
Co-evolutionary Modular Neural Networks for
Automatic Problem Decomposition

Vineet R. Khare, Xin Yao
School of Computer Science

The University of Birmingham
Birmingham B15 2TT, UK

{ v.r.khare, x.yao}@cs.bham.ac.uk

Bernhard Sendhoff, Yaochu Jin, Heiko Wersing
Honda Research Institute Europe GmbH

Carl-Legien-Straße 30
D-63073 Offenbach/Main, Germany

{ bs, yaochu.jin, heiko.wersing}@honda-ri.de

Abstract- Decomposing a complex computational prob-
lem into sub-problems, which are computationally sim-
pler to solve individually and which can be combined
to produce a solution to the full problem, can efficiently
lead to compact and general solutions. Modular neu-
ral networks represent one of the ways in which this
divide-and-conquerstrategy can be implemented. Here
we present a co-evolutionary model which is used to de-
sign and optimize modular neural networks with task-
specific modules. The model consists of two populations.
The first population consists of a pool of modules and
the second population synthesizes complete systems by
drawing elements from the pool of modules. Modules
represent a part of the solution, which co-operates with
others in the module population to form a complete solu-
tion. With the help of two artificial supervised learning
tasks created by mixing two sub-tasks we demonstrate
that if a particular task decomposition is better in terms
of performance on the overall task, it can be evolved us-
ing this co-evolutionary model.

1 Introduction

Decomposing a complex computational problem into sub-
problems, which are computationally simpler to solve in-
dividually and which can be combined to produce a solu-
tion to the full problem, can efficiently lead to compact and
general solutions. Ideally for a good decomposition, these
sub-problems will be much easier than the corresponding
monolithic problem. In most cases such a decomposition
relies on human experts and domain analysis. A system
that can produce modules, which solve a subset of a big
problem, can save us from manually crafting them. Ideally,
both - the number of modules and the role that each one
plays in the solution, should emerge automatically within
the system. This work is an attempt towards developing a
system that would automatically discover natural decompo-
sitions of complex problems, while simultaneously solving
the sub-problems.

Many problems can only be decomposed into interde-
pendent subcomponents hence changes in the role of one
subcomponent effects the others. So we want the solu-
tions to co-adapt and collectively solve the problem. Co-
evolution is well suited for modelling the interdependencies
among the subcomponents of the system and has been used
in the literature to implement thedivide-and-conquerstrat-
egy for tackling complex computational problems. These

co-evolutionary methods can be subdivided further into two
categories – single and two-level co-evolutionary methods.
In single level co-evolutionary methods [14, 15, 16] the sub-
components/modules are evolved in separate genetically
isolated sub-populations and fitness evaluations for these in-
dividuals are carried out by combining representative indi-
viduals from these subpopulations and then passing back
the fitness of the system, thus created, to the representative
individual. In two-level co-evolutionary methods [3, 7, 12]
modules and complete systems are co-evolved in two sepa-
rate populations.

Here we use one such two-level co-evolutionary method
to design and optimize modular neural networks which have
sub-task specific modules. A module represents a part of the
solution, which co-operates with others in the module popu-
lation to form a complete solution. Fitness of individuals in
the module population is determined by their contribution
towards various systems in system population. Evolution-
ary pressure to increase the overall fitness of the two pop-
ulations provides the needed stimulus for the emergence of
the sub-task specific modules.

The rest of the paper is organised as follows. In Sec. 2 a
brief background on automatic problem decomposition and
its relationship with modularity in neural networks is pre-
sented. Sec. 3 describes the artificial tasks, made up of other
sub-tasks, that we use to evaluate our co-evolutionary model
for its ability to evolve sub-task specific modules. Also,
in this section we test our hypothesis that a pure-modular
structure is indeed beneficial in solving the complete task.
In Sec. 4 we describe the co-evolutionary model in two
stages. Instage 1to test the effectiveness of our model,
we proceed with a heavily constrained system, which makes
the decomposition into modules much simpler. Instage 2,
we remove those constraints and test our system on a much
more generic decomposition problem. We then list the ex-
periments and results in Sec. 5 followed by a discussion on
these results in Sec. 6. Finally we conclude in Sec. 7.

