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EXTENDING THE KNOPS-STUART-TAHERI TECHNIQUE TO

C1 WEAK LOCAL MINIMIZERS IN NONLINEAR ELASTICITY

J. J. BEVAN

(Communicated by Matthew J. Gursky)

Abstract. We prove that any C1 weak local minimizer of a certain class of
elastic stored-energy functionals I(u) =

∫
Ω f(∇u) dx subject to a linear bound-

ary displacement u0(x) = ξx on a star-shaped domain Ω with C1 boundary is
necessarily affine provided f is strictly quasiconvex at ξ. This is done without
assuming that the local minimizer satisfies the Euler-Lagrange equations, and
therefore extends in a certain sense the results of Knops and Stuart, and those
of Taheri, to a class of functionals whose integrands take the value +∞ in an
essential way.

1. Introduction

This short paper advances arguments to be found in [22] concerning the relative
energies of C1 weak local minimizers of energy functionals of the form

(1.1) I(u) =

∫
Ω

f(∇u(x)) dx.

Here, Ω ⊂ R
n is a star-shaped domain with a C1 boundary, u : Ω → R

m belongs to
an appropriate Sobolev space, and f : Rn×m → R∪{∞} belongs to a particular class
of quasiconvex functions that are sufficiently smooth where finite. Previous works
on this topic, most notably [13] and [22], established the uniqueness of sufficiently
smooth solutions of the Euler-Lagrange equations associated with the functional
(1.1) and subject to a linear boundary displacement. Formally, these are solutions
of the system

(1.2) divDf(∇u) = 0,

where as usual Df(A) is the m× n matrix whose (i, j) entry is ∂f(A)
∂Aij

.

The technique referred to in the title, first used by Knops and Stuart in nonlinear
elastostatics [13] and later developed by Taheri in [22], can be distilled into two
steps, the ultimate goal of which is to compare two energies I(u) and I(v), say,
where u and v agree on ∂Ω and at least one of them is a stationary point in some
appropriate sense. The first step is to write the energies as integrals over the
boundary ∂Ω. The second hinges on the observation that if u and v agree on ∂Ω
and are sufficiently smooth, then ∇u(x)−∇v(x) is a matrix of rank one provided
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x ∈ ∂Ω. Thus one can use rank-one convexity of f to order
∫
∂Ω

f(∇u(x)) and∫
∂Ω

f(∇v(x)), and hence, by step 1, to order I(u) and I(v). (See (2.1) and (1.5)
below for the definition of rank-one convexity and quasiconvexity, respectively.)

In the intervening period the results contained in [13] applying to nonlinear elas-
ticity were rederived by Sivaloganathan [21] using an interesting invariant integral
method. Both [21] and [13] rely crucially on the smoothness of the solution to
(1.2) to circumvent potential difficulties associated with the so-called stored-energy
functions commonly used in nonlinear elasticity theory. In the case m = n = 3, for
example, the corresponding f are polyconvex and take the form

(1.3) f(A) = g(A, cof A, detA),

where g is convex on R
3×3
+ × R

3×3
+ × R+, and f(A) = +∞ if detA ≤ 0. This class

of functions was introduced and subsequently developed by Ball in [1], [2], and
studied by others, including but not limited to [20], [6], [7], and [18]. See [3] for an
overview.

The results of this paper apply to stored-energy functions for which additional
regularity results, such as those of [6], are available. Introduced by Ball in [1], these
f take the special form

(1.4) f(A) = F (A) + h(detA),

where h : R+ → R ∪ {∞} is convex and satisfies h(s) = +∞ for all s ≤ 0, and
where F : Rn×n → R is C1, quasiconvex and satisfies for some q ≥ n and all n× n
matrices A the inequality

c|A|q ≤ F (A) ≤ C(1 + |A|q)
with constants c, C > 0. We recall that a function F : Rm×n → R is quasiconvex if

(1.5)

∫
Ω

f(A+∇ϕ) dx ≥
∫
Ω

f(A) dx

for all m×n matrices A and all Lipschitz functions ϕ vanishing on ∂Ω, and strictly
quasiconvex if (1.5) holds with strict inequality whenever ϕ 
= 0. See [9] for further
details.

