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Abstract. Many variants of MI exist in the literature. These vary pri-
marily in how the joint histogram is populated. This paper places the
four main variants of MI: Standard sampling, Partial Volume Estima-
tion (PVE), In-Parzen Windowing and Post-Parzen Windowing into a
single mathematical framework. Jacobians and Hessians are derived in
each case. A particular contribution is that the non-linearities implicit to
standard sampling and post-Parzen windowing are explicitly dealt with.
These non-linearities are a barrier to their use in optimisation. Side-by-
side comparison of the MI variants is made using eight diverse data-sets,
considering computational expense and convergence. In the experiments,
PVE was generally the best performer, although standard sampling of-
ten performed nearly as well (if a higher sample rate was used). The
widely used sum of squared differences metric performed as well as MI
unless large occlusions and non-linear intensity relationships occurred.
The binaries and scripts used for testing are available online.

1 Introduction

Our aim is to place the common variants of Mutual Information (MI) into a
single mathematical framework, and provide their analytic derivatives for use in
non-linear optimisation methods. Furthermore an evaluation of the MI variants
is provided allowing other researchers to choose a particular variant in an in-
formed manner. We demonstrate that the four most commonly used variants,
namely: standard sampling, Partial Volume Estimation, In-Parzen Windowing
and Post-Parzen Windowing; vary primarily in how the joint histogram is sam-
pled. The Jacobians and Hessians are derived for all these methods using an
approach similar to that of Thevenaz and Unser [1], but who considered In-
Parzen Windowing only. In the cases of standard sampling, post-Parzen window
estimation and higher order partial volume estimation, this is novel. Using the
established framework, the methods are compared in terms of computational
cost, and convergence to the ground truth for eight data sets.

Generally papers using MI choose the method reported to best suit their
application, without the scope to consider other methods. The obvious excep-
tions are several papers that discuss artefacts on the MI cost function surface
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[2, 3] and optimisation strategies [4]. However, only empirical analyses are made
(unlike the analytic comparisons here). Also, neither artefacts nor optimisation
strategies are the focus here. Rather, we focus on providing a common framework
and side by side comparison of MI methods, which to the authors’ knowledge
is currently unpublished elsewhere. The binaries and scripts used for testing are
available online.

Registration, or aligning one image (template) relative to another image (ref-
erence), is a common problem in many machine vision applications: e.g. tracking,
image mosaicking, object matching, and multi-modal registrations in medical
imaging. A widespread strategy for registration is to minimise (or maximise) a
similarity metric between a template and the region of overlap in a reference
image using an optimisation algorithm. MI has proved to be superior to many
other metrics. Since its concurrent introduction and popularisation by Viola and
Wells [5], Studholme et al.[6] and Collignon et al.[7] it has been widely adopted.

Shannon proposed MI [8] in his theory of information as a measure of entropy
of the information shared between two signals, with quantised amplitudes over a
period of time. It is a simple extension to consider 2D or 3D images rather than
1D signals, which consist of quantised intensities over a 2D/3D space.

MI has been applied using many different optimisation methods with vary-
ing degrees of success, including the simplex algorithm [9], Powell’s method [7,
10], Gradient Descent [11], hierarchical brute-force searches [12] hierarchical ap-
proaches [1, 13]. Pluim et al.’s survey [14] cites many more examples. Several
optimisation methods were systematically compared by Maes in [15]. Due to
space constraints, such a comparison is beyond the scope of this paper, but all
the optimisation methods in [16] (Ch.10) and the Levenberg-Marquardt algo-
rithm [17] have been implemented.

The advantages of MI include an invariance to changes in lighting conditions,
robustness to noise, sharp maxima and computational simplicity [18]. In a com-
parative study of registration methods, an MI based algorithm outperformed 15
other algorithms [19]. However, MI is a non-linear function and is prone to arte-
facts in its cost function surface. To overcome this, other forms of MI have been
developed. One approach, used by Wells et al.[11] is to convolve the histogram
with a Parzen window [20], to account for uncertainty in the intensity values.
Thevenaz and Unser have a more sophisticated Parzen windowing method using
B-splines [1], which are applied during the construction of the histogram, giving
more accurate results. In addition, Partial Volume Interpolation was introduced
by Maes et al.[10], which increments several histogram bins for each sample
based on the distance of the sample point from the surrounding pixels. Chen
and Varshney extended this concept to Generalised Partial Volume Estimation,
which uses extended spatial support [21].

