improve
user interaction. The value of β was chosen using parametric
tuning across multiple users and multiple hand shapes, which
is detailed in Section IV.

E. Finger Assignment and Tracking

A Kalman filter is used to track and assign the fingertips
between frames. This model is updated using the point cor-
respondence that minimises the change between consecutive
frames. We found the need to check all possible permutations
when matching points, as our tracking is performed in three
dimensions. When assigning five or less points, searching all
permutations (O(n!)) requires less operations than using the
Hungarian algorithm(O(n3)). As the hand is limited to five
fingers it consists of only 120 permutations in the worst case.

The world position of each detected fingertip w(e′′) is used
to update a bank of three dimensional Kalman filters that
persist from the previous frame forming Kt−1. To update
this model, points from E′′ are paired with the predictions
of Kt−1 by selecting the assignment between points that have
the lowest cost. This requires an indexing set to map from one
set of points to the other. This map is constructed using the
permutations of the smaller of these two sets N0P|A| where,
|A| = min(|E′′|, |F|) and, N0 is non-negative natural num-
bers. This forms a matrix where each row represents one of the
possible permutations. Iterating through each permutation we
build the assignment set A = (a1, ..., a|A|) ∈ N0P|A| where
a is the index used to associate a fingertip to a Kalman filter.
The final correspondence between fingertips is the permutation
ABEST which has the lowest sum of squared differences from
E′′ to the predictions of Kt−1, as shown here;

ABEST =


argmin

A

|A|∑
i=1

(w(e′′i )− kai)2 if |E′′| ≤ |Kt−1|

argmin
A

|A|∑
i=1

(ki − w(e′′ai))2 if |E′′| > |Kt−1|

(13)
Any Points in E′′ that are not matched initialise a new

point k that is introduced into the model. This is to account
for the presence of new fingers. For predictions derived from
Kt−1 that were not matched, their Kalman filter is updated
using the previous predicted position. This blind update is
performed on the condition that the prediction’s confidence



(a) (b) (c) (d) (e) (f)

Fig. 4. Multiple fingertips and the centre of the hand tracked over ten frames. The length of each line demonstrates the distance covered in the last ten
frames.

does not diminish considerably, at which point it is removed
from the model.

The Kalman smoothed model can then be used to output
each of the fingertips as a three dimensional coordinate in
millimeters. These coordinates can also be projected back to
the image domain for the purpose of displaying the points
as shown in Figure 4. It is important to track the points in
three dimensions as the addition of depth allows for sub-pixel
accuracy. While it is possible to track the points in the image
domain, the resulting fingertips are prone to jitter due to the
lower resolution.

IV. EXPERIMENTS

We test and demonstrate the proposed method using a
Microsoft Kinect. Written in C++, the testing is performed
on a standard desktop PC with a 3.4 GHz i7 CPU. In order
to evaluate performance it was necessary to capture our own
dataset, as current hand datasets are more related to gesture
acquisition. While it would have been possible to label an
existing dataset manually, for example Rens [17] gesture set,
they do not contain information regarding transitions between
hand shapes. For our dataset we captured ten sequences of
point cloud and RGB data. The data is captured using five
seated users performing multiple actions with blind capturing,
with hands up to a meter from the Kinect. Each user was
asked to perform their first sequence with a constrained rate
of movement, to asses the generalisation across multiple users.
They were then requested to perform actions at a faster rate
with gestures that were less restrained. This was to replicate
more realistic movement that is suitable for interaction, which
included transitions between gestures and natural resting
poses. Another set of sequences consisting of just gestures
was captured for parametric tuning. For the purpose of testing,
all sequences were semi-autonomously labelled using course
finger detection that was then manually corrected. This data is
available at http://personal.ee.surrey.ac.uk/Personal/P.Krejov/.