Taheri’s approach [22] applies to C1 integrands f satisfying a p-growth condition

(1.6) |f(A)| ≤ c(1 + |A|p),
where 1 ≤ p < ∞, c is a constant and A is anym×n real matrix. Although condition
(1.6) is clearly not satisfied by integrands such as (1.4), [22] nevertheless contains
an innovation which can be exploited in the context of stored-energy functions.
Taheri observes that the conservation law [13, Proposition 2.1] relied on by Knops
and Stuart can be replaced by a weaker conservation law, the so-called energy-
momentum equations:

(1.7) div (f(∇u)1−∇uTDf(∇u)) = 0.

Here, f(∇u)1−∇uTDf(∇u) is Eshelby’s energy-momentum tensor; it is classically
derived by applying Noether’s theorem to the variational symmetry x �→ x + a,
a ∈ R

n. It is well-known that (1.7) can be derived rigorously not only for weak
local minimizers of functionals whose integrands f satisfy (1.6) but also for stored-
energy functions such as (1.4). See [4] or [6] for details.

The Euler-Lagrange equation (1.2), however, may not automatically hold for
general forms of the stored energy including functions of the form (1.4), even while
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(1.7) holds. See [8] for an example; see also [12], [19] and [11]. Indeed, it forms
part of the hypotheses of the main results in [13], [21] and [22]. But in this paper
we note that the full Euler-Lagrange equations are not needed in order to apply
Taheri’s argument [22]. In fact, it is sufficient that the weak local minimizer is only
a ‘subsolution’ of the Euler-Lagrange equations in a small neighbourhood of the
boundary. This point is clarified in Section 3.2 below, but to give an initial idea
let us suppose for now that u is a smooth solution of the Euler-Lagrange equation
(1.2). A straightforward approximation argument can be used to check that∫

Ω

Df(∇u) · ∇u dx =

∫
∂Ω

Df(∇u(y)) · u(y)⊗ ν(y) dHn−1(y),

where ν is the outward pointing normal to ∂Ω. By ‘subsolution’ we mean, roughly
speaking, that

(1.8)

∫
Ω

Df(∇u) · ∇u dx ≤
∫
∂Ω

Df(∇u(y)) · u(y)⊗ ν(y) dHn−1(y).

We therefore introduce in Section 3 a functional K(u) with the property that
K(u) < ∞ implies that a suitable version of (1.8) holds. In particular, we do
not assume that u is a solution of the Euler-Lagrange system (1.2). K(u) is effec-
tively a limiting measure of the ‘twist’ of the function u near the boundary of the
domain: we return to this point below. To conclude the summary, inequality (1.8)
then allows us to compare the bulk energies

I(uhom) ≥ I(u),

where uhom is the one-homogeneous extension of u|∂Ω and u is the C1 weak local
minimizer. For less regular u a weaker statement can be deduced; its limitations
can most profitably be viewed in the context of [14].

The paper is organized as follows. In Section 3 we motivate and discuss the
functional K referred to above. The main result of Section 3 is Lemma 3.3, yielding
an inequality such as (1.8) subsequently used in Section 4 to compare the energies
I(uhom) and I(u). The results apply to general boundary data up to the end of
Section 4.1; in Section 4.2 the boundary data is assumed to be linear and admissible
in the sense outlined in Section 2 below. The paper concludes with a brief discussion
of how these methods might be adapted to weak local minimizers that are not
necessarily C1.

2. Notation and preliminaries

We denote the m × n real matrices by R
m×n, and unless stated otherwise we

sum over repeated indices. We denote those n × n real matrices with positive
determinant by R

n×n
+ , and the identity matrix by 1. Throughout B is the unit

ball in R
2, and Bt the ball centred at 0 with radius t. We say that a function

f : Rm×n → R ∪ {∞} is rank-one convex if

(2.1) f(λξ1 + (1− λ)ξ2) ≤ λf(ξ1) + (1− λ)f(ξ2)

for all ξ1, ξ2 ∈ R
m×n such that rank (ξ1 − ξ2) = 1 and all λ ∈ [0, 1]. When f is

everywhere real-valued this condition is implied by quasiconvexity; for extended
real-valued f the implication need not hold. See [9, Chapter 5] for a proof of the
former, and [5] for an example of the latter.

