
 

 

 

  

Abstract—In this paper we explore the distribution of 

training of self-organised maps (SOM) on Grid middleware. We 

propose a two-level architecture and discuss an experimental 

methodology comprising ensembles of SOMs distributed over a 

Grid with periodic averaging of weights. The purpose of the 

experiments is to begin to systematically assess the potential for 

reducing the overall time taken for training by a distributed 

training regime against the impact on precision. Several issues 

are considered: (i) the optimum number of ensembles; (ii) the 

impact of different types of training data; and (iii) the 

appropriate period of averaging. The proposed architecture has 

been evaluated in a Grid environment, with clock-time 

performance recorded. 

I. INTRODUCTION 

aykin has described a neural network as a “massively 

parallel distributed processor” [1]. Haykin’s description 

suggests that an ANN can be composed from separately 

trained partitions. The partitioning and distributed training 

presents challenges for topologies and algorithms that 

characterise ANNs, and influences the training regimes and 

the operation of the networks. Consideration needs to be 

made, for example, of whether a training regime should be 

batch (where weights are only updated after all of the inputs 

are presented) or incremental (where weights are updated 

after the presence of each input). This choice determines 

how the data are presented to the network and at what stage 

the network undertakes its training phase. At a desirable 

degree of precision against the test datasets, the ability to 

generalise, a fundamental success criterion for training most 

neural networks, can be assessed. Though the purpose of 

training is to achieve the best possible precision, output is 

always an approximation of the desired behaviour. Training 

techniques such as bootstrap aggregating, [2], or boosting, 

[3], are employed in training ensembles [4] (i.e. sets of 

identical neural networks). Such approaches demonstrate the 

range of issues that need to be addressed when training 

ensembles concurrently using different subsets of the input 

datasets. One issue, in particular, is in encompassing the 

training of all members of the ensemble: after each network 

has trained on its subset, averaging produces a new set of 
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identical networks that will have incorporated, in some ways, 

training from all other networks. This process tends towards 

less precision than having a single network trained on all 

available data, but more training can be performed in less 

overall time. 

The distributed approach potentially requires the exchange 

of large amounts of data (input data and network states), but 

a variety of parameters can be selected that are more 

appropriate to a given configuration. Use of relatively large 

training increments, for example, could be more suited for 

distribution of ensembles over Grid infrastructures [11], with 

the amount of interaction limited to exchanging states at 

specified intervals. This would reduce the potential impacts 

of communication latency, which the use of low-latency 

computer networks may be able to limit further. Over low-

latency networks, however, smaller training increments may 

be better for achieving desired precision more rapidly, and 

partitioning may be more suitable. The assumption is that 

quality of service, for the infrastructure, is known and can be 

guaranteed. A Grid that provides access to a variety of high-

throughput and high-performance systems appears to provide 

a good environment for ANN experiments. 

An ensemble approach has the potential for greater 

precision than a single neural network, as more training can 

be undertaken within the same time. Such an approach could 

be applicable to a large number of ANNs, however making 

the sum equal to the total of the parts is not necessarily 

possible, and here we may have to consider a trade-off of 

speed against precision. In our architecture we make a 

differentiation between iteration and step: iteration is a 

single repetition of all available training data inputs (i.e. an 

iteration trains an SOM with one or more data inputs); while 

a training step is the point where we collect all the outputs of 

dispatched SOMs and perform the weight averaging (i.e. a 

step trains the SOM with one or more iterations). Drawbacks 

in an ensemble approach relate to network size and slowest 

process. Large networks place demands on memory 

requirements often exceeding available physical RAM, and 

since ensemble members replicate the network size, this 

becomes an issue for every machine. Furthermore, the 

averaging step must wait for the slowest ensemble member to 

have completed its cycle before continuing, unless the 

ensemble is constructed such that members can be 

interrupted, interrogated and averaged at regular intervals. 

Efficient training of a neural network has been considered 

using compute clusters for distributing the training of multi-

layer perceptrons, self-organising maps and radial-basis 

function networks [5]. This approach serves as an inspiration 
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for the work presented in this paper. Other related work has 

been taken into account; the main approaches to tackle this 

challenge include: (i) construction of a distributed back-

propagation algorithm [6], (ii) topologies for the message-

passing parallel system, namely the ring, two-dimensional 

torus, binary tree, hypercube and extended hypercube 

topologies [7]; (iii) distribution of training of self-organising 

maps in a parallel virtual machine (PVM) [8]; (iv) 

experimental results of a 3-node-type architecture in 

distributing the training of a standard back-propagation 

neural network on a Myrinet cluster [9] (v) transformation of 

the problem of distributing the training of a multi-layered 

perceptron, to a linear algebra problem (QR factorisation), 

solved by numerical methods, using a distributed linear 

algebra library implementation in a Grid environment [10]. 

