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Abstract

In this paper we present a geometric theory for recon-
struction of surface models from sparse 3D data cap-
tured from N camera views which are consistent with
the data wvisibility. Sparse 8D measurements of real
scenes are readily estimated from image sequences us-
ing structure-from-motion techniques. Currently there
is mo general method for reconstruction of 3D mod-
els of arbitrary scenes from sparse data. We intro-
duce an algorithm for recursive integration of sparse
3D structure to obtain a consistent model. This algo-
rithm is shown to converge to the real scene structure
as the number of views increases and to have a com-
putational cost which is linear in the number of views.
Results are presented for real and synthetic image se-
quences which demonstrate correct reconstruction for
scenes containing significant occlusions.

1 Introduction

An important problem in computer vision is the
reconstruction of 3D models of complex rigid scenes
from monocular image sequences. Recent research has
focused on the development of structure-from-motion
for automatic recovery of 3D shape by matching im-
age structure between multiple frames. Feature based
approaches have been widely developed for automatic
recovery of sparse 3D structure based on automatic
tracking of corners, lines and curves between consec-
utive images [13, 9]. A common goal of developing
methods to estimate structure from image sequences
is to reconstruct 3D scene models for visualisation.
Current techniques for reconstruction of 3D models
from sparse data are limited to simple planar scenes
[6] or modelling of isolated objects [5].

Previous research aimed at constructing 3D mod-
els has addressed the problem of reconstruction from
dense 3D surface measurements captured using ac-
tive range sensors [2, 12, 3] or multi-baseline stereo
[7]. Volumetric techniques have been widely used to
achieve reliable reconstruction of complex objects [2]
and environments [3, 11]. Methods for reconstruction
from dense data assume that the distance between ad-

jacent surface measurements can be used to estimate
the local topology of the 3D surface. This assumption
is not valid for interpolation of sparse 3D data.

Model reconstruction from sparse 3D data of arbi-
trary geometry scenes is an open problem. Faugeras
et al. [4] addressed this problem using 3D Delaunay
triangulation (tetrahedralisation) of a set of image fea-
tures together with their visibility for each camera
view to construct a volumetric model. The princi-
pal limitation of this approach is the assumption that
the entire feature is visible which prohibits partial oc-
clusion. Furthermore, this is a batch method which
requires all the 3D structure prior to reconstruction.

Recently Kutulakos and Seitz [8] presented a gen-
eral theory of N-view shape recovery. The principal
assumption of their approach is that a locally com-
putable consistency criteria is available to test point
correspondence in multiple views. In image sequences
of real-scenes such as indoor environments lack of sur-
face texture will result in a reconstruction which de-
viates considerably from the real surface

In this paper we address the problem of reconstruct-
ing surface models from sparse 3D scene structure cap-
tured from N camera views. Our approach offers two
principal contributions. Firstly, a theoretical frame-
work is developed for a consistent surface represen-
tation to interpolate sparse 3D data. Secondly, we
formulate an efficient recursive algorithm for recon-
struction of a consistent surface model from sparse
3D data of an arbitrarily-shaped scene. The algorithm
presented in this paper provides a unified approach to
scene reconstruction from any available sparse or even
dense 3D scene structure.

2 Reconstruction from Sparse Data

In this section we present a geometric theory for
reconstruction of a surface model from sparse 3D data
captured from N camera views. We then define a prov-
ably correct algorithm for reconstruction of a 3D scene
model which is consistent with the data visibility con-
straints from N views. This algorithm is shown to con-
verge to a correct reconstruction of the real surfaces



in the 3D scene as the number of views increases.

No prior assumptions are made concerning our
knowledge of the structure of the 3D scene, scene illu-
mination, surface properties, camera positions or the
ability to separate the foreground and background.

2.1 Problem Statement

Given a set of sparse 3D features captured from
N-views of an arbitrary unknown 3D scene, together
with the feature visibility from each view, reconstruct
a consistent 3D surface model. Here a scene feature
is any image structure which can be matched across
multiple views including points, lines and curves. A
consistent representation is defined as:

Definition 1 (consistent representation): A
consistent 3D model is a set of surfaces which in-
terpolate the space between the sparse 3D features
and do not violate any of the constraints on fea-
ture visibility.

This defines a family of possible solutions which are
all consistent reconstructions. This family of solutions
is the most we can say about the true scene structure,
given the sparse set of 3D features, without making
prior assumptions on surface type. Any model, which
is consistent is an equally valid approximation of the
scene geometry and topology.

