University of Surrey

Test tubes in the lab Research in the ATI Dance Research

Bagging for robust non-linear multivariate calibration of spectroscopy

Wang, K, Chen, T and Lau, R (2011) Bagging for robust non-linear multivariate calibration of spectroscopy Chemometrics and Intelligent Laboratory Systems, 105 (1). pp. 1-6.

kwang10-chemolab.pdf - Accepted version Manuscript
Available under License : See the attached licence file.

Download (159kB)
[img] Text (licence)

Download (1kB)


This paper presents the application of the bagging technique for non-linear regression models to obtain more accurate and robust calibration of spectroscopy. Bagging refers to the combination of multiple models obtained by bootstrap re-sampling with replacement into an ensemble model to reduce prediction errors. It is well suited to “non-robust” models, such as the non-linear calibration methods of artificial neural network (ANN) and Gaussian process regression (GPR), in which small changes in data or model parameters can result in significant change in model predictions. A specific variant of bagging, based on sub-sampling without replacement and named subagging, is also investigated, since it has been reported to possess similar prediction capability to bagging but requires less computation. However, this work shows that the calibration performance of subagging is sensitive to the amount of sub-sampled data, which needs to be determined by computationally intensive cross-validation. Therefore, we suggest that bagging is preferred to subagging in practice. Application study on two near infrared datasets demonstrates the effectiveness of the presented approach.

Item Type: Article
Divisions : Faculty of Engineering and Physical Sciences > Chemical and Process Engineering
Authors :
Wang, K
Chen, T
Lau, R
Date : 15 January 2011
DOI : 10.1016/j.chemolab.2010.10.004
Depositing User : Symplectic Elements
Date Deposited : 28 Sep 2011 11:36
Last Modified : 31 Oct 2017 14:08

Actions (login required)

View Item View Item


Downloads per month over past year

Information about this web site

© The University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom.
+44 (0)1483 300800