Such research attempts to overcome the network size 

bottleneck, however this comes with a cost: latency and 

throughput of the underlying computer network remain of 

crucial importance, hence an emphasis on clusters or local 

area Grids. In distributing or parallelising most software 

systems, the goal is usually to produce identical results to the 

sequential algorithm. Requiring an approximation of the 

desired behaviour, perhaps by defining an acceptable 

precision, alleviates this limitation for ANNs. 

II. GRID NETWORKS AND ARTIFICIAL NEURAL NETWORKS 

The notion of having many powerful processors 

concurrently working on the same problem, to achieve higher 

performance, has evolved into a major discipline variously 

referred to by terms such as high performance computing 

(HPC), high end computing (HEC), technical computing and 

parallel computing. Grids have recently been defined as 

“distributed computing performed transparently across 

multiple administrative domains” [11] and have been applied 

to large-scale high-complexity problem solving, such as 

protein folding, financial modelling, earthquake simulation, 

and climate/weather modelling [12]. So-called “Grid 

middleware” such as Globus has been developed to address 

issues of resource management, security and data exchange 

among disparate heterogeneous systems and networks [13]. 

Grid computing is distinguished from conventional 

distributed computing, “by its focus on large-scale resource 

sharing, innovative applications, and, in some cases, high-

performance orientation” [14]. However, Globus does not 

provide a scheduler for easy deployment of a distributed 

application. A popular job scheduling and management 

systems that can be used in the Globus framework is Condor 

[15], and the experiments described in this paper made use 

of a Condor pool in the University of Surrey’s Department of 

Computing that provides upwards of 150 processors. 

The experiments described relate to ongoing research also 

in the Department of Computing. In particular, the REVEAL 

project (EPSRC Grant GR/S98450/01) utilises self-

organising maps for video annotation [16]. The training of 

these maps has proved to cumbersome, due to their relatively 

large size, and large amount of input data, which necessitates 

an efficient and cost-effective performance. The objective of 

this research is to examine performance, in terms of training 

time and accuracy, in the distributed training of the self-

organising maps [17]. The Condor pool and related Grid 

infrastructure were originally composed for the concurrent 

analysis of high-frequency data in finance, including both 

instrument data and financial news [18].  

The relative novelty of the Grid approach to distributed 

computing, in contrast with a relative maturity in artificial 

neural network research, has resulted in a limited volume of 

research in efficiently distributing the training of artificial 

neural networks on Grid systems. This paper proposes a two-

level architecture for the experimental system and discusses 

the experimental methodology to determine an optimal set of 

parameters for this architecture. The architecture takes into 

consideration the fact that a Grid may be composed of both 

local cluster environments, sometimes over high-throughput 

low-latency networks, and across systems distributed over a 

medium-throughput but higher-latency Internet. Differences 

in latency suggest that on a local-area level it could be 

advantageous to adapt a partitioning scheme, while on a 

wide-area level ensembles could be more promising. In the 

local area level, each self-organising map would be 

partitioned and distributed among training nodes of that 

particular local area network by the local dispatcher, while 

training data is stored locally. The wide area dispatcher 

submits requests to wide area training nodes, which won't 

actually carry out any training themselves, but will be 

submitting requests to local dispatchers, and collecting the 

resulting neural network states from local dispatchers. Wide 

area training nodes submit the results to the wide area 

dispatcher, which will conduct the averaging, store the 

resulting current network state, and continue to the next step. 

An efficient strategy for distributing the training of self-

organising maps has been described elsewhere [5]; here a 

(large scale) self-organising map is partitioned into smaller 

sub-maps, which the dispatcher (master) submits to training 

nodes (slaves). Although this proved relatively successful on 

dedicated clusters, the time elapsing from a node 

transmitting its local winner, until it receives the global 

winner, may prove comparable to the duration of its local 

training cycle. This will be dependent on the degree of 

partitioning, and the variance in resource availability on each 

node, but will impact the training time for the SOM.  

We propose that in the wide area level, instead of 

partitioning a (large) SOM into smaller pieces for each node 

to train, identical copies of the (large) SOM are distributed 

to each node, but each node is presented with a different 

“batch” of input datasets. “Multicasting” (broadcasting to 

interested participants) could be beneficial, not for the input 

data, but for the current global neural network state, at the 

beginning of each step. Local dispatchers can carry out the 

actual training and return the results to the wide area level 

nodes, which in turn submit resulting neural network states to 
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the wide area dispatcher. At the end of this high-level 

training step, weight averaging will be performed at the wide 

area dispatcher. Large amounts of data need to be 

transported during the steps of the training procedure, and 

data compression techniques may be employed to reduce the 

volume of transported data, with a relatively small 

computational overhead. 