A. Wrist Exclusion

To asses the effect of the parameters θ and β performance
was evaluated over a small set of sequences before evaluation
in section IV-C on a larger unseen testing set. For wrist
exclusion, the parameter θ can have a possible range between
0 and 1. As the value of θ increases, filtering of wrist points
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Fig. 5. The results show parameter tuning of the variable θ. Varying hand
shapes are plotted in (a). The plot (b) is results across various users, where
the lower line is for sequence 5a where the hand is lost during tracking.

relaxes, and more false-positives are detected. The ratio of
fingers detected over the number of ground labeled fingers was
recorded. Figure 5 shows the ratio of detections over ground
track points vs θ for various hand shapes and users. It can be
seen that there is a broad plateau where the value of θ does
not affect performance, showing that θ generalises well across
both hand shapes and users. We selected a value of 0.37 from
within this region for use in our experiments.

B. Fist Exclusion

Using the same principle for fist circumference, β was
tested across multiple hand shapes and users. Figure 6 shows
a wide plateau over which parameter selection does not affect
performance. We selected a value of 7mm for our experiments.

C. Evaluation

There are two main considerations when assessing the
performance of the approach: the number of fingers detected
with relation to the correct amount, and the precision of
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Fig. 6. The results recorded while parameter tuning the variable β. For
varying hand shapes (a). The plot (b) is the results across various users, and
show stability for a range of values.

the estimated position. Combining these metrics to quantify
the overall performance of the system is avoided, as an
appropriate weighting depends on the application. For this
reason we represent the performance independently for both.
Correct fingertips are identified as being within (1cm) of the
ground truth fingertip. The results of this can be seen for both
sequences for each user in Table I.

User Error(cm) TP(%) TP(%) Div
1 2.20 75.62 20.64
2 1.17 83.15 16.01
3 1.60 88.37 19.79
4 2.65 77.45 21.49
5 3.05 69.51 24.25
6 4.68 75.63 22.59
7 3.57 70.74 23.65
8 0.83 87.62 18.92
9 3.34 74.40 17.54
10 2.26 79.78 21.02
Average 2.48 78.23 19.11

TABLE I
THE ERRORS FOR EACH SEQUENCE IN CM ERROR AND THE PERCENTAGE

OF CORRECTLY IDENTIFIED FINGER TIPS.

We found that there is varying difficulty across each of
the sequences, with the most difficult being user 5. In this
particular sequence the user used very rapid movements for
interaction. This motion caused extensive blurring in the
footage, and the structure of the hand was completely lost
for many frames.

The average error across all sequences for each hand is
2.48cm. However, this does not provide a fair representation
of the performance as this includes outliers that offset the

hand error. A better understanding is taken from the histogram
of all errors per finger, which is shown in Figure 7, with
80 percent of the errors within 5.7mm. It is also found that
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Fig. 7. A histogram of the detections across all user sequences, showing the
majority of detections are within 5mm of there ground truth.

73% of the finger tips are within the 4mm boundary. A
comparison with existing work can be attempted, as the results
of Oikonomidis are given in terms of millimeters. It must be
noted that their approach is optimised for pose estimation,
not finger tip localisation. For a temporal sequence their total
error is 5-7.5mm for varying depths, while for single frame
estimation 74% of their results are within 40mm. Our detection
improves on this, with 80% of detections being within 5.7mm
or 5.1mm for instantaneous detection. This demonstrates that
our approach does not rely heavily on temporal smoothing
with accuracy that is an order of magnitude greater for static
estimation. While their approach is applied to more complex
hand poses, they achieve real-time performance through the
use of GPU optimisation. Our approach concentrates on finger
tip detection but allows 30fps for multiple hands with out gpu
optimisation.

V. CONCLUSIONS AND FUTURE WORK

We proposed a novel graph based method for fingertip
detection and tracking for use in computer interaction. The
data captured using a Kinect provides the data for precise
localisation of the possible fingertips through the use of Di-
jkstra’s algorithm. With the use of robust filtering, candidates
are tracked using a Kalman filter to provide accurate fingertip
localisation. The method is able to process multiple hands at
frame-rates in excess of 30 fps, providing multiple users the
ability to interact using a Multitouchless interface. For future
work we look to improve this system using a skeletal tracker
to improve the robustness of the hand and wrist localisation.
In addition we aim to improve detection and filtering using
machine learning techniques.
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