Bifurcation from relative periodic solutions
Wulff, Claudia, Lamb, Jeroen S. W. and Melbourne, Ian (2001) Bifurcation from relative periodic solutions Dynamical Systems, 21. pp. 605-635.
![]()
|
Text
fulltext.pdf Download (244kB) |
Abstract
Relative periodic solutions are ubiquitous in dynamical systems with continuous symmetry. Recently, Sandstede, Scheel and Wulff derived a center bundle theorem, reducing local bifurcation from relative periodic solutions to a finite-dimensional problem. Independently, Lamb and Melbourne showed how to systematically study local bifurcation from isolated periodic solutions with discrete spatiotemporal symmetries.
In this paper, we show how the center bundle theorem, when combined with certain group theoretic results, reduces bifurcation from relative periodic solutions to bifurcation from isolated periodic solutions. In this way, we obtain a systematic approach to the study of local bifurcation from relative periodic solutions.
Item Type: | Article | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Divisions : | Faculty of Engineering and Physical Sciences > Mathematics | ||||||||||||
Authors : |
|
||||||||||||
Date : | 30 March 2001 | ||||||||||||
Additional Information : | Published in Ergodic Theory and Dynamical Systems, Volume 21, pp. 605-635. © 2001 Cambridge University Press. Reprinted with permission. | ||||||||||||
Depositing User : | Mr Adam Field | ||||||||||||
Date Deposited : | 27 May 2010 14:41 | ||||||||||||
Last Modified : | 16 Jan 2019 16:22 | ||||||||||||
URI: | http://epubs.surrey.ac.uk/id/eprint/1464 |
Actions (login required)
![]() |
View Item |
Downloads
Downloads per month over past year