Although the experiments performed here are on a local 

level, there is potential for wide area distribution of training. 

The main purpose of the wide-area level is to distribute 

training among geographically distant networks, so that 

potentially partitioning the network, which requires low 

network latency, may be performed within the local area 

network of each member of the ensemble. 

III. TRAINING SELF-ORGANISING MAP ENSEMBLES 

An appropriate set of training data is one of the primary 

considerations with any neural network experimentation. 

Although averaging has proven advantageous in the case of 

MLPs, there has been no relevant research as regards SOMs, 

therefore a simple data suite should be utilized for this 

preliminary phase of experimentation, to determine the 

extent of applicability (if any) of averaging SOM ensembles. 

A. Training Dataset 

For the purpose of the experimentation we used two 

artificial datasets: an existing dataset and a dataset that we 

produced. The first dataset is a collection of topologically 

different series of datasets, the “Fundamental Clustering 

Problem Suite” (FCPS) [19], generated to verify that a newly 

invented clustering algorithm functions properly by correctly 

clustering a series of datasets with known classification. 

Each FCPS datasets is designed to address a specific 

category of problems commonly encountered in the 

development of clustering mechanisms. However, the 

datasets are generally small (300 points, 3 dimensions, 2 

categories is a typical example). For this size of problem, a 

single computer performs adequately, training the network in 

a few seconds, or even less. Therefore there is little specific 

benefit from distributing the training of these problems, 

however, if the averaging of ensembles allows such problems 

to be solved with a satisfactory precision, it would be a good 

indication that the proposed technique might prove 

applicable to larger problems as well. 

For the second artificial dataset, a program was 

implemented to generate random points, in the proximity of 

the vertices of an n-dimensional hypercube. The n-

dimensional hypercube is a regular convex n-polytope, 

whose boundary consists of regular convex (n-1) polytopes 

where n is the number of dimensions. For n=3, the shape is a 

cube (3-d) whose boundary consists of squares (2-d). For this 

type of layout the number of categories (or classes) of input 

patterns, is 2
n
. Input points are generated with an n-

dimensional Gaussian distribution where the centre of the 

distribution for all input points of the same class is the vertex 

of the hypercube that corresponds to that class. For small 

dimensions, a reasonable SOM may be used (e.g. 10x10 for 

3-d inputs), however for larger dimensions, the SOM sizes 

increase substantially, assuming that each class will need a 

minimum of a 3x3 area on the map in order to classify 

successfully (TABLE 1). The hardware available imposed a 

10-d ceiling in the experiments, since for 10-d, presenting 

each input vector 100 times, resulted in training times in the 

order of magnitude of 5x10
4
 sec (13h). 

TABLE I 

HYPERCUBE DATASET 

Number of 

dimensions 

Total input 

patterns 
SOM size 

SOM memory 

requirements 

3 800 10x10 21K 

4 1600 13x13 56K 

5 3200 18x18 140K 

6 6400 25x25 335K 

7 12800 35x35 780K 

8 25600 50x50 1.8M 

9 51200 70x70 4M 

10 102400 100x100 8.8M 

Hypercube vertex Gaussian input datasets (with 100 patterns per class) 

 

B. Experimental setup 

All experiments were based on two existing SOM 

implementations: the first (MMUC system) from the 

University of Surrey [20]; the second (SOM_PAK) from the 

Helsinki University of Technology [21]. 

Three dispatchers were coded: one for a traditional single-

process training, to create the benchmark, one to spawn local 

processes on a single machine, to test the averaging 

algorithm’s behaviour, and also for running on a shared-

memory multiprocessor machine, and finally the Grid 

version of the dispatcher. The approach for implementing the 

SOM ensemble can be summarised by the following stages: 

 

STAGE 1: Weight initialisation; calculation of initial error 

STAGE 2: Dispatching of SOMs with input data, initial 

weights and training parameters 

STAGE 3: Training for a number of iterations 

STAGE 4: Collecting the resulting weights, averaging, and 

calculating the MQE 

STAGE 5: Until training is completed, goto STAGE 2 

 

The purpose of the experiments was to compare the 

efficiency of an ensemble of SOMs to that of a single 

network, with identical parameters. Correct choice of 

learning rate decrement plays an important role in efficiently 

training a neural network, and some treatment is provided, 

however an exhaustive treatment of values and decrement 

profiles of the learning rate is beyond the scope of this paper. 

