

Abstract—In this paper we explore the distribution of

training of self-organised maps (SOM) on Grid middleware. We

propose a two-level architecture and discuss an experimental

methodology comprising ensembles of SOMs distributed over a

Grid with periodic averaging of weights. The purpose of the

experiments is to begin to systematically assess the potential for

reducing the overall time taken for training by a distributed

training regime against the impact on precision. Several issues

are considered: (i) the optimum number of ensembles; (ii) the

impact of different types of training data; and (iii) the

appropriate period of averaging. The proposed architecture has

been evaluated in a Grid environment, with clock-time

performance recorded.

I. INTRODUCTION

aykin has described a neural network as a “massively

parallel distributed processor” [1]. Haykin’s description

suggests that an ANN can be composed from separately

trained partitions. The partitioning and distributed training

presents challenges for topologies and algorithms that

characterise ANNs, and influences the training regimes and

the operation of the networks. Consideration needs to be

made, for example, of whether a training regime should be

batch (where weights are only updated after all of the inputs

are presented) or incremental (where weights are updated

after the presence of each input). This choice determines

how the data are presented to the network and at what stage

the network undertakes its training phase. At a desirable

degree of precision against the test datasets, the ability to

generalise, a fundamental success criterion for training most

neural networks, can be assessed. Though the purpose of

training is to achieve the best possible precision, output is

always an approximation of the desired behaviour. Training

techniques such as bootstrap aggregating, [2], or boosting,

[3], are employed in training ensembles [4] (i.e. sets of

identical neural networks). Such approaches demonstrate the

range of issues that need to be addressed when training

ensembles concurrently using different subsets of the input

datasets. One issue, in particular, is in encompassing the

training of all members of the ensemble: after each network

has trained on its subset, averaging produces a new set of

Manuscript received January 31, 2007. This work was supported in part

by the EPSRC REVEAL project under Grant No.GR/S98450/01 and the

EU LIRICS project under Grant No. 22236.

B. L. Vrusias is with the Department of Computing, University of

Surrey, UK (phone: +44 1483 682261; fax: +44 1683 686051; e-mail:

b.vrusias@surrey.ac.uk).

L. Vomvoridis, was with the Department of Computing, University of

Surrey, UK (e-mail: csm1lv@surrey.ac.uk).

L. Gillam is with Department of Computing, University of Surrey, UK

(e-mail: l.gillam@surrey.ac.uk).

identical networks that will have incorporated, in some ways,

training from all other networks. This process tends towards

less precision than having a single network trained on all

available data, but more training can be performed in less

overall time.

The distributed approach potentially requires the exchange

of large amounts of data (input data and network states), but

a variety of parameters can be selected that are more

appropriate to a given configuration. Use of relatively large

training increments, for example, could be more suited for

distribution of ensembles over Grid infrastructures [11], with

the amount of interaction limited to exchanging states at

specified intervals. This would reduce the potential impacts

of communication latency, which the use of low-latency

computer networks may be able to limit further. Over low-

latency networks, however, smaller training increments may

be better for achieving desired precision more rapidly, and

partitioning may be more suitable. The assumption is that

quality of service, for the infrastructure, is known and can be

guaranteed. A Grid that provides access to a variety of high-

throughput and high-performance systems appears to provide

a good environment for ANN experiments.

An ensemble approach has the potential for greater

precision than a single neural network, as more training can

be undertaken within the same time. Such an approach could

be applicable to a large number of ANNs, however making

the sum equal to the total of the parts is not necessarily

possible, and here we may have to consider a trade-off of

speed against precision. In our architecture we make a

differentiation between iteration and step: iteration is a

single repetition of all available training data inputs (i.e. an

iteration trains an SOM with one or more data inputs); while

a training step is the point where we collect all the outputs of

dispatched SOMs and perform the weight averaging (i.e. a

step trains the SOM with one or more iterations). Drawbacks

in an ensemble approach relate to network size and slowest

process. Large networks place demands on memory

requirements often exceeding available physical RAM, and

since ensemble members replicate the network size, this

becomes an issue for every machine. Furthermore, the

averaging step must wait for the slowest ensemble member to

have completed its cycle before continuing, unless the

ensemble is constructed such that members can be

interrupted, interrogated and averaged at regular intervals.