The remainder of the paper is organised as follows. Section 2 reviews MI
along with the four common sampling methods. After this, the first and second
derivatives are derived in Section 3 and some analysis is performed in Section
4. Next, two example applications are discussed with a corresponding set of
experiments in Section 5. The conclusion follows in Section 6.
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2 Mutual Information

2.1 Registration

To start a brief formalisation of the registration process is required. Let fR rep-
resent a reference image, and let fT represent a template image. Both images are
functions of position x ∈ R2, although only trivial changes in the analysis below
are required if the dimension of x is altered to represent volumetric data. Since
fR and fT are represented as lattices of values at integral positions for x, inter-
polation is used to obtain values at non-integral positions. There is insufficient
space to discuss the choice of an interpolation method, but this is an important
design issue. The interested reader is referred to a survey by Amidror [22].

For convenience and computational efficiency fR is treated as infinite in ex-
tent and sampling is only performed within bounds of the lattice of fT . Regions
outside of the defined lattice of fR are defined as 0. Hence fT is considered
constant with respect to any warp, and expensive boundary checking is avoided.

The registration process aims to align fR and fT , by minimising a distance
function D for some warp function w with parameters v: vreg =
argv minD[fR(x), fT (w(x,v))]. For computational reasons (because fT is usu-
ally a smaller data set than fR) it is easier to reformulate the problem as one of
applying an inverse warp. Also, the function being minimised is MI, denoted by
convention as I:

vreg = argv min−I[fR(w−1(x,v)), fT (x)]

To maintain notational clarity w−1(x,v) is referred to hereafter as xw. The
negative sign is required because MI has larger values for better matches, and
we wish to maintain the convention of referring to function minimisation.

2.2 Histogram Estimation

A measure of the information mutual to fT and the corresponding region in fR is
obtained from the joint intensity histogram h(r, t,v) of the two images. Here r ∈
[0; rmx] ∈ Z and t ∈ [0; tmx] ∈ Z index the intensities that fR and fT respectively
consist of (Z is the set of integers). The histogram may be normalised to give an
approximation of the probability distribution function (PDF) of intensities, i.e.
p(r, t,v) = 1

Nx
h(r, t,v), where Nx is the number of samples in the histogram.

MI is defined here in terms of p rather than h for clarity, and the dependence
on v is explicitly indicated:

I(v) =
∑
r,t

prt(r, t,v) log
(
prt(r, t,v)
pr(r,v)pt(t)

)
(1)

A more common form of (1) has three entropy terms: I = Hr +Ht−Hrt. These
are exactly the same and the more condensed form above is used for conciseness.

The PDF’s pr and pt are easily obtained from the joint PDF, since pr =∑
t prt and pt =

∑
r prt. Note the treatment of r and t as discrete variables (or
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indices), indicating the finite bin-size of the histogram h from which p is derived.
MI is not invariant to the bin-size ∆i, which limits its bounds, as does the num-
ber of sample points: I ≤ log(min( rmx

∆i ,
tmx

∆i , kmxNx)), where kmx indicates the
number of histogram bins populated per sample. The joint histogram is defined
in terms of two window functions ψ(), which act as membership functions:

h(r, t,v) =
∑
x

ψ

(
r − fR(xw)

∆i

)
ψ

(
t− fT (x)

∆i

)
(2)

Where each sample taken from fR and fT is added to one histogram bin:

ψ(ε) = β−0 (ε) =
{

1 0 < ε < 1
0 otherwise (3)

This kind of sampling is referred to as standard sampling. The β() function in
the above equation comes from the B-spline family of functions, and a brief
digression describing these is now made.