2.2 Consistent 3D scene models

An arbitrary real 3D scene can be represented by a
set of surfaces S = {s;}~*,. This set of surfaces can be
approximated to arbitrary precision by a set of planar
triangular surface primitives S ~ M, = {t;}s. The
use of a triangulated surface model to approximate the
3D scene does not require any prior assumptions on
surface type although it does impact on representation
efficiency for curved surfaces.

Given a set of sparse 3D features F' = { fi}fv:fo we
can triangulate them to obtain a consistent model
M = {t;} 2, which satisfies Definition 1. Each feature
fi which is visible in the j** view taken at position of
defines a visibility constraint c;; as follows:

Definition 2 (visibility constraint): The
space between the view position ¢; and the scene
feature f; is not occupied by an (opaque) object.

This constraint for a point feature is a line, for a
line feature is a triangle and for a curve feature is
a 2-manifold surface (which can be approximated to
arbitrary precision by a set of triangular surface prim-
itives). Therefore, given a set of features F' and their
visibility from N views results in a set of visibility con-
straints C' = {¢;} <, (Figure 1).

A consistent representation M must satisfy the set
of N-view visibility constraints, C', therefore we obtain

Figure 1: Visibility constraints for point and line fea-
tures.

the following definitions:

Definition 3 (consistent triangle): A triangle
t; € M is consistent if it does not intersect any of
the visibility constraints in C.

Definition 4 (consistent model): A model M
is consistent if all triangles ¢; € M are consistent.

2.3 Single-view Reconstruction

A consistent model for the set of visible features Fj
in the j* view can be constructed by a constrained
triangulation in a plane orthogonal to the view direc-
tion. For a single view this projection is injective. The
order of feature projections in the plane is preserved
with respect to their relative ordering in 3D space from
the view point ;.

Proposition 1: Constrained triangulation of the
features, Fj, in the 2D projection plane resultsin a
model, M;, which is consistent with the visibility
constraints Cj.

Proof: Constrained triangulation of a set of features
Fj in the 2D projection plane guarantees that no edge
in the triangulation intersects a feature. The features
form the vertices and edges of the triangulation. As
the projection between 3-space and the 2D plane is in-
jective the resulting 3D triangulated mesh M; will not
reorder the features. Therefore M; does not contain
any triangles which intersect the visibility constraints
C; and the resulting model is consistent. QED

2.4 N-view Reconstruction

In general for multiple views of a 3D scene there
is no single 2D plane to which the scene features can
be injectively projected without reordering of the fea-
tures F'. Reconstruction of a consistent model for two
views ¢ and j can be achieved by integrating consistent
models from the two views M; and M; such that all
triangles in the resulting model M;; satisfy the union
of the visibility constraints C;; = {C; | C;}.

A general algorithm for reconstructing a consistent
model of a 3D scene from N views can be achieved
by the incremental integration of the model and con-
straints for each view. The general N-view algorithm
can be stated as follows:



1. Initialise the global model and constraints as the
empty set: M = {0}, F = {0} and C = {0}.

2. Build a consistent model for the i** view, M;, by
constrained triangulation of the visible features,
F3;, in a plane orthogonal to the view direction.

3. Eliminate triangles in M which violate the view-
points constraints for the i*" view C; to give M’
which is consistent with the combined constraints
c'={CUdc}.

4. Eliminate triangles in M; which violate the view-
point constraints for the global model C' to give
a M which is consistent with C".

5. Integrate non-redundant triangles from M/ into
M’ to give a consistent model M" = {M'|J M]}.

6. Update the global model M = M" and con-
straints C' = C".

7. Repeat steps 2-6 for all N views to compute a
global model M consistent with the union of fea-
ture visibility constraints from all views C'.

It should be noted that the general N-view algo-
rithm for constructing a consistent 3D scene represen-
tation is order independent. Although the algorithm
is based on the incremental addition of new views the
visibility constraints for all views are applied equally
to each triangle in the model.

2.5 Proof of convergence

Given a model M which is consistent for the set
of visible features F' over N views we want to prove
that as additional views are incorporated the model
converges towards an approximation of the true scene
surface S.

Proposition 2: If a model M is consistent
over N views then as N — oo the recon-
structed model M approximates a subset of
the real scene surfaces My, C S.

