CSP, PVS and a Recursive Authentication Protocol

Jeremy Bryans and Steve Schneider
Department of Computer Science
Royal Holloway and Bedford New College
Egham, Surrey, TW20 0EX

1 Introduction

In this paper we consider the nature of machine proofs used in the CSP
approach to the verification of authentication protocols.

In [Sch96], a general method is presented for the analysis and verifica-
tion of authentication protocols using the process algebra CSP [Hoa85]. The
CSP syntax provides a natural and precise way to describe such protocols
in terms of the messages accepted and transmitted by the individual pro-
tocol participants. The CSP traces model provides a formal framework for
reasoning about these protocols.

In the CSP method, authentication is considered to be message-oriented:
m2 authenticates m1 if the receipt of m2 guarantees the previous transmis-
sion of m1, even in a hostile environment. To facilitate proofs, a notion of a
rank function is developed in [Sch96]. This is an integer-valued function on
the message space, such that all messages apart from m1 which could possi-
bly circulate in the network have a rank greater than zero, and the message
which provides authentication (m2 above) has a rank of zero or below. It is
then sufficient to prove that no messages of rank zero or below are able to
circulate when message m1 is blocked.

However, proving authentication is still an arduous task. The principal
problem is in the complexity of the message space, which gives rise to a
mass of detail in proofs, requiring a significant amount of detailed house-
keeping. For this reason, the CSP traces theory has been embedded within
PVS [DS97a, SOR93], and this description has been successfully used to
mechanise several proofs of authentication properties [DS97b, BS97]. How-
ever, even with mechanical support the construction of proofs is far from
easy, because of the inherent complexity involved in modelling all the pos-
sibilities of malicious action.

In this paper, we consider a novel authentication protocol, proposed
in [BO97]. The protocol can be used in various ways: we take the purpose
to be that of establishing an uncompromised chain of session keys between
adjacent pairs of agents involved in the protocol run.

This protocol provides an interesting extension to the work cited above,

because very few aspects of an individual protocol run are fixed in advance.
There may be an arbitrary number of agents, and consequently there may
be an arbitrary number of messages, which may grow to arbitrary lengths.

Despite the extra complexity of the protocol, adapting the techniques
developed in [DS97a] to prove that the session keys are uncompromised
turned out to be relatively straightforward, and the proofs of authentication
were not significantly more complex. We present the rank function used, and
show how PVS uses the rank function to prove the authentication property.

In [RS97], an attack is described on an implementation of this protocol
and a correction is proposed. We go on to identify where the particular im-
plementation decisions made compromised the protocol, and how the proof
of authentication for the original definition of the protocol fails when applied
to the faulty implementation. We also provide an analysis of the corrected
protocol, and verify that the attack is no longer possible. Finally, we spec-
ulate on how failed proofs may lead us to discover attacks.

2 CSP

In [Sch96] a general framework for analysing security properties within the
process algebra CSP is presented. Only a limited number of CSP operators
are necessary. If a is a CSP event, A a set of events and P and @ CSP
processes, then the prefix operator ¢ — P describes a process which performs
an a and then behaves as process P. The choice operator P O () describes
a process which offers a choice between process P and process (O, and it
has an indexed form |:|a " P,, which offers a choice between all of the
processes P,. The choice is resolved by the first action to occur. The parallel
operator P|[A]| @ forces P and @ to synchronise on actions from the set
A, but otherwise execute independently. The hiding operator P \ A hides
the events in set A, which means that no other process can participate in
occurrences of these events. The atomic process Stop marks the termination
of a process.

2.1 Traces

In [Sch96], the traces model is used as the basis for the proof rules presented.
In this model, the semantics of a process P is defined to be the set of traces
(sequences of events) that it may possibly perform. For example,

traces(a — b — Stop) = {(), (a), (a, b)}
traces(a — b — Stop |[[{b}]| b — ¢ — Stop) = {(), (a),{a, b),(a, b, c)}

A useful operator on traces is projection: If D is a set of events then
the trace tr [D is defined to be the maximal subsequence of ¢r all of whose
events are drawn from D. If D is a singleton set {d} then we overload
notation and write ¢r [d for ¢r [{d}. Message extraction tr | C for a set
of channel names C provides the maximal sequence of messages passed on
channels C. Finally, ¢r |} C provides the set of messages in ¢r passed along
some channel in C. These may be described inductively on sequences, and
the last by a set comprehension:

(0 1D=0

0+C=0
~) m)"(rl C)ifIece C. d=cm
({d) =) L € = { (tr | O) otherwise

tr C={m|(trl C)Imz#(}

If tr is a sequence, then o(t¢r) is the set of events appearing in the
sequence. The operator o extends to processes: o(P) is the set of events
that appear in some trace of P.