2.3 B-splines

B-spline functions are a family of functions with several useful properties, a
brief description of which is given here. A more detailed description of B-spline
functions and their numerical computation is given by Unser et al.in [23]. Firstly,
the sum of a B-spline function for all integral distances from a real value is one,
i.e. it has a portion of unity. This means that no renormalisation is required
when histogramming. Secondly, the integral of a B-spline is one. Thirdly, order
n B-splines are the convolution of any set of B-splines whose order sums to n.
Lastly, the derivative of an order n B-spline is a function of two order n − 1
B-splines. These properties are summarised below.∑

a∈Z

β(ε+ a) = 1 ε ∈ R∫
ε∈R

β(ε) = 1

βn(ε) = βn−1(ε) ∗ β0(ε)
∂βn
∂ε

= βn−1(ε+
1
2
)− βn−1(ε−

1
2
)

The 0th order B-spline β0 is simply a top hat function, centred about 0, i.e.
β0(ε) = 1 when |ε| ≤ 1

2 and 0 otherwise. We also define offset top-hat functions
β−0 = β0(ε− 1

2 ) and β+
0 = β0(ε+ 1

2 ).

2.4 Different Sampling Methods

For Standard Sampling (STD) we can see from (2) and (3) that for each of the
Nx lattice points in fT , each histogram in hrt is incremented once. For reference
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the windowing function for STD is restated here in (4a), where f is an image,
i is an intensity index, ∆i is the bin size of the histogram, and x is a sample
point. An explanation of each functions below follows.

ψstd(i− f(x)) = β−0 (i− f(x)
∆i

) (4a)

ψ(n)
pve(i) =

∑
y∈Z2

βn(x− y)β−0 (i− f(y)
∆i

) (4b)

ψ(n)
ppz(i) = β−n (i− floor(f(x))

∆i
) (4c)

ψ
(n)
ipz (i) = β−n (i− f(x)

∆i
) (4d)

Partial Volume Estimation (PVE), introduced by Maes as Partial Volume
Interpolation in [10], aimed at making shifts between histogram bins smooth
as the parameters of v varied. PVE has the added advantage of not adding
any (possibly false) information other than the given data. The method involves
populating the intensity histogram bins of the four lattice points surrounding
each sample by a weighted amount. The weighting is proportional to the area of
overlap between the square regions around the sample and lattice points. This
is equivalent to integrating the region of each intensity for nearest neighbour
interpolation: i.e. h(i) =

∫
x
β−0 (i−fnn(x)). Chen and Varshney extended partial

volume interpolation to generalised Partial Volume Estimation (PVE) by using
higher order B-splines to weight a larger region of pixels [21]. Although PVE
has been treated as alternative interpolation methods, strictly speaking they are
alternative sampling methods. Hence the term “PVE” being used.

The windowing function for PVE is given in (4b), where y are the coordinates
of all lattice points in the image and n indicates the order in the sampling family.
Note that (4b) collapses to (4a) with nearest neighbour interpolation for n = 0,
since in that case only one valid value for y exists, that of the lattice point
nearest to x. For notational clarity, the first window function in (4b) is shown
to take a vector as an input. This is simply a product of two window functions,
one for each dimension of the vector, i.e. βn(x) =

∏K
k=1 βn(xk), where K is the

number of components in the vector x.
The advantages of PVE are that it does not add information not explicitly

given in the image, it is relatively inexpensive and has a smooth surface. The
disadvantage is that for orders below 2, PVE is only C1 smooth with cusps
at points of v where grid-alignment between ft and fr occur. A strong bias
towards these cusped positions exists. Also, a nearest neighbour model of the
world ignores much of the information implicit to the image.

Two types of Parzen windowing routines exist: Post-Parzen Windowing (PPZ)
and In-Parzen windowing (IPZ). In PPZ, the histogram is constructed before
convolution with a Parzen window. In IPZ, each sample is convolved during his-
togram construction. This takes advantage of the information sample’s intensity
value before the information loss implicit to discretisation occurs.
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The window equation for post-Parzen windowing is given in (4c), where
floor(f(x)) indicates reduction to the first integer value below f(x). (4c) shows
an nth order B-spline window function. In fact any window function may be
used. B-splines were used here since they are inexpensive and their derivatives
are easily obtainable [23]. The advantages of post-Parzen windowing are that it
improves on the basic sampling method using a computationally cheap operation:
O(i2maxw

2). However, there is information loss due to blurring of the histogram,
and the function is not necessarily smooth. In-Parzen windowing differs slightly,
in that it lacks the implicit discretisation of intensity values as shown in (4d).
As a result, In-Parzen windowing has a guaranteed Cn−1 smooth cost function
surface and a more accurate histogram. Again some information loss occurs due
to blurring of the histogram, and the method is comparatively expensive. Both
(4c) and (4d) collapse to (4a) for n = 0.