Proof A consistent model M consists of two cate-
gories of triangles: (a) Real triangles which are planar
approximations of real surfaces M" = {t/} ‘s where
M™ C S5 and (b) Virtual triangles which occur at oc-
clusion boundaries M? = {t?}Y¢. The union of real
and virtual triangles is the model M = {M"|J M"}.
By definition the set of real triangles M" correspond to
(opaque) surfaces in the real scene S and therefore can
not be intersected by a visibility constraint from any
viewpoint. Therefore, this model is consistent for all
possible viewpoints. Given a consistent model M for N
views, applying the visibility constraints from a new
view Cn41 will only result in elimination of virtual
triangles from the set M". Virtual triangles will be
eliminated provided one or more scene features is visi-
ble on the other side of the triangle. A virtual triangle

for which no scene feature is visible on the other side
from any view is a valid planar approximation of the
real surface and therefore belongs to the set of real sur-
faces M". As the number of views increases all virtual
triangles will be eliminated MY — {0}. The resulting
model My, will converge to the set of triangles which
correspond to real scene surfaces Mo, — M"™ C S.
QED

3 Real Scene Reconstruction

The goal of our work is to develop an automatic
system for scene reconstruction from image sequences.
In this section we present the algorithm developed for
scene reconstruction from a sequence of images.

Images are captured using a camera mounted on
an autonomous mobile robot platform. This system
captures a sequence of images of an indoor scene with
approximately known camera positions. A recursive
structure-from-motion (SFM) algorithm [9] is applied
to estimate the 3D location of the sparse scene features
together with the camera position and orientation. A
sparse feature based SFM algorithm has been used for
computational efficiency of reconstruction for long im-
age sequences. Point and line features are used in this
work although the approach also extends to higher
order features. The SFM algorithm incorporates con-
straints between features such as co-planarity and sur-
face perpendicularity to increase reconstruction accu-
racy if information on feature groupings is available.
Further details of this system are provide in [10].

3.1 Algorithm Overview

The algorithm developed for surface reconstruction
from sparse 3D data is based on recursive integration
of the set of feature data, F;, and feature visibility con-
straints, C;, for each new camera view. The algorithm
recursively integrates visibility constraints from new
views into the current global model M to reconstruct
a model which converges to the real scene structure as
the number of views increases.

In practice the computational cost of implementing
the algorithm presented in section 2.4 is prohibitively
expensive. The worst-case computational complexity
of testing visibility constraints for all features over all
N-views is O(N7N?) where Ny is the number of fea-
tures. The cost increases with the square of the num-
ber of views. Therefore, we adopt the approach of only
testing the visibility constraints for the new view C;
against the current global model M.

In section 3.3 we show that for a closed-system this
approach converges to an approximation of the real
scene surfaces. The worst-case computational com-
plexity becomes O(N]%N ). However, practically Ny is
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Figure 2: Scene reconstruction from sparse 3D measurement data

the number of visible features which is considerably
smaller than the total number of features. Recursive
reconstruction of a new global model at the i** view
is performed in three steps:

1. Update feature position: All 3D positions of
features F' in the global model M are updated
based on the new SFM estimates resulting in M.

2. Apply visibility constraint: Visibility con-
straints, C; , for features F; visible in the 5t"
view are applied to the global model M’ produc-
ing M".

3. Integrate new features: Non-redundant tri-
angles for the i** view model, M;, for features not
in the global model, F; ¢ F, are integrated into
the global M = M;|JM".

3.2 Algorithm Convergence

In this section we show that for a closed-scene the
algorithm proposed in the previous section converges
to a reconstruction of the real scene surfaces as the
number of views increases. A closed-scene has a fi-
nite set of scene features F' whose 3D location can be
reconstructed using the SEM algorithm.

Proposition 3: For a closed-scene with features
F the model M reconstructed by only applying
visibility constraints for each new views C; con-
verges to a subset of the real scene surfaces as the
number of views increases Mo, C S

Proof: If the system is closed then as the number of
views increases the set of new features Fj,; visible in
each frame converges to zero, F,; ¢ F = {0}. Con-
sequently the set of non-redundant triangles in each
new frame converges to zero and no new triangles are
added to the model. Each new view results in a new
set of visibility constraints, C;, for features previously
incorporated to the model Fp; € F (Fpi U Fpi = F;)
Following the proof of Proposition 2, the it" view vis-
ibility constraints, C;, will eliminate only virtual tri-
angles M® € M. As the number of views increase
the global model will converge to the set of triangles
approximating real surfaces Mo, = M™ C S. QED
3.3 Constrained Triangulation

A constrained triangulation [1] of the visible point
and line features F; in the image plane is performed for

each camera view. The algorithm initially performs an
unconstrained Delaunay triangulation of the point fea-
tures and line end-points. A recursive edge-swapping
algorithm between adjacent pairs of triangles is then
applied to generate a triangulation where the line fea-
tures are incorporated as triangle edges. Implementa-
tion of this algorithm is approximately O(N¢logNy)
computational cost in the number of features Ny. The
2D triangulation can then be projected into 3D space
using the estimated 3D feature positions to generate
a model M; for the i** view. This results in a recon-
struction which is consistent with the i*" view feature
visibility constraints, C;, as shown in 2.3.