In the traces model, if traces(Q) C traces(P) then we say that @ is a
refinement of P, written P C ().

3 The protocol

In [BO9Y7] an authentication protocol is proposed, which is further explained
in [Pau97]. This protocol operates over an arbitrarily long chain of protocol
agents, terminating with a key-server. We set out to verify that a run of
the protocol establishes an uncompromised chain of session keys between
adjacent pairs of agents. The protocol operates as follows, where Hash X
is the hash of a message X and Macg X is the pair {Hash{K, X}, X}. In
the protocol description, K will be an agent’s long-term shared key, and the
hashed message Hash{ K, X} (a message authentication code) will allow the
server to check that message X originated with the owner of key K. K, is
the long-term key of agent X, K, is a session key between agent X and
agent Y, N; is a fresh nonce and null is a placeholder.
Agent A initiates a run by sending the following message.

1.A — B : Macg, {A, B, Ng,null}

Agent B responds by sending a similar message to agent C', but replacing
the placeholder with A’s entire message.

2.B — C : Mack, {B, C, Ny,Macg,{A, B, Ny, null}}

This step is repeated for each subsequent agent in the chain, and each agent
adds new components to the message, and passes it on. This stage termi-
nates when some agent specifies the server as the recipient. Suppose, for
example, that C sends the message to the server.

3.C = §:Mack {C,S, N.,Mack,{B, C, Ny,Macg,{A, B, N,,null} } }

The server now unpacks this message, and prepares session keys for each
adjacent pair of agents in the chain. Considering the outer two levels of the
protocol, we can see that agent C' was called by agent B, and called agent
S (the server). The server therefore generates the session keys Kj. and
K.s, prepares two certificates, and encrypts them with agent C’s secret key:
{Kcs,S,N.} k. and {Kpe, B, N.}k.. In a sense, the key K., is redundant,
because agent C has a key with the server already — its longterm key K..
However, including it allows the final agent in the chain to be treated like
any other agent.

Ignoring the first level of the message now, and considering the second
and third levels, the server creates two certificates for agent B: { Ky, C, Ny } i,
and {Ky, A, Ny } k,, encrypted with agent B’s secret key.

The third level of the message contains the placeholder null, which in-
dicates to the server that this is the last level of the message. It therefore
prepares only one further certificate: {Kyp, B, Ny}, -

In the next step, the server returns the all certificates to the last agent
on the chain:

4.8 = C: {Kcs,S,NC}KCa{KbCaBaNC}Kc’{KbC’ C’Nb}Kb’
{KabaAaNb}Kba{KabvaNa}Ka

Agent C removes the relevant certificates and forwards the rest to agent B,
which in turn passes the final one on to agent A.

5.C = B : {Kbca CaNb}Kba {KabaAaNb}Kba {KabaBa Na}Ka
6.B — A: {KabaBaNa}Ka

3.1 CSP Description
The datatype used to model the possible messages is given by

MESSAGE ::= TEXT | NONCE | USER | KEY |
MESSAGE.MESSAGE |
encrypt(KEY , MESSAGE) |
hash(KEY , MESSAGE)

where TEXT, NONCE, and USER are all primitive sets. The set KEFY
further subdivides into SESSION and LONGTERM, representing two dif-
ferent ways in which keys are used: typically, session keys are only used for
a single run of the protocol, whereas longterm keys are used repeatedly.

KEY = SESSION | LONGTERM

If m, my, mo are arbitrary messages, and k is a key, then the generates
relation - for this message space is defined by the following rules:

emes

e (Vm'eS' SEmM)YAS'Fm=Stm
e SFMASEmM=S5F m.my

e SEmi.mo=8StFm ASEF mg

e SEmASEE= S encrypt(k,m)

e SEFEANSFE encrypt(k,m) =S+ m

o SFmASFkE= Sk hash(k,m)

Observe that hashing is one-way: there is no rule which allows informa-
tion to be extracted from a hashed message. Observe also that all keys in this
protocol are symmetric: knowledge of a key allows any message encrypted
with that key to be decrypted.

