Counting eigenvalues via the Krein signature in infinite-dimensional Hamiltonian systems.
Kapitula, T., Kevrekidis, P. G. and Sandstede, B. (2004) Counting eigenvalues via the Krein signature in infinite-dimensional Hamiltonian systems. Physica D, 195 (2004). pp. 263-282.
![]()
|
Text
fulltext.pdf Download (367kB) |
Abstract
Spectra of nonlinear waves in infinite-dimensional Hamiltonian systems are investigated. We establish a connection via the Krein signature between the number of negative directions of the second variation of the energy and the number of potentially unstable eigenvalues of the linearization about a nonlinear wave. We apply our results to determine the effect of symmetry breaking on the spectral stability of nonlinear waves in weakly coupled nonlinear Schrödinger equations.
Item Type: | Article | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Divisions : | Faculty of Engineering and Physical Sciences > Mathematics | ||||||||||||
Authors : |
|
||||||||||||
Date : | 1 December 2004 | ||||||||||||
Uncontrolled Keywords : | Krein signature, Nonlinear, Hamiltonian | ||||||||||||
Additional Information : | Physica D 195 (2004) 263-282. | ||||||||||||
Depositing User : | Mr Adam Field | ||||||||||||
Date Deposited : | 27 May 2010 14:41 | ||||||||||||
Last Modified : | 31 Oct 2017 14:02 | ||||||||||||
URI: | http://epubs.surrey.ac.uk/id/eprint/1516 |
Actions (login required)
![]() |
View Item |
Downloads
Downloads per month over past year