For each training cycle, the learning rate value follows a 

linear transformation of the step number, in the range [0, 1]. 

Provided the number of steps is sufficiently large (at least 

10), the approximation of the natural exponential curve by a 

number of chords is satisfactory. 

Averaging is performed by calculation of the arithmetic 
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mean of each dimension for each node of the SOMs in the 

ensemble. Averaging is performed after a fixed number of 

training iterations, with the number specified on start-up as 

the total number of training iterations, divided by the number 

of averaging steps, divided by the number of networks in the 

ensemble. If communication time and scheduling latency 

were zero, the system would exhibit a speedup equal to the 

number of networks in the ensemble. 

IV. EXPERIMENTATION 

Each of the following experiments was conducted 20 

times, and an average taken to discount inappropriate results 

due to initial random weights and random selection of 

training data subsets. The mean quantisation error (MQE) 

was considered, for the same dataset where the network was 

trained on, to calculate the training efficiency. MQE is 

calculated by taking the weighted sum of the activation 

function for all input signals. We outline the five main 

experiments here:  

A. Number of ensembles for 4-d hypercube problem 

This experiment attempts to determine the extent to which 

averaging affects training. A 15x15 SOM was trained, with a 

linear decrement of the learning rate from 0.5 to 0.01, and a 

linear decrement of the Gaussian neighbourhood radius from 

8 to 1. All training parameters, as well as the input dataset 

and initial state of the network, were retained among all 

experiments, to ensure comparability of results. 

Fig. 1 suggests that, if the latency of distributing members 

of the ensemble, periodically averaging weights, and 

synchronising training is very small compared to the 

computational duration of each step, then distributing an 

averaging SOM ensemble would be beneficial for training 

times and/or accuracy. The traditional method for decreasing 

a SOM’s MQE has been to increase the duration of the 

training process. With averaging, the SOM is exposed to a 

larger number of training examples, but in a manner that can 

be easily distributed across a wide-area Grid. But, this is not 

as efficient as exposing the SOM sequentially. 
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Fig. 1. MQE for distribution on ensembles of various sizes. Average for 20 

runs of 200 iterations per step per ensemble member, for a 15x15 SOM 

trained on 100 points per vertex of a 4-d hypercube 

Fig. 2 shows a single network, trained on a total number of 

steps that is equal to the corresponding distributed cases 

illustrated in Fig. 1. The difference is that while a monolithic 

and a 50-ensemble network theoretically take the same time 

to compute, the latter case performs 50 times more training 

than the monolithic scenario, and therefore the result is better 

in terms of the final value of MQE to which the training 

process converges. 
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Fig. 2. MQE for distribution on a single 15x15 SOM. Average for 20 runs 

of 1000 iterations per step per ensemble member. 

B. Number of ensembles for FCPS problem 

To further examine the potential for SOM ensemble 

averaging, experiment A was repeated for the 10 datasets in 

the FCPS dataset. Learning rate and neighbourhood radius 

were decreased linearly, while the ensemble size ranged from 

1 to an ensemble with 50 members. For all datasets of the 

FCPS, a rectangular topology with 15x15 nodes is used. 

Fig. 3 shows only one of the many datasets tested, and 

suggests that the application of averaging is indeed 

beneficial, since as the number of members in the ensemble 

increases, MQE decreases, in relation to a single network 

that would take the same time to compute. The remaining 

datasets show more or less the same. It seems that the most 

efficient size for an ensemble is 5 to 10 networks; beyond 

that the relative benefit is limited. 
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Fig. 3. MQE for various SOM ensemble sizes (1 to 50) over same time, for 

the “atom” dataset of the FCPS. 
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C. Learning rate decrement for 4-d hypercube problem 

The choice of learning rate and decrement are of great 

importance. To examine learning rate decrements, an 

exponentially decreasing learning rate of 0.9e
-i
 is used, 

where i is the step number. A 15x15 network is trained for 

the single (sequential) and averaging (10-member ensemble) 

cases. Ideally the single network would take 10 times more 

to compute, however this just represents the ideal 

performance that the ensemble should attempt to match. 

Fig. 4 shows how the learning rate didn’t follow the 0.9e
-i
 

curve, but an approximation comprised of 10 linear 

segments, the ends of which were at (i, 0.9e
-i
) and (i+1, 0.9e

-

(i+1)
). This is not viewed as a major difference, and in fact, 

the “two phases of training” mentioned by Kohonen [17], 

where the learning rate follows a steep linear decrement for 

the “ordering” phase and a less steep linear decrement for the 

“convergence” phase, may be viewed as 2 linear segments 

that are chords of an exponentially decreasing curve. 