The protocol describes the required behaviour of each of its participants.
We will use CSP processes to describe the behaviour of each of the partici-
pating agents. For simplicity, we will consider in this paper a single run of
the protocol, though the approach extends naturally to multiple concurrent
runs, as discussed in [Sch96].

We model an agent 7 as sending all of its messages on to the medium
and receiving all its messages from the medium through the channels trans.i
and rec.i respectively, as illustrated in Figure 1.

USER, USER, - USER

m
trans. trans.b trans.
rec.a rec.b rec.
MEDIUM

Figure 1: CSP model of the network

Messages on these channels have the type USER.USER.MESSAGE,
where USER is the set of all protocol agents names, trans.i.j.m represents
the transmission onto the medium of message m from USER; addressed to
USER;, and rec.i.j.m represents the reception of message m by USER;, la-
belled as coming from USER;. The message m is drawn from the abstract
data-type MESSAGE. The users are defined according to the protocol that
we are analysing.

The initiator of the protocol, agent A, is described as

USER s = trans.A'B.mac(ltg, A.B.N4.null) —
rec.A.B?encrypt(lta, s.B.Ny) — Stop

where Ny is a fresh nonce. Agent A transmits an initiating request to agent
B on channel trans.A and awaits a reply on channel rec.A.

The freshness of N4 is modelled by the fact that it is not initially known
by the enemy: Ny ¢ INIT, where INIT will be used to model the informa-
tion known by the enemy at the start of the protocol run.

After sending out the initial request, the process is prepared to accept
any message which is labelled as coming from B, is encrypted with its long
term key and contains both its nonce challenge N4 and the agent B’s iden-
tity. It will accept the key s as a session key generated by the server for
private use between A and B.

Intermediate nodes along the chain all have the same form. If the node
next up the chain from B is C then the appropriate description is as follows:

USERp = rec.B?itmac(lty,i.B.Ny.m) —
trans.B!C'mac(ltp, B.C.Np.mac(lty,,i.B.Ny.m)) —

rec.B.C?encrypt(ltp, skup.C.Np).encrypt(ltg, skdown.i.Ng).z —
trans.Blilz — Stop

Agent B receives a request from some agent, which it packages suitably
and sends on to its successor (Agent C in this case.) It then receives a
message consisting of a list of key certificates. The first two certificates
contain sessions keys for communication with the agent immediately below
(skdown) and above (skup). The rest of the message is passed to the agent
¢ from whom the original request was received.

The server inputs a message which consists of a nested series of requests,
and then outputs a message which is a concatenation of all of the key cer-
tificates encrypted for the appropriate agents.

SERVER = rec.S7i7m — trans.Slilresponse(m) — Stop

The function response defined on the possible legitimate requests that may
arrive at the server is defined inductively as follows:

response(mac(lt;, i.j.Ni.null)) = encrypt(lt;, si;.j.N;)

response(mac(lt;, j.k.Nj.mac(lt;,i.j.Nj.xz))) =
encrypt(lt;, sjk.k.N;).encrypt (It;, sij.i.N;).response(mac(lt;, i.5.N;.x))

The session keys s;; generated by the server are all fresh and unguessable:
none appear in the set INIT.

The protocol operates in a hostile environment. This is also modelled
within CSP in order to facilitate analysis. The approach taken is to provide
a CSP description of the Dolev-Yao model [DY83]. In this model, it is
assumed that the medium is under the complete control of the enemy, which
can block, re-address, duplicate and fake messages.

The network description consists of a set of user processes which exe-
cute the protocol, an intruder process and a medium which carries all the
messages.

As is pointed out in [Sch96], the medium and intruder can be rewritten
as a single process ENEMY:

ENEMY (S) = trans?i?j?m — ENEMY (S U {m})
d

i je USER.SFm rec.iljlm — ENEMY (S)

This is the description we shall use through this paper: ENEMY = ENEMY (INIT),
where INIT does not contain N4, Np, K,, K, or Kg ;.

Although this description looks simple, it is powerful enough to model all
aspects of the Dolev-Yao model, in that it can block, duplicate, re-order or
fake messages. All attacks involving these operations are therefore possible
within the model.