2 Automatic Problem Decomposition & Modu-
lar Neural Networks

In the context of learning, we can think ofsequentialand
parallel problem decompositions. Sequential decomposi-
tion, where we try to divide the overall learning task into
steps (examples include feature selection methods [13, 17]
and learning from hints [1]). Parallel decomposition in-
volves dealing with sub-tasks simultaneously but separately

e.g. the classic what-and-where vision task (examples in-
clude feature decomposition methods [4, 8], mixture of
experts [5] and class relations based decomposition meth-
ods [10]). In the literature, for parallel decomposition, we
usually find the following instances:

• One instance one sub-task [5, 10]

f t(~X, ~Y) = f1(~X) OR f2(~Y) (1)

• Sub-tasks on separate outputs [4, 6]

~f(~X, ~Y) = {f1(~X), f2(~Y)} (2)

• Combination of sub-tasks at one output [8]

f(~X, ~Y) = g(f1(~X), f2(~Y)), (3)

wheref t(·), ~f(·) andf(·) are instances of tasks made up
of sub-tasksf1(·) andf2(·). ~X and~Y are subsets of the at-
tributes of the problem, which may or may not be overlap-
ping. In the first two instances the decomposition is known a
priori and we have separate feedback available to the learn-
ing system for separate sub-tasks. This can be used to em-
bed a priori knowledge into the system and possibly train
the modules independent of each other. For this work, we
are interested in the third instance where we have much less
knowledge about the problem (we do not know the function
g).

To achieve this kind of problem decomposition we use
modular neural networks, where modules solve various sub-
components of the problem. For instance for the prob-
lem decomposition in eq. 3, we require a modular neural
network with three modules, two for problemsf1(~X) and
f2(~Y) and one for the combination functiong.

Modularity in neural networks can prove useful for many
reasons. Modular neural networks can incorporate a pri-
ori knowledge, generalize well, avoid temporal and spatial
cross-talks [5]. All of these are useful in problem decompo-
sition but with an emphasis onautomaticproblem decom-
position, for this work, we are mainly left with the perfor-
mance of the network on the complete problem as a measure
of its usefulness. We use a separate test set error for this
purpose and explore the possibility of using this measure to
evolve modular neural networks consisting of sub-task spe-
cific modules.

3 Test Problems & Candidate Solutions

To test the feasibility of using co-evolution as a means of
evolving sub-task specific modules for a given task, we
construct an artificial time series prediction task (eq. 3)
by combining two sub-tasks using a linear and a non-
linear combination function. Mackey-Glass (MG) [11] and
Lorenz(LO) [9] time series prediction problems are used as
the two sub-tasks. The Mackey-Glass time series is gener-
ated by the following differential equation using the fourth
order Runge-Kutta method with initial conditionx(0) = 0.9
and time step of∆1 = 1.

ẋ(t) = βx(t) +
αx(t− τ)

1 + x10(t− τ)
, (4)

whereα = 0.2, β = −0.1, τ = 30. The z- component of
the 3-dimensional Lorenz time series is used to create the
mixture problem and is generated by solving the following
differential equation system, again, using the fourth order
Runge-Kutta method with a time step of∆2 = 0.02.