Efficient training of a neural network has been considered

using compute clusters for distributing the training of multi-

layer perceptrons, self-organising maps and radial-basis

function networks [5]. This approach serves as an inspiration

Distributing SOM Ensemble Training using Grid Middleware

Bogdan L. Vrusias, Leonidas Vomvoridis, and Lee Gillam

H

1-4244-1380-X/07/$25.00 ©2007 IEEE

Proceedings of International Joint Conference on Neural Networks, Orlando, Florida, USA, August 12-17, 2007

Authorized licensed use limited to: University of Surrey. Downloaded on May 17,2010 at 10:33:48 UTC from IEEE Xplore. Restrictions apply.

for the work presented in this paper. Other related work has

been taken into account; the main approaches to tackle this

challenge include: (i) construction of a distributed back-

propagation algorithm [6], (ii) topologies for the message-

passing parallel system, namely the ring, two-dimensional

torus, binary tree, hypercube and extended hypercube

topologies [7]; (iii) distribution of training of self-organising

maps in a parallel virtual machine (PVM) [8]; (iv)

experimental results of a 3-node-type architecture in

distributing the training of a standard back-propagation

neural network on a Myrinet cluster [9] (v) transformation of

the problem of distributing the training of a multi-layered

perceptron, to a linear algebra problem (QR factorisation),

solved by numerical methods, using a distributed linear

algebra library implementation in a Grid environment [10].

Such research attempts to overcome the network size

bottleneck, however this comes with a cost: latency and

throughput of the underlying computer network remain of

crucial importance, hence an emphasis on clusters or local

area Grids. In distributing or parallelising most software

systems, the goal is usually to produce identical results to the

sequential algorithm. Requiring an approximation of the

desired behaviour, perhaps by defining an acceptable

precision, alleviates this limitation for ANNs.

II. GRID NETWORKS AND ARTIFICIAL NEURAL NETWORKS

The notion of having many powerful processors

concurrently working on the same problem, to achieve higher

performance, has evolved into a major discipline variously

referred to by terms such as high performance computing

(HPC), high end computing (HEC), technical computing and

parallel computing. Grids have recently been defined as

“distributed computing performed transparently across

multiple administrative domains” [11] and have been applied

to large-scale high-complexity problem solving, such as

protein folding, financial modelling, earthquake simulation,

and climate/weather modelling [12]. So-called “Grid

middleware” such as Globus has been developed to address

issues of resource management, security and data exchange

among disparate heterogeneous systems and networks [13].

Grid computing is distinguished from conventional

distributed computing, “by its focus on large-scale resource

sharing, innovative applications, and, in some cases, high-

performance orientation” [14]. However, Globus does not

provide a scheduler for easy deployment of a distributed

application. A popular job scheduling and management

systems that can be used in the Globus framework is Condor

[15], and the experiments described in this paper made use

of a Condor pool in the University of Surrey’s Department of

Computing that provides upwards of 150 processors.

The experiments described relate to ongoing research also

in the Department of Computing. In particular, the REVEAL

project (EPSRC Grant GR/S98450/01) utilises self-

organising maps for video annotation [16]. The training of

these maps has proved to cumbersome, due to their relatively

large size, and large amount of input data, which necessitates

an efficient and cost-effective performance. The objective of

this research is to examine performance, in terms of training

time and accuracy, in the distributed training of the self-

organising maps [17]. The Condor pool and related Grid

infrastructure were originally composed for the concurrent

analysis of high-frequency data in finance, including both

instrument data and financial news [18].

The relative novelty of the Grid approach to distributed

computing, in contrast with a relative maturity in artificial

neural network research, has resulted in a limited volume of

research in efficiently distributing the training of artificial

neural networks on Grid systems. This paper proposes a two-

level architecture for the experimental system and discusses

the experimental methodology to determine an optimal set of

parameters for this architecture. The architecture takes into

consideration the fact that a Grid may be composed of both

local cluster environments, sometimes over high-throughput

low-latency networks, and across systems distributed over a

medium-throughput but higher-latency Internet. Differences

in latency suggest that on a local-area level it could be

advantageous to adapt a partitioning scheme, while on a

wide-area level ensembles could be more promising. In the

local area level, each self-organising map would be

partitioned and distributed among training nodes of that

particular local area network by the local dispatcher, while

training data is stored locally. The wide area dispatcher

submits requests to wide area training nodes, which won't

actually carry out any training themselves, but will be

submitting requests to local dispatchers, and collecting the

resulting neural network states from local dispatchers. Wide

area training nodes submit the results to the wide area

dispatcher, which will conduct the averaging, store the

resulting current network state, and continue to the next step.