4 Authentication

In the CSP traces model, properties are given as predicates on traces, and
a process P satisfies a specification § if all of its traces satisfy S:

P sat S < Vir € traces(P).S

In the traces model, we say that P is a refinement of @ (written (Q C P)
if traces(Q) C traces(P), and from this definition it follows that

PCQAPsatS= @Qsat s

We use this message-oriented approach in defining authentication: a set
of messages T authenticates a set of messages R if the receipt of a message
in set T guarantees the previous transmission of a message in set R. As a
predicate on traces, this is defined

T authenticates R = tr [R=()=1tr [T =)

If it is not possible for a trace ¢r to contain a message from the set 7' without

also containing a message from the set R, then we can be sure that a message

from set R was transmitted onto the network before T could be received.
In this paper, the property we choose to prove is that the message

rec(b, i, crypto(longterm(lt(b)), conc3(S, la, Nb)))
authenticates
{trans(s, j, z.crypto(longterm(lt(b)), conc3(S, la, Nb)).y)}

where S is an arbitrary session key. That is, if agent B receives, from
anywhere, a message encrypted with his long-term key, and containing a
session key S, a neighbour’s identity and his original nonce challenge, he
can be sure that that message originated from the server.

The following lemma is an immediate consequence of the definition.

Lemma 1
P sat T authenticates R < P |[R]| Stop sat tr | T = ()

This follows from the fact that the process P |[R]| Stop is unable to
perform any events from the set R. Thus to prove that

P sat T authenticates R

it is sufficient to prove that P |[R]|Stop sat tr | T = (). This is the
approach we will use in paper.

The CSP traces model has a sound and complete set of rules for proving
that processes satisfy specifications, which could be used here, but we prefer
to develop a set of rules specific to our application, which will enable us to
reason at a more appropriate level of abstraction. Those used in this paper
are given in Figure 2.

The soundness of the rules follows from the trace semantics of the opera-
tors, and the formal definition of 7' authenticates R. They have been proven
in PVS [DS97a]. We may give informal justification of their soundness by
considering that occurrence of an event from T is intended to provide evi-
dence that some event from R previously occurred. Hence a process fails to
satisfy T authenticates R only when some event from T occurs before some
event from R.

Rule auth.stop is therefore sound because Stop cannot perform any
events at all, and so cannot perform some T before some R.

Rule auth.prefix.1 is sound because if the very first event a performed
by ¢ — P is an event from R, then it is not possible for an event from T
to occur before an event from R. This is independent of the nature of the
subsequent process P, which therefore has no restrictions placed on it by
the rule—the rule is applicable for any process P.

Rule auth.prefix.2 is most useful when the event ¢ is not in R, since
otherwise auth.prefix.1is applicable. In this case it states that if the first
event is not in T, then occurrence of a is irrelevant to authentication of
R by T, and such authentication is guaranteed for ¢ — P whenever it is
guaranteed for P.

Rule auth.choice states that if each branch of a choice guarantees the
authentication property T authenticates R, then so does the entire choice—
since whenever some event from T occurs, it must have been performed
by one of the arms of the choice, and that choice must previously have
performed some event from R.

Rule auth.parallel states that if a single component P of a parallel
combination is able to guarantee that T authenticates R, and it is involved
in all occurrences of events from 7 and R, then that is enough to ensure
that the entire parallel combination P |[A]| @ guarantees it: since P will
not allow any event from T to occur before an event from R occurs. There
are no restrictions on the rest of the system), so the rule holds for any
process description Q.

Rule auth.stop

Stop sat T authenticates R

Rule auth.prefix.1

[a€R]
a — P sat T authenticates R

Rule auth.prefix.2

P sat T authenticates R

a — P sat T authenticates R

Rule auth.choice

Vj.V; sat T authenticates 2

I:I], V; sat T authenticates R

Rule auth.parallel

P sat T authenticates R
[(RUT)C A]

P|[A]| @ sat T authenticates R
Rule auth.interleaves

P sat T authenticates R
Q) sat T authenticates R

P ||| @ sat T authenticates R
Rule auth.recursion

(Vk.X) sat T authenticates R) =
(VEk.F(X) sat T authenticates R))

. [VE.X) = Fr(X)]
Vk.X (k) sat T authenticates R

10
Figure 2: Proof rules for authentication

Rule auth.interleaves states that if both components of an interleaved
combination can guarantee T authenticates R, then the combination itself
can. This follows from the fact that if some event from T occurs, then it
must have been performed by one of the component processes, which must
have previously performed an event from R.