ẋ(t) = −σ(x(t)− y(t))
ẏ(t) = −x(t) · z(t) + r · x(t)− y(t)
ż(t) = −x(t) · y(t)− β · z(t), (5)

whereσ = 16, r = 45.92, β = 4. Now these two time
series (MG and LO) are mixed according to Table 1 to cre-
ate the mixture problems. Both sub-tasks involve predic-
tion of the time series at time stept based on three previous
time steps. For instance for Mackey-Glass task, MG(t) is
to be predicted using MG(t-3∆1), MG(t-2∆1) and MG(t-
∆1). The complete task is to predict g(MG(t), LO(t)).
For all problems thus created the only feedback, the net-
work (modular or not) gets, is its performance on the com-
bined task (g). These two time series are relatively inde-
pendent with a correlation coefficient of0.032 for 1500
points and hence create mixture problems which favour a
decomposition into independent modules. A linear com-
bination problem is constructed by usingg as averaging
(g(MG(t), LO(t)) = 0.5(MG(t) + LO(t))) and a non-
linear combination problem is constructed usingg as a prod-
uct (g(MG(t), LO(t)) = MG(t) · LO(t)) function. Let
us call themAveragingandProductproblems, respectively.
For the MG-LO problem, in Table 1, decomposition of fea-
tures into Mackey-Glass and Lorenz is an example of par-
allel decomposition and calculation of MG(t) and LO(t) as
an intermediate step while predictingg is an example of se-
quential decomposition, as discussed in Sec. 2. Given this
setup (Fig. 1) we want our co-evolutionary model to come
up with a system with three modules. Two modules,MMG

andMLO, that take inputs only from one source (Fig. 2(b))
or, in other words, predict the output for a single time series
and a third that predicts their combination function (Mg).

Figure 1: Problem Construction

Now let us consider four different networks in Fig. 2.
These two-level RBF networks represent four different de-
compositions for the combined problem. In order to validate
our assumption that the pure-modular structure (Fig. 2(b)),
being the intuitive decomposition for the problem, is the op-
timal one we compare the learning curves of all these struc-
tures for the combined problem. In addition, we also com-
pare them to thepre-trained pure-modular structure. As the

Problem Inputs Prediction Task
Mackey-Glass MG(t-3∆1) MG(t-2∆1) MG(t-∆1) MG(t)
Lorenz-z LO(t-3∆2) LO(t-2∆2) LO(t-∆2) LO(t)
MG-LO MG(t-3∆1) LO(t-3∆2) MG(t-2∆1) LO(t-2∆2) MG(t-∆1) LO(t-∆2) g(MG(t), LO(t))

Table 1: Artificial time series mixture problems

Figure 2: Four two-level RBF network structures representing four possible problem decompositions.

Figure 3: A two-level (modular) RBF Network.

name suggests, modules in pre-trained pure-modular struc-
ture are trained separately from each other on individual
sub-tasks. Since this structure has separate feedback avail-
able from all the modules, which is not the case with any
other structure and has pure modules, it can be used as a
base case / ideal solution to the combination problem.

Fig. 2 shows four different networks (fully-connected
network, pure-modular network, impure-modular network
and imbalanced-modular network). For linear problems in
stage 1of experiments (Sec. 5) the combination module
Mg, performs averaging of the other two module outputs
(Fig. 3(a), 3(b)). For generic non-linear problems instage 2
of experiments, the outputs of the modules need to be com-
bined non-linearly. For this purpose we use a RBF network
as the combination module (Fig. 3(a), 3(b)), let us call it
combining network. Within 100 epochs of stochastic gra-
dient descent (SGD) [2] learning, pure-modular structure
emerges as the best structure for both types of problems.
Corresponding learning curves are shown in Fig. 4 for the
Averagingproblem. Similar results are also obtained for the
Productproblem but are omitted here for space constraints.
We also observe the sub-task specialization in the modules
of the pure-modular structure. This specialization in a two-
level RBF network is shown in Fig. 5 for theProductprob-
lem. Also, the performance of the pure-modular structure is
comparable to that of pre-trained pure-modular structure.