3 Jacobians and Hessians

The Jacobian of MI may now be found by applying the product and chain rules
to (1) and collecting the terms:

∂I

∂v
=

∑
r,t

∂prt
∂v

(
1 + log

(
prt
pr

)
− log(pt)

)
− prt
pr

∂pr
∂v

A more general definition of the above equation has been given by Theve-
naz [1], where a non-constant Nx was accounted for. However their approach
constructs the problem such that Nx is constant anyway, and making this as-
sumption early on simplifies the following derivation considerably.

The summations in the fourth (last) term may be split to give
∑
r

1
pr
p′r ·∑

t prt, since pr and p′r are not dependent on t. However
∑
t prt = pr since it is

a sum of a joint histogram. So the fourth term becomes
∑
r p

′
r, because p−1

r and
pr cancel. However, because Nx is constant and p is based on a histogram,

∑
p

always equals one, and therefore
∑
p′ always equals zero, so this term disappears.

Also if the third term (
∑
r,t p

′
rt log(pt)) is separated out, the summations may

again be split to get
∑
t log(pt)

∑
r p

′
rt. But

∑
r p

′
rt = p′t, which is zero as the

template is constant. So the third term also disappears.
The remaining two terms are combined and the derivative of MI becomes:

∂I

∂v
=

∑
r,t

∂prt
∂v

log
(
eprt
pr

)
(5)

3.1 Derivative of histogram function

The derivative of the histogram function may be obtained using the chain rule:

∂prt
∂v

=
∂

∂v
1
Nx

∑
x

ψ[t− fT (x)
∆i

]ψ[r − fR(xw)
∆i

] =
1
Nx

∑
x

ψT [t− fT (x)
∆i

]
∂

∂v
ψR[r − fR(xw)

∆i
]

=
1

Nx∆i

∑
x

ψT
∂ψR
∂ε

∂ε

∂fR

∂fR
∂w

∂w
∂v

= − 1
Nx∆i

∑
x

ψT
∂ψR
∂ε

∇fR
∂w
∂v
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The derivatives for the reference window functions differ for each sampling
method. Here the intensities are indicated by r since only derivative for the
reference image is required:

∂ψstd
∂ε

(r) = δ(r − fR(xw)
∆i

)− δ(r − 1− fR(xw)
∆i

) (6a)

∂ψ
(n)
pve

∂ε
(r) =

∑
y

(
β+
n−1(xw − y)− β−n−1(xw − y)

)
β−0 (r − fR(y)

∆i
) (6b)

∂ψ
(n)
ppz

∂ε
(r) =

(
β+
n−1(r −

fR(xw)
∆i

)− β−n−1(r −
fR(xw)
∆i

)
) ∑
m∈Z

δ(r −m) (6c)

∂ψ
(n)
ipz

∂ε
(r) =

(
β+
n−1(r −

fR(xw)
∆i

)− β−n−1(r −
fR(xw)
∆i

)
)

(6d)

It should also be noted that for PVE the ∇f factor should be removed, since
ψpve does not depend on fR(xw), but on xw. Apart from this difference, note
how similar the structure of all these equations are, showing their relationship.
Note also how the δ functions in ∂εψstd and ∂εψppz imply that the gradient is
constant, except at certain v positions on the cost function surface where a step
change occurs. This exactly mirrors reality.

In these cases (STD and PPZ) the derivative function surface is a zero plane
populated by impulse functions, the analytic derivative supplies almost no infor-
mation to the optimisation function and convergence will fail. Hence it is better
to use the approximate derivative ∂ψR

∂ε ≈ ∆ψR

∆ε :

∂ψstd
∂ε

(r) ≈ β−0 (r − fR(xw)
∆i

)− β−0 (r − 1− fR(xw)
∆i

) (7a)

∂ψ
(n)
ppz

∂ε
(r) ≈

(
β+
n−1(r −

fR(xw)
∆i

)− β−n−1(r −
fR(xw)
∆i

)
) ∑
m∈Z

β−0 (r−m)−β−0 (r−m−1)

(7b)

3.2 MI Hessian

The MI Hessian is approximated to:

∂I2

∂v1∂v2
=

∑
r,t

(
∂prt
∂v1

∂prt
∂v2

1
prt

− ∂pr
∂v2

∂prt
∂v1

1
pr

+
∂p2

rt

∂v1∂v2
log

(
eprt
pr

))
=

∑
r,t

(
∂prt
∂v1

∂prt
∂v2

(
1
prt

− 1
pr

))
(8)

because in the second term
∑
t
∂prt

∂v2

∂pr

∂v1
1
pr

=
∑
t
∂prt

∂v2

∂prt

∂v1
1
pr

. The third term
is approximately zero near the minimum. Its use only improves the speed of
optimisation slightly at great computational expense.
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3.3 Warp functions, their Jacobians and Hessians

Here we consider four types of warp functions w(x,v): translation, Euclidean,
similarity and affine. The equations for these warps are:

wtx(x,v) =
(
x+ v1
y + v2

)
weu(x,v) =

(
+x cos v3 + y sin v3 + v1
−x sin v3 + y cos v3 + v2

)

waf (x,v) =
(
xv1 + yv3 + v5
xv2 + yv4 + v6

)
wsi(x,v) =

(
+xv4 cos(v3) + yv4 sin(v3) + v1
−xv4 sin(v3) + yv4 cos(v3) + v2

)
The Jacobians of each of these warps are:

∇f ∂wtx

∂v
=

(
fx fy

)
∇f ∂weu

∂v
=

(
fx fy (fx fy)R′(x y)T

)
∇f ∂wsi

∂v
=

(
fx fy (fx fy)v4R′(x y)T (fx fy)R(x y)T

)
∇f ∂waf

∂v
=

(
fxx fyx fxy fyy fx fy

)
where R is the standard rotation matrix. The Hessians for these warps are trivial
to derive and are not shown here. Hereafter, warps are sometimes referred to by
their Degrees of Freedom (DoF): e.g. 3DoF warp instead of Euclidean warp.

4 Analysis

4.1 Computational Costs

The computational costs of sampling methods are important when selecting
which one to use for a particular application. Also, MI is sometimes regarded
as an expensive option compared to say sum of square differences (SSD) or
normalised correlation. This subsection shows that this is not necessarily true.

The SSD operation is O(Nx): each operation requiring a warp, a template
pixel access and multiple reference pixel accesses for interpolation. For MI, the
only additional cost is to access each histogram bin after constructing it, i.e. MI
is O(Nx+tmxrmx). More sophisticated MI methods require multiple bin updates
per sample, which can also increase computational cost. Theoretical estimates
of costs for each function are given in Table 4.1.

The costs of calculating the Jacobian would appear to be substantially higher,
since one histogram per warp parameter is required. However, there is some
redundancy between the gradient and function evaluations, so this increase is
not substantial. Likewise for the Hessian.

Some empirical tests were performed to verify the predictions of computa-
tional cost, the results of which are given in Fig. 1. As expected there is some
overhead to the functions, which is indicated by an initial decrease in the cost
per sample versus the number of samples before a steady state is reached.
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Table 1. Computational complexity of various similarity methods.

Function Order Interp. Reads of Writes Ancillary
Method ft+fr updates

SSD n/a NNI (Nearest Neighbour) Nx(1+1) Nx

SSD n/a BLI (Bi-Linear) Nx(1+4) Nx

SSD n/a BCI (Bi-Cubic) Nx(1+16) Nx

MI(std) n/a NNI Nx(1+1) Nx tmxrmx

MI(std) n/a BLI Nx(1+4) Nx tmxrmx

MI(std) n/a BCI Nx(1+16) Nx tmxrmx

MI(pve) 1st n/a Nx(1+4) 4Nx tmxrmx

MI(pve) 2nd n/a Nx(1+9) 9Nx tmxrmx

MI(pve) 3rd n/a Nx(1+16) 16Nx tmxrmx

MI(ipz) 1st BLI,BCI Nx(1+(4,16)) 4Nx tmxrmx

MI(ipz) 2nd BLI,BCI Nx(1+(4,16)) 9Nx tmxrmx

MI(ipz) 3rd BLI,BCI Nx(1+(4,16)) 16Nx tmxrmx

MI(ppz) 1st BLI,BCI Nx(1+(4,16)) Nx 4tmxrmx

MI(ppz) 2nd BLI,BCI Nx(1+(4,16)) Nx 9tmxrmx

MI(ppz) 3rd BLI,BCI Nx(1+(4,16)) Nx 16tmxrmx

4.2 Artefacts

Although artefacts in the cost function surface of MI are beyond the scope of
this paper, a brief mention is necessary since they can affect convergence of an
optimisation algorithm to the correct minimum. The use of interpolation results
in the appearance of artefacts in the cost function surface. Artefacts occur for
all similarity functions, not just MI and there are two types of artefact, named
for their appearance: hiss and periodic glitches.