Finally, the rule auth.recursion for mutually recursive processes states
that if the property T authenticates R is preserved by recursive calls—if each
variable X}, sat T authenticates R then so does each function Fj(X) applied
to the variables—then the processes defined by the mutual recursion satisfy
the property T authenticates R.

4.1 A key theorem

We obtain an extremely specialised theorem that applies to authentication
properties on this specific description NET of the network. This theorem
is at the heart of the proof strategy presented in this paper. It provides
a sufficient list of conditions whose achievement guarantees that NET sat
T authenticates R.

Theorem 1 p: MESSAGE — 7 is such that
Cl: Vm € INIT.p(m) > 0

C2: (Vm' € S.p(m')>0)ASEm=p(m)>0
C3: Vm e T.p(m) <0

C4: Vi.(USER;|[R]| Stop sat maintains p)
then NET |[R]| Stop sat tr | T =)

The rank function p is intended to have positive value on all messages which
can be generated by some agent (including the enemy) during a run of the
protocol, when all messages in the set R are prevented from occurring. The
intention is to show that this restriction on R means that no event from T
can occur, and hence by Lemma 1 that T authenticates B. Conditions C'1
and C'2 together mean that if the enemy only ever sees messages of positive
rank, then he can only ever generate messages of positive rank.

Condition C4 states that the same is true for the users of the network
(when restricted on R): they never output a message of non-positive rank
unless they previously received such a message. The specification maintains p
is defined as:

maintains p(tr) =
(Vm € (tr |} rec) : p(m) > 0) = (Vm € (¢r || trans) : p(m) > 0)

11

If every message received on rec has positive rank, then so does every mes-
sage sent out on trans.

The predicate “p(m) > 0” can therefore be seen as describing an in-
variant: at every stage of the protocol’s execution when R is suppressed, it
must hold of the next message. Since C3 states that it does not hold for
any message in 7', this means that no message in T can ever be generated.

The problem for any particular protocol, and a particular authentication
property expressed in terms of R and T, is to find an appropriate rank
function p which makes C'1 to C'4 all true, and to verify this fact.

5 Translating to PVS notation

In [DS97a], an embedding of CSP in PVS is presented, precisely for mecha-
nising the proofs necessary with this approach. CSP traces are represented
as lists, a pre-defined notion in PVS. Processes are described as sets of traces.
The CSP operators are then defined as trace combinators. For example, the
choice operator ‘00’ returns the union of its two arguments.

Since a process P satisfies a predicate E iff all its traces satisfy F, a
satisfaction operator ‘|>’ can be defined, so that P [> E provided P is a
subset of E.

The Dolev-Yao framework has already been translated into PVS [DS97a,
BS97], so all that was required was to define the message space and the
protocol agents.

The message space was defined as

message : DATATYPE WITH SUBTYPES nonkey, key

BEGIN

text (x_text : Text) : text? : nonkey
nonce (x_nonce : Nonce) : nonce? : nonkey
user (x_user : Identity) : user? : nonkey
conc (x_conc, y_conc : message) : conc? : nonkey
session (x_session : SessionKey) : session? : key
longterm (x_longterm : LongTerm) : longterm? : key
code (x_code : key, y_code : message) : code? : nonkey
hash (x_hash : key, y_hash : message) : hash? : nonkey

END message
The message authentication code is defined by

mac(k, m) : message = conc(hash(k, m), m)

12

The enemy may deduce certain information from the messages it sees.
This deductive ability, given by - in the CSP model, is transcribed into PVS
by the Gen relation:

Gen(S) (m) : INDUCTIVE bool =
0) S(m)
1) OR (EXISTS ml, m2: Gen(S) (m1) AND Gen(S) (m2) AND m = conc(ml, m2))
2) OR (EXISTS mil: Gen(S) (conc(mi, m)))
3) OR (EXISTS m2: Gen(S) (conc(m, m2)))
4) OR (EXISTS ml, k: Gen(S) (m1) AND Gen(S) (k) AND m = crypto(k, ml1))
5) OR (EXISTS k: Gen(S) (k) AND Gen(S) (crypto(k, m)))
6) DR (EXISTS ml, k: Gen(S)(m1) AND Gen(S) (k) AND m = hash(k, ml));

Any message already known to the enemy is considered to be part of
the generated set (line 0). The enemy may concatenate messages, or split
concatenated messages (lines 1-3). If it is in possession of a key and an
arbitrary message, it may encrypt the message with the key. (line 4). Since
all keys are symmetric, if it owns a key and a message encrypted with that
key, it may decrypt the message (line 5). Finally, if it owns a key and an
arbitrary message, it may form the hash of the message with respect to the
key (line 6). The transitivity requirement is implicit, because ml, m2 and k
are quantified over Gen(S).