These comparisons indicate that the pure-modular struc-
ture represents a good decomposition of the task, especially
because it fares well against the pre-trained pure-modular
structure, but only a few other structures are tested and it
can not be claimed that it is the optimal one. We can expect
our co-evolutionary model to find the built-in decomposi-
tion of the problem only if the corresponding structure is
better than other possible structures, so we expect it to find
either this pure structure or other structures (at least) equiv-
alent in performance to this structure.

0 10 20 30 40 50 60 70 80 90 100
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Epochs

N
or

m
al

iz
ed

 R
oo

t−
m

ea
n−

sq
ua

re
d

E
rr

or

fully−connected
pure
impure
imbalanced
pre−trained

Figure 4: Learning curves for two-level RBF network struc-
tures shown in Fig. 2. SGD (η = 0.01, µ = 0.00) learn-
ing for Averagingproblem. Average of30 runs. Fully-
connected network has79 parameters, others have72.

 0

 5

 10

 15

 20

 25

 0 50 100 150 200 250 300 350 400 450 500

(a) PRODUCT - OUTPUT

netOut
target

-6
-5
-4
-3
-2
-1
 0
 1
 2
 3
 4
 5

 0 50 100 150 200 250 300 350 400 450 500

(b) MG - OUTPUT

mgModuleOut
mgTarget

-4
-3
-2
-1
 0
 1
 2
 3
 4
 5
 6

 0 50 100 150 200 250 300 350 400 450 500

(c) LO - OUTPUT

loModuleOut
loTarget

Figure 5: Specialization in a modular two-level RBF Net-
work. (a) Target output forProductproblem and output of
two-level RBF network on500 test data points. (b) Target
output for MG sub-task and output of MG module on500
test data points. (c) Target output for LO sub-task and out-
put of LO module on500 test data points.

4 Co-evolving Problem Decomposition

We use a two level co-evolutionary architecture (Fig. 6
and 7), the lower level (level 1) has a population of mod-
ules and the higher level (level 2) has a population of com-
plete systems made up of modules from module popula-
tion. Within this general co-evolutionary framework, both
the structure and parameterization of the modules as well
as the parameterization and structure of the systems can
be evolved. Evolution at level 1 searches for good build-
ing blocks for the system and at level 2 it searches for
good combinations of modules in level 1. This kind of co-
evolutionary architecture has been used before [3, 7, 12]
where neurons and artificial neural networks were used as
modules and systems, respectively. We use a similar ap-
proach, instage 1, for the linear combination problem and
further extend it up a level, instage 2, to use networks and
their combinations (two-level RBF networks) as the lower
and the higher levels, respectively, for the non linear com-
bination problem.

Figure 6: Co-evolutionary Model for the linear combination
problem. Each individual in module population is a Gaus-
sian neuron and each individual in system population con-
tains two RBF (sub) networks made out of these neurons in
module population.

• Stage 1: In case of the linear combination (Averaging)
problem, each system in system population represents
(Fig. 6) a combination of two RBF networks which
have inputs complimentary to each other, e.g., if one
network takes3 inputs from one of the time-series
then the other takes the remaining3 inputs, thus rep-
resenting the complete solution to the problem. The
output of the combination is the average output of the
individual networks. Modules are Gaussian neurons
differing from each other in terms of parameters (cen-
tres and widths) and also in terms of the inputs that
they get out of all6 inputs from the combined prob-
lem, hence each module can have between1 and6
inputs. Here we evolve structure and parameters of
the network together. Each system is trained partially
(refer to Table. 2) in each generation.

• Stage 2: For non-linear combination (Product) prob-
lems, modules are RBF networks (Fig. 7) differing
from each other in terms of the inputs that they get
out of all6 inputs from the combined problem, hence

Figure 7: Co-evolutionary Model for the non-linear combination problem. Each individual in module population is a
RBF network and each individual in system population contains a RBF network and pointers to two modules in module
population.

each module can have between1 and6 inputs. Each
system contains pointers to two modules in module
population and the output of the system is obtained
with the help ofcombining network, with 2 inputs and
1 output. Here we do not evolve parameter values for
these networks and others in module population be-
cause we allow modules to change structure and after
adding or deleting an input to a module the previous
parameter values might not remain any good. Hence
each system needs to be trained in every generation.