Other standard notation includes || · ||k,p;Ω for the norm on the Sobolev space
W k,p(Ω), || · ||p;Ω for the norm on Lp(Ω), and ⇀ to represent weak convergence in
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both of these spaces. Hk represents k-dimensional Hausdorff measure. The tensor
product of two vectors a ∈ R

m and b ∈ R
n is written a⊗ b; it is the m× n matrix

whose (i, j) entry is aibj . The inner product of two matrices X,Y ∈ R
m×n is

X · Y = tr (XTY ). This obviously holds for vectors too.
The functional I will henceforth be

I(u) =

∫
Ω

f(∇u) dx,

where f is defined in (1.4). In addition, we assume that there are constants t0,
s > 0, c2 > c1 > 0 such that

(2.2) c1t
−s−j ≤ (−1)j

djh(t)

dtj
≤ c2t

−s−j

for j = 0, 1, 2 and all t ∈ (0, t0). This assumption allows us to apply the results of
[6] later in the paper.

Since the set Ω is assumed to be star-shaped with a C1 boundary we can write

Ω = {x ∈ R
n : |x| < d(θ(x))},

where θ(x) = x
|x| for nonzero x, and d : Sn−1 → R is C1. In this notation the

normal N(θ(x)) to ∂Ω at x ∈ ∂Ω is

N(θ(x)) =
1

α(θ)

(
θ − (1− θ ⊗ θ)

∇d

d

)
,

where α is chosen so that |N | = 1.
Let

Au0
= {v ∈ W 1,n(Ω,Rn) : I(v) < ∞, tr v = tru0},

where tru0 is the trace of a fixed function for which I(u0) < ∞.

Definition 2.1. We shall say that u ∈ Au0
is a weak local minimizer of I in Au0

if there exists δ > 0 such that any v ∈ Au0
satisfying ||v − u||1,∞;Ω ≤ δ necessarily

satisfies I(v) ≥ I(u).

3. Weak local minimizers with positive twist

near the boundary

It is clear from the definition of the functional I that any admissible function u
necessarily satisfies det∇u > 0 almost everywhere. Our strategy, by analogy with
[22], will be to compare I(uhom) with I(u), where u is a C1 weak local minimizer
of I and uhom is the one-homogeneous extension of the restriction of u to ∂Ω. (See
below for details.) In particular, were det∇uhom > 0 to fail on a set of positive
Lebesgue measure, then the desired inequality

I(uhom) ≥ I(u)

would be trivial. Using the functional K described below we are able to restrict
attention to those admissible u for which det∇uhom > 0 holds Hn−1-almost every-
where on ∂Ω; properties of one-homogeneous functions then imply that det∇uhom >
0 holds Ln-almost everywhere in Ω.
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3.1. One-homogeneous extensions and the functional K. Let u ∈ Au0
, let

t ∈ (0, 1] and define ut(x) = u(tθd(θ)) for x ∈ Ω such that |x| = td(θ(x)). Thus ut

is the restriction of u to the boundary of the set

Ωt = {x ∈ Ω : |x| < td(θ)}.
We define the one-homogeneous extension uhom

t of ut by

uhom
t (x) =

|x|
td(θ)

u(tθd(θ))

for each x ∈ Ω. Then ∇ut(x) exists for almost every x ∈ Ωt, and in this case it
follows that

∇uhom
t (x) = ∇u(tθd(θ)) +

(
u(tθd(θ))

td(θ)
−∇u(tθd(θ))θ

)
⊗ αN.

Hence

(3.1) det∇uhom(x) = cof∇u(θd(θ)) ·
(
u(tθd(θ))⊗ αN

td(θ)

)
.

Since det∇hom
t clearly depends only on θ(x), it follows that det∇uhom

t > 0 Ln-
almost everywhere if and only if

(3.2) cof∇u(tθd(θ)) ·
(
u(tθd(θ))⊗ αN

td(θ)

)
> 0 Hn−1-a.e.

Remark 3.1. When Ω is the unit ball B in R
2 and when u is sufficiently smooth,

condition (3.2) with t = 1 is equivalent to the condition that uhom(∂B) is the bound-
ary of a star-shaped region. The definition of uhom then implies that uhom(B) is
star-shaped. Alternatively, maps u with det∇uhom > 0 H1-a.e. may be interpreted
as having a ‘positive twist’ at the boundary ∂B. To see this we appeal to a result
of Littlewood [15, Theorem 253]. Indeed, setting

w(eiα) = u1(cosα, sinα) + iu2(cosα, sinα),

writing w = R(α)eiΦ(α), and using N(θ(x)) = θ(x) = x when x ∈ ∂B, d(θ(x)) = 1
for all x ∈ B, it follows from

cof∇u(θ) · (u(θ)⊗ θ) = Re (iw∂αw)

that

(3.3) det∇uhom = R2∂αΦ.