With these in place, it now remains to prove that each of the protocol
participants maintain rank. This means that if the CSP description of an
individual participant is restricted, so it cannot transmit any messages from
the set R, then it is unable to transmit the message 7. The contrapositive
of this says that if the message T is observed on the medium, it must have
been preceded by an event from the set R.

We need to define an operator crypto, which will encrypt and decrypt
messages.

crypto(k, m) : message =
CASES m OF
code (x, y)
CASES k OF
longterm(i): IF x = longterm(i) THEN y ELSE code(k, m) ENDIF,
session(i): IF x = session(i) THEN y ELSE code(k, m) ENDIF
ENDCASES
ELSE code(k, m)
ENDCASES

13

It applies the function code, returning the original message if the key
has been applied twice to the same message.

In the following definitions, 1t is an abbreviation for the function which
returns the longterm key of a user i, and sk(i,j) returns the session key
for i and j.

The first user is defined as:

userA : processlevent] =
Choice! skey :
(trans(a, b, mac(lt(a), conc4(Ia, Ib, Na, null))) >>
(rec(a, b, crypto(lt(a), conc3(skey, Ib, Na))) >>
Stopl[event])

The Choice! skey means that in the second part of the definition, agent
A is prepared to accept an arbitrary session key, provided that it forms part
of a certificate encrypted with its longterm key, and contains his original
nonce.

The definition of userB is similar, except that it first waits for a message
from userA, then uses that message instead of the placeholder . It also
expects two messages, each containing a single key certificate, and does not
pass anything on to the lower members of the chain. These changes were
necessitated by the definition of the server.

userB : process[event] =
Choice! 1tk, Nx, m, skup, skdown, i, k :
(rec(b, i, mac(ltk, conc4(user(i), Ib, Nx, m))) >>
(trans(b, k, mac(1t(b), concd4(Ib, user(k), Nb,
mac (1tk, conc4(user(i), Ib, Nx, m))))) >>
(rec(b, k, crypto(1t(b), conc3(skup, user(k), Nb))) >>
(rec(b, k, crypto(1t(b), conc3(skdown, user(i), Nb))) >>
Stop[event]))))

The definition of the server differs in some ways from its CSP definition.
In the CSP definition, the server receives one message, and sends out one
message. However, a definition of this form would require the definition of
‘response’ to be incorporated into the definition of the server.. This would
require significant extra complexity in the PVS coding. It proved easier to
make use of the assumptions of the Dolev-Yao model.

Since the medium is entirely in the control of the enemy, who may re-
order, redirect or kill messages arbitrarily, we do not need to define the
server to recurse on a single message to produce all the certificates. The

14

inner layers of the message have already been circulating in the medium,
and we may therefore rely on the medium to pass these on to the server as
appropriate.

This is not as radical an assumption as it may seem, and it introduces no
further attacks on the protocol. The medium may already destroy any run
of the protocol by refusing to pass on messages. But what we are interested
in are safety properties: if a protocol run completes successfully, then we
want to be sure that the session keys are uncompromised. Provided it is
possible for a single run to complete successfully, we are not interested in
any incomplete runs.

In this description, the server receives a message, which either has at least
two levels of message authentication codes, or contains the placeholder null.
The two parts of the definition result from the pattern matching that occurs
on the first message. It the message contains at least two levels of message
authentication codes, then the server prepares and sends the appropriate two
key certificates. These are addressed direct to the intended recipient: since
our enemy may arbitrarily redirect messages, nothing is gained by insisting
that they pass through all members of the chain.

If the incoming message contains the placeholder null, then only one
certificate is necessary.