An efficient strategy for distributing the training of self-

organising maps has been described elsewhere [5]; here a

(large scale) self-organising map is partitioned into smaller

sub-maps, which the dispatcher (master) submits to training

nodes (slaves). Although this proved relatively successful on

dedicated clusters, the time elapsing from a node

transmitting its local winner, until it receives the global

winner, may prove comparable to the duration of its local

training cycle. This will be dependent on the degree of

partitioning, and the variance in resource availability on each

node, but will impact the training time for the SOM.

We propose that in the wide area level, instead of

partitioning a (large) SOM into smaller pieces for each node

to train, identical copies of the (large) SOM are distributed

to each node, but each node is presented with a different

“batch” of input datasets. “Multicasting” (broadcasting to

interested participants) could be beneficial, not for the input

data, but for the current global neural network state, at the

beginning of each step. Local dispatchers can carry out the

actual training and return the results to the wide area level

nodes, which in turn submit resulting neural network states to

Authorized licensed use limited to: University of Surrey. Downloaded on May 17,2010 at 10:33:48 UTC from IEEE Xplore. Restrictions apply.

the wide area dispatcher. At the end of this high-level

training step, weight averaging will be performed at the wide

area dispatcher. Large amounts of data need to be

transported during the steps of the training procedure, and

data compression techniques may be employed to reduce the

volume of transported data, with a relatively small

computational overhead.

Although the experiments performed here are on a local

level, there is potential for wide area distribution of training.

The main purpose of the wide-area level is to distribute

training among geographically distant networks, so that

potentially partitioning the network, which requires low

network latency, may be performed within the local area

network of each member of the ensemble.

III. TRAINING SELF-ORGANISING MAP ENSEMBLES

An appropriate set of training data is one of the primary

considerations with any neural network experimentation.

Although averaging has proven advantageous in the case of

MLPs, there has been no relevant research as regards SOMs,

therefore a simple data suite should be utilized for this

preliminary phase of experimentation, to determine the

extent of applicability (if any) of averaging SOM ensembles.

A. Training Dataset

For the purpose of the experimentation we used two

artificial datasets: an existing dataset and a dataset that we

produced. The first dataset is a collection of topologically

different series of datasets, the “Fundamental Clustering

Problem Suite” (FCPS) [19], generated to verify that a newly

invented clustering algorithm functions properly by correctly

clustering a series of datasets with known classification.

Each FCPS datasets is designed to address a specific

category of problems commonly encountered in the

development of clustering mechanisms. However, the

datasets are generally small (300 points, 3 dimensions, 2

categories is a typical example). For this size of problem, a

single computer performs adequately, training the network in

a few seconds, or even less. Therefore there is little specific

benefit from distributing the training of these problems,

however, if the averaging of ensembles allows such problems

to be solved with a satisfactory precision, it would be a good

indication that the proposed technique might prove

applicable to larger problems as well.

For the second artificial dataset, a program was

implemented to generate random points, in the proximity of

the vertices of an n-dimensional hypercube. The n-

dimensional hypercube is a regular convex n-polytope,

whose boundary consists of regular convex (n-1) polytopes

where n is the number of dimensions. For n=3, the shape is a

cube (3-d) whose boundary consists of squares (2-d). For this

type of layout the number of categories (or classes) of input

patterns, is 2
n
. Input points are generated with an n-

dimensional Gaussian distribution where the centre of the

distribution for all input points of the same class is the vertex

of the hypercube that corresponds to that class. For small

dimensions, a reasonable SOM may be used (e.g. 10x10 for

3-d inputs), however for larger dimensions, the SOM sizes

increase substantially, assuming that each class will need a

minimum of a 3x3 area on the map in order to classify

successfully (TABLE 1). The hardware available imposed a

10-d ceiling in the experiments, since for 10-d, presenting

each input vector 100 times, resulted in training times in the

order of magnitude of 5x10
4
 sec (13h).