Figure 8: Both populations undergo these stages in a gen-
eration. In addition all individuals in system population un-
dergo partial training before fitness evaluation.

In both both stages, if a pure modular structure is advan-
tageous over others then we expect that some of the mod-
ules in module population will specialize in MG prediction
task and some in LO prediction task or in other words start-
ing from a completely random configuration we will con-
verge to a state where some modules will take their in-
puts only from Mackey-Glass time-series and some from
Lorenz time-series. In each generation both populations go
through the stages illustrated in Fig. 8. Systems are trained
using SGD learning, with random parameter initializations,
in each generation and, depending on their performance on
validation data set, are assigned with a fitness value. Fitness
of systemSi is evaluated as,

Figure 9: Individuals in system population get their fitness
based on performance on validation set, while modules de-
rive it from the systems they participate in.

FITNESS(Si) = 1/(nrmse + c), (6)

wherenrmse is the normalised root-mean-squared error on
validation data, obtained as the ratio of root-mean-squared
error and the standard deviation of target values, and c is
a small constant to prevent the singularity. Modules derive
their fitness from the systems (Fig 9) to which they con-
tribute in the system population. They are to be judged on
the basis of their contribution towards the complete prob-
lem. Listed below are the two credit assignment strategies
that we use to evaluate module fitness. After the fitness
evaluation both populations are sorted and top25 percent
of individuals in both populations are then labelled aselite
individuals. The variation operators used in the two stages
are described later.

• Credit assignment using a few good systems: Each
module gets the summed fitness of the best25 percent
systems in which this module participates.

• Credit assignment using module frequency: Each
module is assigned with a fitness value equal to the
number of appearances it made, in any system in sys-
tem population, during the last10 generations.

In stage 1only mutation is used in the two populations. In
module population, parameters associated with a neuron,

not inelite individuals, are mutated by adding normally dis-
tributed noises with 0 mean and 1 standard deviation. Muta-
tion rate ofpm was used for each real parameter. In system
population, the input positions are flipped between the two
complimentary networks again using a mutation rate ofpm

per input position.
In stage 2, in addition to mutation, crossover is also used

as a variation operator in system population as we do not
need to enforce complementarity among the two modules
within a system. Each of theelite individualsin system
population is crossed with anotherelite individual with a
certain probabilitypc to produce two offspring which re-
place the worst two individuals in the population. One-point
crossover is used, which swaps the modules in the two sys-
tems. Systems other thanelite individualsare then mutated,
with a certain probabilitypm, by replacing one of its mod-
ules with another randomly chosen module from module
population. Likestage 1only mutation is used for mod-
ule population, where each module, not inelite individuals,
is mutated again with probabilitypm. For this purpose, ei-
ther one of the randomly selected inputs is deleted or a new
input, randomly chosen from the ones which are not present
in the module, is added to the module.

Figure 10: Two solutions for theProductproblem from the
co-evolutionary model.

5 Experiments & Results

Below, we describe the two stages (Sec. 4) of experimen-
tation with the co-evolutionary model forAveragingand
Productproblems. Parameter values for these experiments
are listed in Table 2. Both credit assignment strategies
(Sec. 4) produce very similar results. Results listed here
are with the credit assignment using a few good networks.