Fs(X) : process[event] =
(Choice! m2, Nix, Njx, i, j, k, 1 :
(rec(s,l,mac(1t(j), conc4(user(j), user(k), Njx,

mac(1t(i), conc4(user(i), user(j), Nix, m2))))) >>
(trans(s, j, crypto(lt(j), conc3(sk(j,k), user(k), Njx))) >>
(tramns(s, j, crypto(1t(j), conc3(sk(j,i), user(i), Njx))) >>
X))

\/
(Choice! Nix, i, j, 1 :
(rec(s, 1, mac(1t(i), conc4(user(i), user(j), Nix, null))) >>
(trans(s, 1, mac(1t(i), conc4(user(i), user(j), Nix, null))) >>
(Stoplevent]))))

server : process[event] = mu(Fs)

5.1 The authentication property

Recall that we wish to prove that, for any ¢ and S, the message T

rec(b, i, encrypt(longterm(lt(b)), conc3(S, Ia, Nb)))

15

authenticates R
{trans(s, j, encrypt(longterm(It(b)), conc3(S, Ia, Nb)))}

We now have to define a rank function, which must assign a rank of 1 or
above to allow messages which may possibly circulate in the network, and a
rank of 0 or below to all messages which may not circulate in the network.

The rank function we used is given in Figure 3. The rank of all text,
nonces and user identities is one. All session keys apart from the one between
A and B have rank one, and all longterm keys have rank one, apart from
the ones belonging to A, B and the server. All hashed messages have a rank
of one. Encrypted messages have the same rank as the message itself, unless
it is encrypted with either A or B’s longterm key. All messages encrypted
with either A or B’s longterm key have rank one greater than the message
itself, except for the authenticating message.

Proving that each of the processes maintains rank is very straightforward.
The proof consists mainly of PVS macro steps developed specifically for
authentication protocols, and presented in [DS97a]. The run times (on a
Sparc 5) to check the proofs once they were developed were: userA took 25
seconds, userB took 91 seconds and server took 223 seconds.

6 Incorrect Implementation

In [RS97], an attack on an implementation of the recursive authentication
protocol is described. The implementation decision which leads to the attack
is straightforward. The server computes the certificates as K, @ Hashg, { Na},
where ‘@’ represents the bitwise XOR. of two bit strings.

To see that this is insecure, note that (with three agents in the chain)
the server returns certificates of the form

Kab 69 HashKa{Na}, Kab 69 Hasth{Nb},
Ky @ Hashg, {Nb}, K s @ Hashg, {Nc},

Anyone in possession of these certificates (and they are all broadcast
across the network) can compute xor’d pairs of session keys, as

Kab 69 Hasth{Nb} @ Kbc 69 Hasth{Nb} = Kab 69 Kbc

Thus if the enemy knows one session key, he may compute all others.

16

rho(m) : RECURSIVE int =

CASES m OF
text (z) 0 1,
nonce (z) 11,
user(z) : 1,
session(z) : IF session(z) = session(sk(a, b)) THEN 0O
ELSE 1 ENDIF,
longterm(z) : IF z = 1t(a) OR z = 1t(b) OR z = 1t(s) THEN O
ELSE 1 ENDIF,
conc(zl, z2) : min(rho(z1), rho(z2)),
hash(q, =z) 11,
code(q, z) : rank_code(q, z, rho(z))
ENDCASES

MEASURE size(m)

rank_code(q, m, n) : int =
CASES q OF
session(zl): n,
longterm(j)
IF j=1t(a) THEN rank_lt_a(m, n)
ELSIF j=1t(b) THEN rank_lt_b(m, n)
ELSE n
ENDIF
ENDCASES

rank_lt_a(m, n) : int n+1

rank_1lt_b(m, n) : int =
IF m = conc3(session(sk(a,b)), Ia, Nb) THEN O ELSE n+1 ENDIF

Figure 3: The Rank Function

17

6.1 PVS analysis

Although we knew the flaw in this protocol before beginning the analysis,
we proceeded with a mechanical analysis, to see where it broke down, and
whether we could make any deductions from that.