The ensemble seems to converge to a much higher value 

than the single network for the choice of exponential learning 

rate decrement. Since the curve is quite steep, the same 

network with the same initial state, and input data, was 

trained for an equal amount of training, with a learning rate 

decrement following chords of 0.9e
-i/2

. The final value for the 

MQE is below 1.5 (Fig. 4), while previously was over 2.0. 

With a less steep exponential learning rate decrement, the 

performance of the ensemble was remarkably comparable to 

the single network – only the single network took 10 times 

more to compute. 
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Fig. 4. Single network and averaging ensemble MQE for the 4-d hypercube, 

with a learning rate of 0.9e-i and 0.9e-i/2, where i is the step number. 

D. Frequency of averaging for 4-d hypercube problem 

Another factor crucial in the averaging ensemble paradigm 

is the frequency of averaging. In all of the experiments 

carried out, this frequency was constant, since averaging was 

performed at the end of each (equal) step. 

Fig. 5 shows the results of the MQE while training the 4-d 

hypercube on the same number of iterations, but performed 

in a variable number of steps (5 to 500 steps); where learning 

rate and neighbourhood radius are decreased linearly. From 

the results we observed that the precision of the ensemble 

increases, as the frequency of averaging increases, but it 

never reaches the precision of the single net. However, the 

time taken for the ensemble to learn is, in theory, 10 times 

less (i.e. 10 ensembles) compared to the single net. But, in 

reality more averaging means more time wasted in packets 

(SOM weights) transferred over the network. 
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Fig. 5. Final MQE for single and 10-network ensemble trained from 5 to 

500 training steps. 

E. Wall-clock time for hypercube problem 

The last experiment tests the proposed architecture on the 

real-world. A 10-d hypercube was trained sequentially on a 

single computer, and as an averaging ensemble on the 

departmental Condor pool at the University of Surrey. The 

size of the ensemble was 6 machines, while averaging was 

performed in 50 steps. The initial states of the 100x100 

networks were identical. Both the single computer and 

ensemble were trained for a total of 10 million iterations, so 

it was expected that the Condor version would take less time 

to compute, but produce a higher final MQE. 

Typical scheduling time for the Condor pool was 5min, 

although on few occasions, it was as low as 10sec, and on 

one occasion, it was 100min. For the first experiment, total 

training time was around 12h for the 6 SOM ensembles and 

14h for the single SOM (Fig. 6). 

 
Fig. 6. MQE per wall-clock time for a 10-d linear alpha. 

 

The results were as expected; with the figures showing 
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how MQE progressed for the single and averaging cases, 

with the horizontal axis indicating the duration in seconds of 

“wall-clock” time that elapsed since training started. The 

speed increase is less than 10%, although 6 machines are 

used instead of just one. However, those 6 machines were 

also engaged in other Grid computing tasks, during the 

execution of this experiment, while the single machine was 

dedicated. Furthermore, typical time to compute the MQE 

was 100sec, and averaging the weights took nearly as much. 

Since for the 4-d hypercube problem it was observed that 

an exponential decrement of the learning rate is more 

efficient than a linear one, for a final “proof-of-concept” 

experiment, an 8-dimensional hypercube problem was also 

trained, on a 50x50 network, with a learning rate that 

followed 50 chords of an exponential curve. The size of the 

ensemble was increased to the maximum number of available 

Condor virtual machines (24), and the initial radius of the 

neighbourhood function was set at 25. The single network 

was trained for a total of 2x107 iterations, while the 

ensemble was trained with a total of 108 iterations. Fig. 7 

shows how the MQE progressed per wall-clock time. 
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Fig. 7. MQE per wall-clock time for an 8-d hypercube, exponential alpha. 

V. CONCLUSION 

This paper examined the effectiveness of distributing 

ensembles of SOMs across Grids. Factors that affect the 

quality of a distributed SOM, following the averaging 

ensemble paradigm, include the frequency of averaging, the 

number of members of the ensemble, and the learning rate 

decrement that is applied. The main findings from these 

experiments is that faster training time using the SOM 

ensembles architecture proposed comes at a cost of higher 

MQE, which may affect precision. This does not necessarily 

mean that the SOM classifier does not perform well, but it 

places demands on defining adequate or acceptable 

performance, in exchange for faster training. Further 

experimentation to discover better selections of distribution 

parameters may help us to diminish the impact of averaging 

so that the performance of the resulting network is only 

slightly diminished in comparison to the equivalent single 

SOM, with a substantially reduced training time. 
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