• Stage 1 (Averaging problem): In stage 1of experi-
mentation we assume that the combination function is
linear and evaluate the system output as the average
of its networks, which are fixed to two modules per
system. A complementarity condition between the
modules of a system is also assumed which says that
the modules can not share inputs among themselves

Data
Training data 500 points
Validation data 500 points
Testing data 500 points

Individuals
Neurons per module 5
Neurons percombining 9
network(P)

Lifetime learning
Partial training per generation20 epochs
Learning rate (η) 0.01
Momentum (µ) 0.0

Co-evolution
Module population size (A) 480 neurons
Module population size (P) 80 RBF networks
System population size 40 two-level RBF

networks
Number of generations (A) 100
Number of generations (P) 500
mutation probability (pm) 0.2
crossover probability (pm) 0.8

Table 2: Parameter values used for experimentation. Pa-
rameters marked with anA or aP are specific to either the
Averagingor theProductproblem, respectively.

within a system. So only parallel decomposition
(Sec. 2), in MG and LO modules, is required of the
co-evolutionary model, which it achieves. With these
assumptions the co-evolutionary model converges to
the pure-modular structure in all of the30 runs con-
ducted. This was observed with both credit assign-
ment strategies, but credit assignment using module
frequency resulted in faster convergences. A popula-
tion is assumed to be converged when allelite individ-
uals (Sec. 4) in the system population have the same
structure. Once this structure is found it is trained on
theAveragingproblem for100 epochs of SGD learn-
ing and the results on a test set are given in Table 3.
These results are comparable to our base case / ideal
solution (pre-trained pure-modular structure), results
for which are also listed in the table.

• Stage 2 (Product problem): Here we move further to-
wards our aim of having anautomaticdecomposition
and remove assumptions about the combination func-
tion and complementarity of inputs, so the only do-
main knowledge we use is that there are two mod-
ules in the system. But since the two problems (MG
and LO) are relatively independent (Sec. 3) we still
expect complementarity to be beneficial and the co-
evolutionary model to discover it. Now the problem
is much harder as it requires both parallel (MG and
LO modules) and sequential (first evaluation MG and
LO modules and then the product module) decom-
positions. Here, the search space being much larger,
the co-evolutionary model does not always converge
to the pure-modular structure. Out of10 runs, with
credit assignment using module frequency, we only

converge to the pure-modular structure5 times. In an-
other2 runs it converges to an incomplete pure mod-
ular solution (Fig. 10(a)), which after100 epochs of
SGD learning is equivalent to the pure-modular struc-
ture in terms of performance on the combined prob-
lem. This is an interesting result as it indicates that all
three inputs are not needed to solve the problem. The
remaining3 runs converge to a suboptimal solution
consisting of two imbalanced structures (Fig. 10(b)).
Again, all these three structures obtained from all
10 runs are trained on theProductproblem for100
epochs of SGD learning and the results on a test set
are given in Table 3 alongside the results for a pre-
trained pure-modular structure.

6 Discussion

We can expect our co-evolutionary model to find built-in
decomposition of the problem only if the corresponding
modular neural network structure is better than other pos-
sible structures. The difference in performance between
this structure and others provides the co-evolutionary model
with the selection pressure towards this structure (problem
decomposition). Instage 1of experiments, with the com-
bination function known and with the complementarity of
inputs condition enforced, we only need to discover the
optimal feature decomposition for theAveragingproblem,
which we are able to do quite successfully because of two
reasons. First one being the limited search space and sec-
ond being the advantage of pure-modular structure over oth-
ers as the combination function of the two modules is fixed
(Averaging), which is suited for the pure-modular structure.

On the other hand our experiments instage 2were not
quite so successful, where we were only able to achieve the
intuitive decomposition7 out of 10 runs. This again can be
attributed to the fact that the search space is much bigger
(212 − 1 = 4095 possible structures) as there are many dif-
ferent ways to decompose this problem, and there are other
possible structures which are very close to the pure-modular
structure in terms of performance on the complete prob-
lem. A couple of such structures are shown in Fig. 10(a)
and 10(b). A few other experiments with a slightly differ-
ent setup, and hence not reported in this work, indicate that
the performance of the co-evolutionary model instage 2de-
pends critically on system population size. Larger system
population size results in better convergence to the pure-
modular structure.