Now, [15, Theorem 253] states that the positivity H1-a.e. of

Re

(
zw′(z)

w(z)

)

with z = eiα is necessary and sufficient for

{w(eiα) : α ∈ [0, 2π]}
to be star-shaped. A short calculation shows that

Re

(
zw′(z)

w(z)

)
= ∂αΦ,

which has the same sign as the term R2∂αΦ appearing in (3.3). Therefore (3.2)
holds if and only if uhom(B) is star-shaped.
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Remark 3.2. Littlewood’s proof can be adapted to show that general two-dimen-
sional star-shaped domains for which (3.2) holds are such that uhom(Ω) is also
star-shaped. Whether the same is true for star-shaped Ω and sufficiently smooth
maps u : Ω → R

n, n ≥ 3, is an interesting question. We note that u may be
required to satisfy certain smoothness and invertibility hypotheses in order to infer
u(B) = uhom(B) from the fact that uhom = u on ∂B. See [16] for results of this
kind.

Now for smooth enough u the assumption of (3.2) at the boundary ∂Ω would
suffice for our purposes; but for less regular competitors we need to strengthen (3.2)
to hold ‘asymptotically close to ∂Ω’. To make this precise, let s ≥ 3 be an integer,
let t ∈ [ 12 , 1] and define

e
(s)
t (x) = χBt\Bt− 1

s

(x)
αN

d
.

Let σ : R+ → R ∪ {∞} be smooth, convex and such that

lim
y→0+,∞

σ(y) = +∞.

Definition 3.1. Let v ∈ Au0
and define

(3.4) K(v) = ess lim inf
t→1

lim inf
s→∞

∫
Ω

σ(cof∇v(x) · v(x)⊗ e
(s)
t (x)) dx.

3.2. Consequences of K(v) < ∞. The goal of this section is to derive a version
of inequality (1.8) for a sequence of sets Ωtn where tn → 1. Thus we aim to prove
that

(3.5)

∫
Ωtn

Df(∇u) · ∇u dx ≤
∫
∂Ωtn

Df(∇u) · u⊗ αN

d
dHn−1

for a sequence tn → 1−. First we note that the weak energy-momentum equations
associated with the functional I still have a key role to play.

Proposition 3.1. Let u be a weak local minimizer of I in A. Then the weak
energy-momentum equations hold:

(3.6)

∫
Ω

(f(∇u)1−∇uTDf(∇u)) · ∇ϕdx = 0 ∀ϕ ∈ C∞
c (Ω;Rn).

If u is in addition C1(Ω), then

(3.7)
1

det∇u
∈ Lp(Ω′) ∀ p ∈ (1,∞)

and each Ω′ � Ω.

Proof. The energy-momentum equations are usually derived by considering so-
called inner variations of the form

uδ(x) := u(x+ δϕ(x)),

where ϕ is a fixed but arbitrary test function. Provided δ is sufficiently small, it is
easily checked that uδ is both admissible and W 1,∞-close to u. Consequently the
limit

lim
δ→0

I(uδ)− I(u)

δ
is zero whenever it exists. One can now follow [7, Theorem A.1] or [3, Theo-
rem 2.4(ii)] to deduce (3.6).
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Statement (3.7) follows by first noting that |∇u|q ∈ Lp(Ω) for all p ∈ (1,∞) and
each Ω′ � Ω whenever u ∈ C1(Ω) and then by applying [6, Lemma 2.4], which
states that

||(det∇u)−s||Lp(Ω′) ≤ C(1 + I(u) + |||∇u|q||Lp(Ω)).

Here, q is the exponent which controls the growth of F in the definition of the
stored-energy function W .

�

We remark that uδ − u has compact support in Ω, and hence

K(uδ) = K(u)

for all small enough δ. In particular, K(uδ) < ∞ for all sufficiently small δ whenever
K(u) < ∞.

Lemma 3.3. Let u be a C1 weak local minimizer of I. Let t < 1 be such that

(3.8) lim inf
s→∞

∫
Ω

σ(cof∇u · u⊗ e
(s)
t ) dx < ∞.