Hiss appears as random high frequency shifts in the cost function surface.
These random shifts are generally small compared to the overall value at a each
position. The cause of hiss is non-linearities in the function, which cause discrete
shifts as the warp parameters v vary. This behaviour is essentially random, since
it depends on the numerous local shifts in value for each sample point.

Glitches are a periodic pattern in the cost function surface. They have a
larger amplitude than hiss, although this is generally still smaller than the sig-
nal value. Glitches also have the more insidious effect of shifting global maxima
to new positions or bias. Glitches are generally caused by a combination of syn-
chronisation of sample positions in the reference and template image combined
with biases caused by local correlations in the two sets of data. An example of
this is the cusped pattern seen for first order PVE.

Of the MI families discussed, STD and PPZ are particularly prone to hiss
due to their implicit non-linear floor functions. This is less of a problem than it
might seem, since optimisation functions sample the cost function surface quite
sparsely and the local trends in surface are not strongly affected by hiss. STD
and first order PVE are somewhat prone to bias due to glitches [2], which can be
more serious. The effect of glitches is seen in some results, but further discussion
is not possible here due to space constraints.
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0 1 2 3 4

SSD NNI
SSD BLI
SSD BCI
NC NNI
NC BLI
NC BCI
I_{std} NNI
I_{std} BLI
I_{std} BCI
I_{pve} NNI
I_{pve} BLI
I_{pve} BLI
I_{pve} BCI
I_{ipz} NNI
I_{ipz} BLI
I_{ipz} BLI
I_{ipz} BCI

(a) Cost to evaluate Measure (µs / pixel)
0 1 2 3 4

SSD NNI
SSD BLI
SSD BCI
NC NNI
NC BLI
NC BCI
I_{std} NNI
I_{std} BLI
I_{std} BCI
I_{pve} NNI
I_{pve} BLI
I_{pve} BLI
I_{pve} BCI
I_{ipz} NNI
I_{ipz} BLI
I_{ipz} BLI
I_{ipz} BCI

(b) Cost to evaluate Measure and Jacobian (µs / pixel)

Fig. 1. Computational cost when evaluating (a) similarity functions and (b) their Ja-
cobians as well. Efficiency increases with template size, reaching the minimum shown.

5 Experiments

A series of experiments was performed to evaluate the ability of the MI families
presented here to converge to a ground truth position. To provide a baseline
measurement the same set of experiments was performed for sum of squared
differences (SSD) and normalised correlation (NC). In all 13 functions were com-
pared: SSD at 3 sample rates, NC, Istd at 3 sample rates, I(o)

pve (o=1,2,3), I(o)
ipz

(o=1,2,3), where o denotes B-spline order. In all cases bi-linear interpolation was
used. Similar results were obtained for bi-cubic interpolation, so these results are
not shown. In general 1 sample/pixel was made. For SSD and Istd rates of 2 and
3 samples per pixel were tested as well to see if an increase to the equivalent
computational expense of PVE and IPZ would give comparable results. PPZ was
not tested because at the time of writing it was not yet implemented.

Eight reference and template image pairs were used to cover a variety of ap-
plications and not bias towards any particular method. Data-set 1 (Brain) used
two simulated images of the same brain obtained using two different processes.
The template was fairly large (71x89) and the intensities have different underly-
ing functions. In addition the reference image was rotated by 5◦ and up-scaled
by 3%. Similarity warps were allowed (i.e. 4 degrees of freedom DoF). Data-set
2 (Satellite) is an overhead image of an airport obtained from Google-earthTM .
The template was extracted directly from the image and is 41x41 pixels. Affine
warps were allowed (i.e. 6DoF). Data-set 3 (Hyena) was taken from a noisy
infra-red image of a Hyena. The image was shrunk by 75% without smoothing.
The template was offset such that the ground truth is 0.25 off grid alignment.
The template was also 41x41 pixels. Euclidean Warps were used for registra-
tion (3Dof). Data-set 4 (Walk) was extracted from a video supplied by the
CAVIAR project (http://homepages.inf.ed.ac.uk/rbf/CAVIAR/) of Fisher
et al.. There are 15 frames between the image and template, and the relation-
ship between intensities is highly non-linear. The template was 19x37 pixels in
size and 2DoF were used.
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Fig. 2. The eight data sets used for testing the similarity metrics (numbered left to
right top to bottom), with corresponding templates in the upper left corners.