In the experiments presented here,2 out of 7 success-
ful runs produced an incomplete-pure structure (Fig. 10(a)),
which indicates that all three inputs are not needed to solve
the problem. Interestingly, the remaining3 runs converged
to a structure (Fig. 10(b)) which has two imbalanced mod-
ules. Since we know that for a time series prediction prob-
lem the last time step is the most important one, this struc-
ture represents another good solution to the problem where
modulesM1 andM2 are only focusing on the two most rel-
evant inputs and the combination (M3) is producing anen-
semble effectof two very similar modules. At this point we
would like to emphasize the importance of thecombining

networkbeing able to approximate the combination func-
tion (product in this case). If it is unable to approximate the
function properly the decomposition in terms of MG and
LO modules would not be favoured, which is quite expected
because we are trying to evolve the structure for two mod-
ules while keeping the structure for the third fixed. Ideally
this combining networkshould be allowed to co-adapt with
other modules.

7 Conclusions

We have presented a two-level co-evolutionary model to de-
sign and optimize modular neural networks with sub-task
specific modules. The first level population consists of a
pool of modules and the second level synthesizes systems
by drawing elements from this pool. Modules represent a
part of the solution, which co-operates with others in the
module population to form a complete solution. Fitness
of individuals in module population is determined by their
contribution towards various systems in system population.
Evolutionary pressure to increase the overall fitness of the
two populations provides the needed stimulus for the emer-
gence of the sub-task specific modules. With the help of
artificial tasks created by mixing two sub-tasks (MG and
LO time series prediction) we demonstrated that if a partic-
ular task decomposition is better in terms of performance
(mean-squared-error in this case) on the overall task it can
be evolved using this co-evolutionary model. This is also
evident from the emergence of some good decompositions
which one would not think of while designing such a mod-
ular system manually.

This model has its share of limitations as well. Firstly,
the number of modules is fixed and is supplied to the model
as a priori knowledge and secondly, within these modules
we are not optimizing the structure of the module which
combines the other modules to produce the final output. Ide-
ally, and in line with the idea of co-adapting all the modules
together, the structure for this module (combining network)
should also be evolved along with other modules. Adapta-
tion of the number of modules in a system can be achieved
in two different ways. First one is a stage-wise approach,
where new modules are added or deleted simultaneously in
all the systems present in the population. This happens only
when there is a stagnation in performance of systems in sys-
tem population. A more global approach is where systems
with different number of modules are present at the same
time in the population. To overcome the second limitation
the model can be extended to co-evolve the modules for
combining other modules alongside those other modules in
the module population.

Finally, this generic model can be applied to a vari-
ety of problems ranging from feature decomposition and
feature selection in neural network ensembles to problems
which require pre-processing. Feature decomposition can
be viewed as an example of parallel decomposition and, fea-
ture selection and pre-processing can be viewed as an exam-
ples of first stages in a multi-stage sequential decomposition
problem.

Problem Runs Evolved Structure Evolved Structure Pre-trained Structure
Performance Performance

Averagingproblem 30 pure-modular (Fig. 2(b)) 0.0751 (3.4754e-04) 0.0560 (8.8997e-04)
(stage 1)
Productproblem 5 pure-modular (Fig. 2(b)) 0.1175 (0.0491) 0.0933 (7.0329e-04)
(stage 2) 2 incomplete- 0.1137 (0.0524)

-pure-modular (Fig. 10(a))
3 imbalanced (Fig. 10(b)) 0.2098 (0.0335)

Table 3: Normalized Root Mean-squared errors achieved by various structures (obtained from the co-evolutionary model)
after100 epochs of SGD (η = 0.01, µ = 0.00) learning. These structures are also compared with the base case / ideal
solution.