TABLE I

HYPERCUBE DATASET

Number of

dimensions

Total input

patterns
SOM size

SOM memory

requirements

3 800 10x10 21K

4 1600 13x13 56K

5 3200 18x18 140K

6 6400 25x25 335K

7 12800 35x35 780K

8 25600 50x50 1.8M

9 51200 70x70 4M

10 102400 100x100 8.8M

Hypercube vertex Gaussian input datasets (with 100 patterns per class)

B. Experimental setup

All experiments were based on two existing SOM

implementations: the first (MMUC system) from the

University of Surrey [20]; the second (SOM_PAK) from the

Helsinki University of Technology [21].

Three dispatchers were coded: one for a traditional single-

process training, to create the benchmark, one to spawn local

processes on a single machine, to test the averaging

algorithm’s behaviour, and also for running on a shared-

memory multiprocessor machine, and finally the Grid

version of the dispatcher. The approach for implementing the

SOM ensemble can be summarised by the following stages:

STAGE 1: Weight initialisation; calculation of initial error

STAGE 2: Dispatching of SOMs with input data, initial

weights and training parameters

STAGE 3: Training for a number of iterations

STAGE 4: Collecting the resulting weights, averaging, and

calculating the MQE

STAGE 5: Until training is completed, goto STAGE 2

The purpose of the experiments was to compare the

efficiency of an ensemble of SOMs to that of a single

network, with identical parameters. Correct choice of

learning rate decrement plays an important role in efficiently

training a neural network, and some treatment is provided,

however an exhaustive treatment of values and decrement

profiles of the learning rate is beyond the scope of this paper.

For each training cycle, the learning rate value follows a

linear transformation of the step number, in the range [0, 1].

Provided the number of steps is sufficiently large (at least

10), the approximation of the natural exponential curve by a

number of chords is satisfactory.

Averaging is performed by calculation of the arithmetic

Authorized licensed use limited to: University of Surrey. Downloaded on May 17,2010 at 10:33:48 UTC from IEEE Xplore. Restrictions apply.

mean of each dimension for each node of the SOMs in the

ensemble. Averaging is performed after a fixed number of

training iterations, with the number specified on start-up as

the total number of training iterations, divided by the number

of averaging steps, divided by the number of networks in the

ensemble. If communication time and scheduling latency

were zero, the system would exhibit a speedup equal to the

number of networks in the ensemble.

IV. EXPERIMENTATION

Each of the following experiments was conducted 20

times, and an average taken to discount inappropriate results

due to initial random weights and random selection of

training data subsets. The mean quantisation error (MQE)

was considered, for the same dataset where the network was

trained on, to calculate the training efficiency. MQE is

calculated by taking the weighted sum of the activation

function for all input signals. We outline the five main

experiments here:

A. Number of ensembles for 4-d hypercube problem

This experiment attempts to determine the extent to which

averaging affects training. A 15x15 SOM was trained, with a

linear decrement of the learning rate from 0.5 to 0.01, and a

linear decrement of the Gaussian neighbourhood radius from

8 to 1. All training parameters, as well as the input dataset

and initial state of the network, were retained among all

experiments, to ensure comparability of results.

Fig. 1 suggests that, if the latency of distributing members

of the ensemble, periodically averaging weights, and

synchronising training is very small compared to the

computational duration of each step, then distributing an

averaging SOM ensemble would be beneficial for training

times and/or accuracy. The traditional method for decreasing

a SOM’s MQE has been to increase the duration of the

training process. With averaging, the SOM is exposed to a

larger number of training examples, but in a manner that can

be easily distributed across a wide-area Grid. But, this is not

as efficient as exposing the SOM sequentially.