Then ∫
Ωt

Df(∇u) · ∇u dx ≤
∫
∂Ωt

Df(∇u) · u⊗ αN

d
dHn−1.

Remark 3.4. Condition (3.8) necessarily holds for t in a set of positive measure
whenever K(u) < ∞. Without loss of generality, therefore, we may assume that
(3.14) below and (3.8) hold simultaneously.

Proof. Let

η
(s)
t (x) =

⎧⎪⎨
⎪⎩

1 if 0 ≤ |x|
d ≤ t− 1

s ,

s
(
t− |x|

d

)
if t− 1

s ≤ |x|
d ≤ t,

0 if |x|
d ≥ t

and note that

(3.9) ∇η
(s)
t = −se

(s)
t .

Let uε(x) = (1 + εη
(s)
t )u(x). Then

(3.10) det∇uε = (1 + εη
(s)
t )n det∇u− εs(1 + εη

(s)
t )n−1cof∇u · u⊗ e

(s)
t .

In view of (3.8), we may assume that∫
Ω

σ(cof∇u · u⊗ e
(s)
t ) dx < ∞

for infinitely many s; therefore, for each such s,

cof∇u · u⊗ e
(s)
t > 0

for almost every x. In particular, provided ε < 0,

−εs(1 + εη
(s)
t )n−1cof∇u · u⊗ e

(s)
t > 0 a.e.,

from which it follows that

det∇uε >
1

2
det∇u a.e.
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Since u is a weak local minimizer of I it follows that

(3.11) lim sup
ε→0−

I(uε)− I(u)

ε
≤ 0.

The rest of the proof consists in calculating this difference quotient. Now f(∇u) is
the sum of F (∇u) and h(det∇u). The calculation of the quotient

(3.12) lim
ε→0

1

ε

∫
Ω

(F (∇uε)− F (∇u)) dx =

∫
Ω

DF (∇u) · (η(s)t ∇u+ u⊗∇η
(s)
t ) dx

is straightforward. We focus on calculating

lim
ε→0−

∫
B

h(det∇uε)− h(det∇u)

ε
dx

by writing ∫
Ω

h(det∇uε)− h(det∇u)

ε
dx = I + II,

where

I =

∫
Ω

1

ε

∫ ε

0

h′(det∇uλ)(nη det∇u+ cof∇u · u⊗∇η) dλ dx,

II =

∫
Ω

1

ε

∫ ε

0

nληh′(det∇uλ)((1 + λη)n−1 − 1)
[
nη det∇u

+ cof∇u · u⊗∇η
]
dλ dx.

We have suppressed the dependence of η on s and t, and det∇uλ is exactly (3.10)
with λ in place of ε. In each case the integrand is dominated by

(3.13) C(|h′(det∇u)|| det∇u|+ |h′(det∇u)||∇u||∇η|),

where C is a constant independent of ε and λ. The first term |h′(det∇)|| det∇u|
in (3.13) is L1(Ω) by the inequality y|h′(y)| ≤ C(1 + y + h(y)), which holds for all
positive y and which follows from the growth hypotheses on h expressed in (2.2).
The second is in L1(Ω) by applying (3.7) with p = s+ 1. Note that this reasoning
also shows that Df(∇u) ∈ L1(Ω). By dominated convergence, limε→0 II = 0 and

lim
ε→0

I =

∫
Ω

h′(det∇u)(nη det∇u+ cof∇u · u⊗∇η) dx.

The latter may be rewritten as∫
Ω

Dh(det∇u) · (η∇u+ u⊗∇η) dx.

Thus, in view of (3.12),

lim
ε→0−

I(uε)− I(u)

ε
=

∫
Ω

Df(∇u) · (η(s)t ∇u+ u⊗∇η
(s)
t ) dx.