Data set 5 (Rhino) a baby rhinoceros is extracted 10 frames before the
frame it is registered to. The baby rhino is occluded in many places by grass
in the foreground, and the sequence is particularly noisy as it was taken at low
resolution and highly compressed. The template was 17x33 pixels and 2DoF
were used. Data-set 6 (Hand) was of a hand that changes in shape and in
intensity over a large region of the template. The template was 33x33 pixels
in size and 2DoF were used. Data-set 7 (Claire) was extracted from a clean
motion sequence of a newscaster. The template was 11x11 and extracted from
the preceeding frame. The 5% Gaussian noise was added to the image. 2DoF were
used. Data-set 8 (Sign) was extracted from a sequence of a lady communicating
using sign. Six frames separated the image and template and the (her) right eye
was used as a feature. This data-set is notable for the large amount of occlusion.
The template was 17x17 pixels in size and 2DoF were used.

These images were chosen for the large amounts of noise (Claire, Hyena), large
occlusions (Sign, Rhino), nearby distractors (Satellite), and highly nonlinear
relationships in intensity or structural variations (Walk, Brain, Hand). The data
sets used are shown in Fig. 2.

Table 5 shows the mean error (µ), standard deviation (σ), and number of con-
vergences to within 10% of the lower template dimension (N) for each data set
and each similarity metric. In these tests, only the (x, y) positions were consid-
ered, since the other warp parameters are small compared to the (x, y) position.
For the test-set, the ground truth was obtained using a brute force search of the
cost function surface to an accuracy of 0.01 pixels. One thousand positions were
randomly chosen uniformly from a region surrounding the ground truth. The re-
gion on each side of the ground truth was 30% of the minor template dimension,
and where respectively relevant for rotation, scale and affine parameters: 15◦,
10% and 0.1. Due to space constraints, only results using Levenberg-Marquardt
are shown, but the other optimisation methods gave comparable results.

Since MI makes no assumptions about the template and reference intensities
we expected it to perform somewhat better than SSD for many of the data-sets.
Particularly in the Hyena, Claire and Hand data-sets, SSD proved remarkably
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Table 2. Convergence to best match for 8 data sets and 13 similarity measures.

Measure SSD SSD SSD NC Istd Istd Istd I
(1)
pve I

(2)
pve I

(3)
pve I

(1)
ipz I

(2)
ipz I

(3)
ipz

Sample Rate 1 0.5 0.33 1 1 0.5 0.33 1 1 1 1 1 1

1 Brain µ 14.43 13.21 12.81 n/a 15.08 14.91 14.60 14.82 14.36 14.08 15.02 14.89 14.79
σ 5.67 5.52 5.41 n/a 5.89 6.18 6.57 6.27 6.78 6.99 6.02 6.18 6.29
N 0 0 0 0 7 15 26 22 42 49 13 16 21

2 Satellite µ 13.83 8.73 7.41 9.16 8.56 6.71 5.91 6.87 5.11 4.78 7.69 6.70 6.28
σ 162.48 28.52 15.16 3.51 4.35 5.65 6.04 5.56 6.12 6.23 5.12 5.69 5.90
N 211 279 307 008 132 358 462 355 566 607 249 362 413

3 Hyena µ 8.69 7.80 7.45 9.17 9.14 9.06 8.87 8.92 8.47 8.12 9.13 9.07 9.02
σ 3.91 4.27 4.37 3.52 3.54 3.59 3.68 3.73 4.03 4.16 3.54 3.56 3.58
N 57 119 146 8 10 11 16 25 53 68 8 8 15

4 Walk µ 4.22 4.37 4.03 3.79 3.77 3.71 3.50 3.73 2.98 2.78 3.72 3.63 3.59
σ 12.12 3.29 2.74 1.44 1.45 1.50 1.66 1.53 2.54 2.79 1.49 1.54 1.59
N 94 146 129 37 41 56 114 37 379 450 50 66 69