Bibliography

[1] Yaser. S. Abu-Mostafa. A method for learning from
hints. In S. J. Hanson, J. Cowan, and C. L. Giles, edi-
tors,Advances in Neural Information Processing Sys-
tems, volume 5, pages 73–80, San Mateo, CA, 1993.
Morgan Kaufmann.

[2] Christopher M. Bishop.Neural Networks for Pattern
Recognition. Oxford University Press, Oxford, UK,
1996.

[3] Nicolás. Garćia, Cesar Herv́as-Mart́inez, and
J. Mũnoz-Ṕerez. Multi-objective cooperative coevo-
lution of artificial neural networks.Neural Networks,
15:1259–1278, 2002.

[4] Michael Hüsken, Christian Igel, and Marc Toussaint.
Task-dependent evolution of modularity in neural net-
works. Connection Science, 14:219–229, 2002.

[5] Robert A. Jacobs, Michael I. Jordan, and Andrew G.
Barto. Task Decomposition Through Competition in
a Modular Connectionist Architecture: The What and
Where Vision Tasks.Cognitive Science, 15:219–250,
1991.

[6] Robert A. Jacobs, Michael I. Jordan, Steven J.
Nowlan, and Geoffrey E. Hinton. Adaptive Mixtures
of Local Experts. Neural Computation, 3(1):79–87,
1991.

[7] Vineet R. Khare, Xin Yao, and Bernhard Sendhoff.
Credit Assignment among Neurons in Co-evolving
Populations. In Xin Yao et al., editor,8th Interna-
tional Conference on Parallel Problem Solving from
Nature, PPSN VIII, pages 882–891, Birmingham, UK,
September 2004. Springer. Lecture Notes in Computer
Science. Volume 3242.

[8] Yuansong Liao and John Moody. Constructing hetero-
geneous committees using input feature grouping: Ap-
plication to economic forecasting.Advances in Neural
Information Processing Systems, 12:921–927, 1999.

[9] Edward N. Lorenz. Deterministic nonperiodic flow.
Journal of atmospheric Science, 20:130–141, 1963.

[10] Bao-Liang Lu and Masami Ito. Task decomposi-
tion and module combination based on class relations:
A modular neural network for pattern classification.
IEEE Transactions on Neural Networks, 10:1244–
1256, 1999.

[11] Michael. C. Mackey and Leon Glass. Oscillation
and chaos in physiological control systems.Science,
197:287–289, 1977.

[12] David E. Moriarty and Risto Miikkulainen. Forming
Neural Networks Through Efficient and Adaptive Co-
evolution. Evolutionary Computation, 5(4):373–399,
1997.

[13] David Opitz. Feature selection for ensembles. InPro-
ceedings of the Sixteenth National Conference on Ar-
tificial Intelligence (AAAI), pages 379–384, 1999.

[14] Gary B. Parker and H. Joseph Blumenthal. Compar-
ison of sampling sizes for the co-evolution of coop-
erative agents. In Ruhul Sarker, Robert Reynolds,
Hussein Abbass, Kay Chen Tan, Bob McKay, Daryl
Essam, and Tom Gedeon, editors,Proceedings of
the 2003 Congress on Evolutionary Computation
CEC2003, pages 536–543, Canberra, 8-12 December
2003. IEEE Press.

[15] Mitchell A. Potter and Kenneth A. De Jong. Co-
operative Coevolution: An Architecture for Evolving
Coadapted Subcomponents.Evolutionary Computa-
tion, 8(1):1–29, 2000.

[16] Chern Han Yong and Risto Miikkulainen. Coopera-
tive Coevolution of Multi-Agent Systems. Technical
Report AI01-287, Department of computer Sciences,
The University of Texas at Austin, Austin, TX 78712
USA, 2001.

[17] Marco Zaffalon and Marcus Hutter. Robust feature se-
lection by mutual information distributions. InProc.
of the 18th Conf. on Uncertainty in Artificial Intelli-
gence, pages 577–584, San Francisco, 2002. Morgan
Kaufmann.