Finally, and bearing in mind (3.9) and (3.11), let s → ∞ to obtain∫
Ωt

Df(∇u) · ∇u dx ≤
∫
∂Ωt

Df(∇u) · u⊗ αN

d
dHn−1.
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Here we used the observation made above that Df(∇u) ∈ L1(Ω) together with
the fact that

(3.14) lim
s→∞

s

∫
Ωt\Ωt− 1

s

Df(∇u) · u⊗ αN

d
dx =

∫
∂Ωt

Df(∇u) · u⊗ αN

d
dHn−1

for a.e. t; see [10] for details of the latter. This concludes the proof of Lemma 3.3.
�

4. Uniqueness subject to linear boundary conditions

4.1. Comparing I(uhom) and I(u). Assume for now that u is a weak local min-
imizer of I in Au0

and is such that K(u) < ∞. Recall that for each t ∈ (0, 1],

uhom
t (x) =

|x|
td

u(tθd)

and that

∇uhom
t (x) = ∇u(tθd) +

(
u(tθd)

td
−∇u(tθd)θ

)
⊗ αN.

The fact that the right-hand side is a function of the angular variable θ only
suggests that a suitable version of the coarea formula can be used to evaluate∫
Ωt

f(∇uhom
t ) dx. One can apply [22, Equation 2.1], or else use a variant of [10,

Proposition 3.4.4], to obtain

(4.1) n

∫
Ωt

f(∇uhom
t ) dx = t

∫
∂Ωt

f

(
∇u(tθd) +

(
u(tθd)

td
−∇u(tθd)θ

)
⊗ αN

)
dHn−1.

Now f(A) is the sum of the everywhere finite quasiconvex function F (A) and the
function h(detA). The former is rank-one convex on R

n×n by standard results (see,
for example, [9, Theorem 5.3 (i)]). The latter is rank-one convex on the half-lines{

Cλ := ∇u(tθd) + λt

(
u(tθd)

td
−∇u(tθd)θ

)
⊗ αN : λ ≥ 0

}
.

This can be verified directly by noting that detCλ = λcof∇u(tθd) · u(tθd) ⊗ αN
d ,

which by (3.2) implies that detCλ > 0 for Hn−1-a.e. θ and all λ > 0. Since h is
convex on (0,∞), it follows in particular that

h(detC1) ≥ h(detC0) +Dh(detC0) · t
(
u(tθd)

td
−∇u(tθd)θ

)
⊗ αN.

The rank-one convexity of F implies that exactly the same inequality holds with
F (A) in place of h(detA). Hence, from (4.1),

n

∫
Ωt

f(∇uhom
t ) dx ≥ t

∫
∂Ωt

f(∇u(tθd))(4.2)

+Df(∇u(tθd)) ·
(
u(tθd)

td
−∇u(tθd)θ

)
⊗ αN dHn−1.

Following Taheri’s [22] argument, we set φ(x)=η
(s)
t (x)x in the energy-momentum

equations ∫
Ω

(
f(∇u)1−∇uTDf(∇u)

)
· ∇φ dx = 0.
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This gives

0 =

∫
Ω

nf(∇u)η
(s)
t dx− s

∫
Ω

f(∇u)x · e(s)t dx

+ s

∫
Ω

∇uTDf(∇u) · x⊗ e
(s)
t dx−

∫
Ω

∇u ·Df(∇u)η
(s)
t dx.

Sending s → ∞, applying the result from [4] that ∇uTDf(∇u) ∈ L1(Ω), and
rearranging give

n

∫
Ωt

f(∇u) dx =

∫
Ωt

∇u ·Df(∇u) dx

+ t

∫
∂Ωt

f(∇u)−∇uTDf(∇u) · θ ⊗ αN dHn−1

for a.e. t. SinceK(u) < ∞, we may assume without loss of generality that condition
(3.8) holds for a sequence of t to which the above reasoning also applies. Without
relabelling these t, we apply Lemma 3.3 to deduce

(4.3)

∫
Ωt

Df(∇u) · ∇u dx ≤
∫
∂Ωt

Df(∇u) · u⊗ αN

d
dHn−1.

Therefore

n

∫
Ωt

f(∇u) dx ≤
∫
∂Ωt

Df(∇u) · u⊗ αN

d
dHn−1

+ t

∫
∂Ωt

f(∇u)−∇uTDf(∇u) · θ ⊗ αN dHn−1.(4.4)

When compared with the right-hand side of (4.2), inequality (4.4) implies that

∫
Ωt

f(∇u) dx ≤
∫
Ωt

f(∇uhom
t ) dx.

The above reasoning proves:

Proposition 4.1. Let u ∈ Au0
be a C1 weak local minimizer of I such that K(u) <

∞. Then

(4.5)

∫
Ωtn

f(∇u) dx ≤
∫
Ωtn

f(∇uhom
tn ) dx

for a sequence tn → 1.