5 Rhino µ 2.49 2.40 2.22 3.77 2.93 1.84 0.81 2.80 0.62 0.60 2.56 2.39 2.32
σ 1.42 1.32 1.14 1.37 1.73 1.74 1.42 1.84 1.38 1.42 1.56 1.60 1.70
N 247 195 185 29 242 514 890 347 960 972 275 300 335

6 Hand µ 7.43 6.71 6.14 7.76 7.65 7.22 7.15 7.41 6.86 6.39 7.41 7.19 7.07
σ 3.25 4.34 4.82 2.75 2.91 3.60 3.88 3.35 4.79 5.06 3.25 3.63 3.72
N 27 226 304 7 14 86 85 40 324 396 58 95 104

7 Claire µ 2.17 2.10 1.74 2.33 2.26 2.06 2.03 2.31 2.34 2.41 2.17 2.11 2.03
σ 0.93 0.91 1.01 0.85 0.96 1.28 1.49 1.04 2.08 2.13 1.09 1.21 1.27
N 135 169 341 75 121 303 368 154 470 461 204 249 308

8 Sign µ 7.29 7.46 7.41 3.76 4.37 5.02 5.08 4.14 5.60 5.53 4.92 5.30 5.52
σ 0.66 0.70 0.65 1.43 1.44 1.57 1.50 1.47 1.75 1.75 1.51 1.56 1.60
N 0 0 0 33 16 5 4 20 0 0 6 4 1

tolerant of noise and structural changes. Predictably, increasing the sampling
rate only improved the results where there was high level detail or large amounts
of noise. Normalised Correlation was generally the worst performer, except in the
Sign and Walk sequences, where its tolerance of non-linear intensity relationships
gave it an edge over SSD.

Istd performed better than SSD in about half the cases: where intensity
relationships were highly non-linear. This could be due to a generally narrower
basin of convergence than SSD and large amounts of hiss in the function surface
of MI. Increasing the sampling rate usually improved performance substantially,
since this decreases the amount of hiss in the surface. The exception was the Sign
data-set, where the large occlusion created a large basin of convergence nearby.

Overall Ipve was the best performer when the order was above 2. Order
1 Ipve does not perform well due to the large number of glitches which often
create local minima at points of grid alignment. This good performance was
particularly noticeable in the Satellite, Walk, Hand and Rhino data sets, which
either had much high frequency information or non-linear intensity relationships.
This is probably due to the smooth function surface and wide but steep basin
of convergence that PVE exhibits.
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Surprisingly in most cases Iipz, only outperformed Istd when the sample-rate
was 1/pixel. Considering that sampling at 2 samples/pixel is equivalent in cost
to first order IPZ, computational cycles would generally be better spent on using
Ipve at higher sample rates for Istd.

In summary, in cases where the images have few occlusions, and lighting
conditions do not change rapidly, SSD probably gives the best results per com-
putational unit. SSD also proved surprisingly resilient to noise. Where lighting
conditions vary and occlusions occur either Ipve (for n ≥ 2) or Istd would be the
methods of choice. A choice between these is difficult since the a higher sampling
rate is necessary for Istd to work as well as Ipve, so the computational saving is
not great. It is possible that Istd may outperform Ipve where the scales of the
image and template are very different. This is left for future work.

6 Conclusion

This paper has introduced a single framework for the four main families of MI,
namely: Standard sampling, Partial Volume Estimation, In-Parzen Windowing
and Post Parzen Windowing. The analytic Jacobians and Hessians of these meth-
ods were also derived. A computational cost analysis was performed, which shows
that STD MI is not much more expensive to compute than Sum of Squared Dif-
ferences. The implementation was used to test the convergence of various image
metrics using the Levenberg-Marquardt Method on a diverse array of images.

Despite its simplicity, SSD is the method of choice where the image is not
occluded and the intensities of the template and reference image are linearly re-
lated. Where this does not occur Ipve (for n ≤ 2) or Istd would be recommended.

Similarity functions (with Jacobians and Hessians) have been implemented in
C++ for SSD, normalised correlation, and Mutual Information using standard
sampling, partial volume estimation and in-Parzen windowing. The binaries and
scripts used for testing are available online at the authors’URL.
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