2

2.5

3

3.5

4

4.5

5

5.5

6

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Training Steps

M
Q

E

Single Net

Num Ens.: 2

Num Ens.: 5

Num Ens.: 10

Num Ens.: 20

Num Ens.: 50

Fig. 1. MQE for distribution on ensembles of various sizes. Average for 20

runs of 200 iterations per step per ensemble member, for a 15x15 SOM

trained on 100 points per vertex of a 4-d hypercube

Fig. 2 shows a single network, trained on a total number of

steps that is equal to the corresponding distributed cases

illustrated in Fig. 1. The difference is that while a monolithic

and a 50-ensemble network theoretically take the same time

to compute, the latter case performs 50 times more training

than the monolithic scenario, and therefore the result is better

in terms of the final value of MQE to which the training

process converges.

1.4

1.9

2.4

2.9

3.4

3.9

4.4

4.9

5.4

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Training Steps

M
Q

E

Single Net

Num Ens.: 2

Num Ens.: 5

Num Ens.: 10

Num Ens.: 20

Num Ens.: 50

Fig. 2. MQE for distribution on a single 15x15 SOM. Average for 20 runs

of 1000 iterations per step per ensemble member.

B. Number of ensembles for FCPS problem

To further examine the potential for SOM ensemble

averaging, experiment A was repeated for the 10 datasets in

the FCPS dataset. Learning rate and neighbourhood radius

were decreased linearly, while the ensemble size ranged from

1 to an ensemble with 50 members. For all datasets of the

FCPS, a rectangular topology with 15x15 nodes is used.

Fig. 3 shows only one of the many datasets tested, and

suggests that the application of averaging is indeed

beneficial, since as the number of members in the ensemble

increases, MQE decreases, in relation to a single network

that would take the same time to compute. The remaining

datasets show more or less the same. It seems that the most

efficient size for an ensemble is 5 to 10 networks; beyond

that the relative benefit is limited.

10

12

14

16

18

20

22

24

26

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Training Steps

M
Q

E

Single Net

Num Ens.: 2

Num Ens.: 5

Num Ens.: 10

Num Ens.: 20

Num Ens.: 50

Fig. 3. MQE for various SOM ensemble sizes (1 to 50) over same time, for

the “atom” dataset of the FCPS.

Authorized licensed use limited to: University of Surrey. Downloaded on May 17,2010 at 10:33:48 UTC from IEEE Xplore. Restrictions apply.

C. Learning rate decrement for 4-d hypercube problem

The choice of learning rate and decrement are of great

importance. To examine learning rate decrements, an

exponentially decreasing learning rate of 0.9e
-i
 is used,

where i is the step number. A 15x15 network is trained for

the single (sequential) and averaging (10-member ensemble)

cases. Ideally the single network would take 10 times more

to compute, however this just represents the ideal

performance that the ensemble should attempt to match.

Fig. 4 shows how the learning rate didn’t follow the 0.9e
-i

curve, but an approximation comprised of 10 linear

segments, the ends of which were at (i, 0.9e
-i
) and (i+1, 0.9e

-

(i+1)
). This is not viewed as a major difference, and in fact,

the “two phases of training” mentioned by Kohonen [17],

where the learning rate follows a steep linear decrement for

the “ordering” phase and a less steep linear decrement for the

“convergence” phase, may be viewed as 2 linear segments

that are chords of an exponentially decreasing curve.

The ensemble seems to converge to a much higher value

than the single network for the choice of exponential learning

rate decrement. Since the curve is quite steep, the same

network with the same initial state, and input data, was

trained for an equal amount of training, with a learning rate

decrement following chords of 0.9e
-i/2

. The final value for the

MQE is below 1.5 (Fig. 4), while previously was over 2.0.

With a less steep exponential learning rate decrement, the

performance of the ensemble was remarkably comparable to

the single network – only the single network took 10 times

more to compute.

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

1 2 3 4 5 6 7 8 9 10

Training Steps

M
Q

E

Single SOM (-i)

SOM Ensembles (-i)

Single SOM (-i/2)

SOM Ensembles (-i/2)

Fig. 4. Single network and averaging ensemble MQE for the 4-d hypercube,

with a learning rate of 0.9e-i and 0.9e-i/2, where i is the step number.

D. Frequency of averaging for 4-d hypercube problem

Another factor crucial in the averaging ensemble paradigm

is the frequency of averaging. In all of the experiments

carried out, this frequency was constant, since averaging was

performed at the end of each (equal) step.