Remark 4.1. The calculation shown above is clearly inspired by that given in [22].
But there are two key differences, the main one being that the full Euler-Lagrange
equation is not assumed to hold for the weak local minimizer u. Instead, we rely
on Lemma 3.3 for the inequality (4.3). Also, the p-growth assumption made in
[22] easily supplies the inclusion Df(∇u) ∈ L1(Ω) for all u ∈ W 1,p. Our route is
more circuitous: it relies on estimates in [6] derived from the energy-momentum
equations and which only apply to solutions of these equations.
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4.2. Uniqueness of C1 weak local minimizers. We now apply the foregoing
analysis to the case u0(y) = ξy, where ξ is a constant n× n matrix. It is straight-
forward to check that any u ∈ C1(Ω̄) ∩Au0

is such that

K(u) < ∞ if det ξ > 0.

Since u is C1, and in view of the boundary condition, it is the case that∫
Ωtn

f(∇uhom
tn ) dx →

∫
Ω

f(ξ) dx

as n → ∞ for any sequence tn → 1−. If, in addition, u is a weak local minimizer,
then Proposition 4.1 applies, giving∫

Ωtn

f(∇u) dx ≤
∫
Ωtn

f(∇uhom
tn ) dx

for each n, and hence on letting n → ∞,

(4.6)

∫
Ω

f(∇u) dx ≤
∫
Ω

f(ξ) dx.

We now assume that f is strictly quasiconvex at ξ, implying in particular that

(4.7)

∫
Ω

f(ξ) dx ≤
∫
Ω

f(∇u) dx

with equality if and only if u(x) = ξx on Ω. Putting (4.6) and (4.7) together yields:

Proposition 4.2. Let u ∈ C1(Ω̄) be a weak local minimizer of I in Au0
, where

u0(y) = ξy, det ξ > 0, and f defined in (1.4) is strictly quasiconvex at ξ. Then
u(x) = ξx for all x in Ω.

4.3. Concluding remarks. We briefly address the question of whether (3.4) is
the only or right choice for the auxiliary functional K. Clearly, the K defined by
(3.4) suffices in the situation that u is C1(Ω̄). Thus the following remarks apply
primarily to weak local minimizers that are not a priori assumed to be C1.

(i) Ideally, any replacement for K (again denoted K) would be sequentially
lower semicontinuous with respect to weak convergence in W 1,n, say. One
could then (locally) minimize I +K, and the conclusion K(u) < ∞ would
be automatic rather than imposed.

(ii) Potentially, one could allow the set

E := {x ∈ Ω : cof∇u · u⊗ αN ≤ 0}

to approach ∂Ω in a less restrictive manner than is prescribed by the con-
dition K(u) < ∞, where K is as per (3.4). Indeed, if K(u) is finite, then
for t in a set of positive measure,

cof∇u · u⊗ αN > 0 a.e. x ∈ Ωt \ Ωt− 1
s

for at least one s = s(t). Moreover, one can take t for which this holds
arbitrarily close to 1. So E is trapped in a specific sequence of sets which
approach ∂Ω. But it is possible to imagine a set E for which K(u) = +∞
but which might nevertheless admit an analysis similar to that given in
Sections 3 and 4 above. This will be investigated in a future paper.
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(iii) K should not depend on values of u in the interior of the domain. Energy
functionals for elastic materials typically depend only on the gradient of
the deformation in the interior. The K proposed in (3.4) does this to an
extent; any modifications with (i) and (ii) above in mind should preserve
this property. It would not do, for example, to require that for fixed l < 1,

K̂(v) :=

∫
Ω\Ωl

σ(cof∇u · u⊗ αN) dx

be finite. Although K̂ would be sequentially weakly lower semicontinu-
ous (by [5, Proposition A.3], for example), its value would still depend on
u|Ω\Ωl

.

(iv) Dropping the assumption that u is C1 is problematic for the reasons pointed
out in [22]. See [14, Section 7] for examples of nowhere C1 weak local
minimizers based on the construction of [17]. The assumption K(v) < ∞
would appear to limit possible oscillations of ∇u in the direction tangent to
∂Ω, say, but there is still room for bad behaviour in the directions normal
to ∂Ω. Any modification of (3.4) should take these difficulties into account.
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