In fact, the flaw revealed itself very quickly. The new generates function,
which includes XOR, is given by:

Gen(S) (m) : INDUCTIVE bool =

S(m)
OR (EXISTS ml, m2 : Gen(S) (m1) AND Gen(S) (m2) AND m
OR (EXISTS ml : Gen(S)(conc(ml, m)))
OR (EXISTS m2 : Gen(S) (conc(m, m2)))
OR (EXISTS mi : Gen(S)(mi1) AND m = hash(mil))
OR (EXISTS ml, m2 : Gen(S) (m1) AND Gen(S)(m2) AND m
OR (EXISTS ml : Gen(S) (ml1l) AND Gen(S) (xor(mil, m)))
OR (EXISTS m2 : Gen(S) (m2) AND Gen(S) (xor(m, m2)));

conc(ml, m2))

xor(ml, m2))

It is impossible to prove that the “blank” rank function

rho(m) : RECURSIVE int =

CASES m OF
text (z) : 1,
nonce(z) 1,
user(z) : 1,

session(z) : IF session(z) = session(sk(a, b)) THEN O ELSE 1 ENDIF,
longterm(z) : IF z = 1t(a) OR z = 1t(b) THEN O ELSE 1 ENDIF,
conc(zl, z2): min(rho(zl), rho(z2)),

hash(z1) : 1,
xor(zl, z2) : 1
ENDCASES

MEASURE size (m)
is valid, in other words an attempted proof of
V'S, m : positive(p, S) A (S| —m) = p(m) >0
fails. It requires a sublemma:
Vml,m2:p(ml) >0A p((ml@ m2)) > 0= p(m2) >0)

and the counter-example is that p(s,;) < 0, since it is secret, but the enemy
may know sy, since he may be masquerading as agent C, and sqp @ sp is

18

also known, since it circulates in the network, so the proof of the sublemma
fails.

Other rank functions could be tried, in which case the proof would fail
at some other stage.

6.2 Corrected Implementation

The corrected implementation proposed in [RS97] is a very simple extension
of the incorrect version. They suggest that the server return certificates of
the form

Kab @ Hasth{Nb, A}, Kbc @ Hasth{Nb, C}

which does indeed provide secure session keys between pairs of honest agents.
This has now been proven for the most general case, when A, B and the
server are honest.

7 Dealing with failed proofs

One of the less intuitive parts of the proof method outlined above is the rank
function. It is not easy to tell at a glance whether a particular rank function
will work or not, and if a proof fails it is not necessarily obvious whether
this is because the protocol is flawed, or because the rank function was in-
appropriate. To some extent, improvements on a flawed rank function may
be deduced by considering the PVS output. After applying the macro steps,
we can reduce nontrivial sequents to their component parts (using grind),
which gives us a list of consequents and antecedents. The antecedents origi-
nate essentially from the information that the rank function provides about
messages which have already been observed in the network.

If none of the consequents follow from the antecedents !, then it is some-
times possible to deduce a strengthening of the rank function by observing
the consequents. Further protocol verification attempts are required in order
to develop heuristics for this.

IPVS requires only that one consequent be proved, in order to prove the sequent

19

References

[BO97]

[BS97]

[DS97a]

[DS97b]

[DY83]

[Hoa85]

[Pau97]

[RS97]

[Sch96]

[SORY3]

J. Bull and D. J. Otway. The Authentication Protocol. Tech-
nical Report DRA/CIS3/PROJ/CORBA/SC/1/CSM/436-04/03,
DRA, Feb 1997.

J. W. Bryans and S. A. Schneider. Mechanical Verification of the
full Needham-Schroeder Public-Key Protocol. Technical Report
CSD-TR-97-11, Royal Holloway, University of London, April 1997.

B. Dutertre and S. A. Schneider. Embedding CSP in PVS. An
application to Authentication Protocols. Technical Report CSD-
TR-97-12, Royal Holloway, University of London, April 1997.

B. Dutertre and S. A. Schneider. Using a PVS Embedding of CSP
to verify Authentication Protocols. In Proceedings of TPHOLS,
1997. To appear.

D. Dolev and A. C. Yao. On the Security of Public Key Protocols.
IEEE Transactions on Information Theory, 29(2), 1983.

C. A. R. Hoare. Communicating Sequential Processes. Prentice-
Hall, 1985.

L. Paulson. Mechanized proofs for a recursive authentication pro-
tocol. unpublished, 1997.

P. Y. A. Ryan and S. A. Schneider. An Attack on a Recursive
Authentication Protocol: A cautionary tale. DRA report, May
1997.

S. A. Schneider. Using CSP for protocol analysis: the Needham-
Schroeder Public-Key Protocol. Technical Report CSD-TR-96-14,
Royal Holloway, University of London, October 1996.

N. Shankar, S. Owre, and J. M. Rushby. The PVS Proof Checker:
A Reference Manual (Draft). Computer Science Laboratory, SRI
International, Menlo Park, CA, February 1993.

20