Fig. 5 shows the results of the MQE while training the 4-d

hypercube on the same number of iterations, but performed

in a variable number of steps (5 to 500 steps); where learning

rate and neighbourhood radius are decreased linearly. From

the results we observed that the precision of the ensemble

increases, as the frequency of averaging increases, but it

never reaches the precision of the single net. However, the

time taken for the ensemble to learn is, in theory, 10 times

less (i.e. 10 ensembles) compared to the single net. But, in

reality more averaging means more time wasted in packets

(SOM weights) transferred over the network.

1.5

1.7

1.9

2.1

2.3

2.5

2.7

2.9

5 10 20 50 100 200 500

Training Steps

M
Q

E

Single SOM

SOM Ensembles

Fig. 5. Final MQE for single and 10-network ensemble trained from 5 to

500 training steps.

E. Wall-clock time for hypercube problem

The last experiment tests the proposed architecture on the

real-world. A 10-d hypercube was trained sequentially on a

single computer, and as an averaging ensemble on the

departmental Condor pool at the University of Surrey. The

size of the ensemble was 6 machines, while averaging was

performed in 50 steps. The initial states of the 100x100

networks were identical. Both the single computer and

ensemble were trained for a total of 10 million iterations, so

it was expected that the Condor version would take less time

to compute, but produce a higher final MQE.

Typical scheduling time for the Condor pool was 5min,

although on few occasions, it was as low as 10sec, and on

one occasion, it was 100min. For the first experiment, total

training time was around 12h for the 6 SOM ensembles and

14h for the single SOM (Fig. 6).

Fig. 6. MQE per wall-clock time for a 10-d linear alpha.

The results were as expected; with the figures showing

Authorized licensed use limited to: University of Surrey. Downloaded on May 17,2010 at 10:33:48 UTC from IEEE Xplore. Restrictions apply.

how MQE progressed for the single and averaging cases,

with the horizontal axis indicating the duration in seconds of

“wall-clock” time that elapsed since training started. The

speed increase is less than 10%, although 6 machines are

used instead of just one. However, those 6 machines were

also engaged in other Grid computing tasks, during the

execution of this experiment, while the single machine was

dedicated. Furthermore, typical time to compute the MQE

was 100sec, and averaging the weights took nearly as much.

Since for the 4-d hypercube problem it was observed that

an exponential decrement of the learning rate is more

efficient than a linear one, for a final “proof-of-concept”

experiment, an 8-dimensional hypercube problem was also

trained, on a 50x50 network, with a learning rate that

followed 50 chords of an exponential curve. The size of the

ensemble was increased to the maximum number of available

Condor virtual machines (24), and the initial radius of the

neighbourhood function was set at 25. The single network

was trained for a total of 2x107 iterations, while the

ensemble was trained with a total of 108 iterations. Fig. 7

shows how the MQE progressed per wall-clock time.

2.5

3.5

4.5

5.5

6.5

7.5

8.5

0 5000 10000 15000

Time (sec)

M
Q

E

Single SOM

SOM Ensembles

Fig. 7. MQE per wall-clock time for an 8-d hypercube, exponential alpha.

V. CONCLUSION

This paper examined the effectiveness of distributing

ensembles of SOMs across Grids. Factors that affect the

quality of a distributed SOM, following the averaging

ensemble paradigm, include the frequency of averaging, the

number of members of the ensemble, and the learning rate

decrement that is applied. The main findings from these

experiments is that faster training time using the SOM

ensembles architecture proposed comes at a cost of higher

MQE, which may affect precision. This does not necessarily

mean that the SOM classifier does not perform well, but it

places demands on defining adequate or acceptable

performance, in exchange for faster training. Further

experimentation to discover better selections of distribution

parameters may help us to diminish the impact of averaging

so that the performance of the resulting network is only

slightly diminished in comparison to the equivalent single

SOM, with a substantially reduced training time.

REFERENCES

[1] S. Haykin, Neural Networks: A Comprehensive Foundation,

Macmillan, New York, 1994.

[2] L. Breimen, “Bagging Predictors”, Machine Learning, vol. 24, no. 2,

pp. 123-140, 1996.