This is the only set of possible real surface patches
visible in the it* view which will be integrated to the
global model. All triangles which are between new im-
age features F,,; and image features previously incor-
porated in the global model, F};, are candidate non-
redundant surfaces. All other triangles, which only
connect features in Fp;, are not integrated as they
may have been eliminated previously by visibility con-
straints for previous frames. This prohibits triangula-
tion between two features which have both previously
been incorporated in the global model but have not
previously been visible in the same frame.

3.4 Visibility Constraints

Implementation of visibility constraints requires
testing the intersection of the triangles in the global
model, M, with all of the visibility constraints, C;, for
each camera viewpoint. In practice the computational
cost can be dramatically reduced by partitioning the
space. This is achieved by projecting the visible part
of the global model to the current image plane for the
ith view using a bucketing structure [4].

For a point feature the projection of the point in the
2D-image plane must be inside the projection of the
model triangle. This reduces the cost of performing
this operation to a simple lookup operation. For a
line feature the projection of the line in the 2D image
plane must lie inside the triangle (Figure 1). Each
overlapping triangle in the global model is then tested
for 3D intersection with the triangle which is formed
by the camera position and the 3D line feature.



4 Results

In this section we present results of applying the
incremental reconstruction algorithm to sparse 3D
structure from real and synthetic image sequences.
The sequences are from simple 3D scenes which con-
tain multiple objects such that the entire scene is not
visible from a single viewpoint. Automatic feature
tracking is used to match corner-points and edge-lines
between consecutive images. Manual labelling is ap-
plied to group scene features on the same surface and
identify surface perpendicularity. Recursive structure-
from-motion with surface constraints is applied to es-
timate the 3D location of scene features and camera
positions [10].

Results for a synthetic image sequence of 25 im-
ages are shown in Figure 3. The sequence is of two
cubes one in front of the other and three perpendicu-
lar planes behind. In the initial frame the smaller cube
is completely occluded and as the camera moves from
left to right becomes visible. The scene contains 9 visi-
ble surfaces which are approximated by 96 triangles in
the resulting model. The reconstructed models clearly
approximates the real scene where multiple occluded
surfaces exist.

Results for a real-image sequence of 10 frames are
shown in Figure 4. The scene is of the corner of a
room with several occluding objects in the scene. Re-
cursive reconstruction using the feature visibility con-
straints removes surfaces which violate the scene visi-
bility. The reconstructed model contains 15 real sur-
faces which are represented by 244 triangles. Some ar-
tifacts are visible in the texture mapped model when
viewed from novel directions for regions which are oc-
cluded in the input image sequence. Results illustrates
the recursive reconstruction of models that approxi-
mate real scene surfaces with significant occlusions.

5 Conclusions

In this paper we have presented a general geomet-
ric theory for scene reconstruction from sparse 3D data
captured from N-views. A consistent model is defined
as a set of surfaces which interpolate the sparse 3D
data and do not violate the feature visibility. We have
introduced an efficient recursive algorithm for recon-
struction of a consistent model by incremental integra-
tion of new 3D data and visibility into a global model.
This algorithm is shown to converge to the set of real
scene surfaces as the number of views increases. Ex-
cept for surface opacity no prior assumptions are made
about our knowledge of the scene geometry, surface
properties or camera positions.

Sparse 3D data is commonly reconstructed from
monocular image sequences using structure-from-

motion techniques. Results are presented for recon-
struction of 3D models from real and synthetic image
sequences of simple scenes containing multiple occlud-
ing objects that demonstrate the feasibility of our ap-
proach. This is the first algorithm addressing scene
reconstruction from sparse 3D data with arbitrary ge-
ometry and multiple occluding objects.
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Figure 3: Reconstruction of synthetic sequence. Frames 0,10 and 25 of the original images, together with the

corresponding wireframe and VRML models.

0,6 and 10 of room sequence along with reconstructed models in wireframe and VRML.

Figure 4: Frames