[3] Y. Freud, and R. Schapire, “A Short Introduction to Boosting”,

Journal of Japanese Society for AI, vol. 14, no. 5, pp. 771-780, 1999.

[4] T. Vin, M. Seng, N. Kuan, and F. Haron, “A Framework for Grid-

based Neural Networks”, Proc. of the 1st Int. Conf. on Distributed

Frameworks for Multimedia Applications, pp. 246-253, 2005.

[5] D. Calvert, and J. Guan, “Distributed Artificial Neural Network

Architectures”, Proc. of the 19th IEEE Int. Symposium on High

Performance Computing Systems and Applications, pp. 2-10, 2005.

[6] H. Yoon, J. Nang, and S. Maeng, “A Distributed Backpropagation

Algorithm of Neural Networks on Distributed-Memory

Multiprocessors”, Int Conf on Parallel Processing, pp 358-363, 1991

[7] M. Kumar, and L. Patnaik, “Mapping of Artificial Neural Networks

onto Message Passing Systems”, IEEE Trans. on Systems, Man, and

Cybernetics, Part B, vol. 26, no. 6, pp. 822-835, 1996.

[8] N. Bandeira, V. Lobo, and F. Moura-Pires, “Training a Self-

Organizing Map distributed on a PVM network”, Proc. of IEEE Joint

Conf. on Neural Networks, vol. 1, pp. 457-461, 1998.

[9] J. Lu, D. Goldman, M. Yang, and N. Bourbakis, “High-performance

Neural Network Training on a Computational Cluster”, Proc. of the

7th IEEE Int. Conf. on High Performance Computing and Grid in

Asia Pacific Region, pp. 46-472, 2004.

[10] A. Gutierrez, R. de Llano, F. Cavero, and J. Gregorio, “Parallelization

of a Neural Net Training Program in a Grid Environment”, Proc. of

the 12th Euromicro Conf. on Parallel, Distributed and Network-

Based Processing, pp. 258- 265, 2004.

[11] P.V. Coveney, “Scientific Grid Computing”. Phil. Trans. of the Royal

Society, vol. 363, no. 1833, pp. 1701-1713, 2005.

[12] I. Foster, and C. Kesselman, The Grid 2: Blueprint for a New

Computing Infrastructure (2nd Ed), Morgan Kaufmann, San

Francisco, 2004.

[13] I. Foster, and C. Kesselman, “Globus: A Metacomputing

Infrastructure Toolkit”, Int. Journal of Supercomputer Applications,

vol. 11, no. 2, pp. 115-128, 1997.

[14] I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of the Grid:

Enabling Scalable Virtual Organizations”, Int. Journal of

Supercomputer Applications, vol. 15, no. 3, pp. 200-222, 2001.

[15] D. Thain, T. Tannenbaum, and M. Livny, “Distributed Computing in

Practice: The Condor Experience”, Concurrency and Computation,

vol. 17, no. 2-4, pp. 323-356, 2005.

[16] K. Ahmad, B. Vrusias, and M. Zhu, “Visualising an Image

Collection”, Proc. of the 9th Int. Conf. On Information Visualization,

pp. 268-274, 2005.

[17] T. Kohonen, Self-Organization and Associative Memory (3rd Ed),

Springer, Berlin, 1989.

[18] L. Gillam, K. Ahmad, and G. Dear, “Grid-enabling Social Scientists:

some infrastructure issues”, Proc. of 1st e-Social Science Conf.,

Manchester, UK, 2005.

[19] A. Ultsch, “Clustering with SOM: U*C”, Proc. Workshop on Self-

Organizing Maps, pp. 75-82, 2005.

[20] B. Vrusias, Combining unsupervised classifiers: a multimodal case

study, PhD thesis, University of Surrey, 2004.

[21] T. Kohonen, J. Hynninen, J. Kangas, and J. Laaksonen, “SOM_PAK:

The Self-Organizing Map Program Package.” Technical Report A31,

Helsinki University of Technology, Laboratory of Computer and

Information Science, Espoo, Finland, 1996.

Authorized licensed use limited to: University of Surrey. Downloaded on May 17,2010 at 10:33:48 UTC from IEEE Xplore. Restrictions apply.

