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CONVERGENCE RATE ESTIMATES FOR THE LOW MACH AND ALFVÉN

NUMBER THREE-SCALE SINGULAR LIMIT OF COMPRESSIBLE IDEAL

MAGNETOHYDRODYNAMICS ∗

Bin Cheng1, Qiangchang Ju2 and Steve Schochet3

Abstract. Convergence rate estimates are obtained for singular limits of the compressible ideal mag-
netohydrodynamics equations, in which the Mach and Alfvén numbers tend to zero at different rates.
The proofs use a detailed analysis of exact and approximate fast, intermediate, and slow modes together
with improved estimates for the solutions and their time derivatives, and the time-integration method.
When the small parameters are related by a power law the convergence rates are positive powers of the
Mach number, with the power varying depending on the component and the norm. Exceptionally, the
convergence rate for two components involve the ratio of the two parameters, and that rate is proven
to be sharp via corrector terms. Moreover, the convergence rates for the case of a power-law relation
between the small parameters tend to the two-scale convergence rate as the power tends to one. These
results demonstrate that the issue of convergence rates for three-scale singular limits, which was not
addressed in the authors’ previous paper, is much more complicated than for the classical two-scale
singular limits.

Résumé. Des estimations du taux de convergence sont obtenues pour des limites singulières des
équations magnétohydrodynamiques idéales compressibles, quand les nombres de Mach et Alfvén ten-
dent à zéro à des taux différents. Les démonstrations utilisent une analyse détaillée des modes rapides,
intermédiaires, et lents exacts et approximatifs ainsi que des estimations améliorées pour les solutions et
leurs dérivées temporelles, et la méthode d’intégration temporelle. Lorsque les petits paramètres sont
liés par une loi de puissance, les taux de convergence sont des puissances positives du nombre de Mach,
la puissance variant selon le composant et la norme. Exceptionnellement, le taux de convergence pour
deux composantes implique le rapport des deux paramètres. Ces résultats démontrent que la question
des taux de convergence pour les limites singulières à trois échelles est beaucoup plus compliqué que
pour les limites singulières classiques à deux échelles.
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1. Introduction

A uniform existence theorem and a convergence theorem as the small parameters tend to zero were recently
developed [CJS18] for singular limits of symmetric hyperbolic systems of the form

A0(εMV) Vt +

d∑
i=1

Ai(V) Vxi =
1

εA
LAV +

1

εM
LMV, (1)

where εA and εM are small positive parameters and LA and LM are skew-adjoint constant-coefficient first-order
differential operators. If εA

εM
tends to zero as the parameters tend to zero then systems of the form (1) have

three time scales: O( 1
εA

), O( 1
εM

), and O(1).

In this paper we begin the study of the rate of convergence of solutions of three-scale singular limits to
corresponding solutions of their limit equations, an issue that was not considered in [CJS18], but which is
significant for applications because it determines the accuracy of using the limiting dynamics to approximate
the original system. The convergence rate in the general case will undoubtedly be very complicated, since
in general many different limit systems are obtained for different power-law relations between the two small
parameters as they both tend to zero [CJS18, §4]. As a first step, we study here the particular case of the
low Mach and Alfvén number limit of the compressible ideal magnetohydrodynamics (MHD) equations in the
presence of a large uniform magnetic field, which was the motivating example for our work. As we will show,
that system has essentially only one limit system, although the limit

µlim := lim
εA,εM→0

µ (2)

of the ratio
µ := εA

εM
(3)

appears in that limit system as a parameter. Even for the MHD system the study of the convergence rate is
much more intricate than for two-scale singular limits because, as described below, the bounds on the first time
derivative satisfied by solutions to three-scale systems are weaker than those satisfied for two-scale systems, and
the eigenspace projections of the large operator 1

εA
LA + 1

εM
LM depend on the ratio of the small parameters

instead of being fixed as in the two-scale case.
The asymptotic analysis of singular limits is of fundamental importance in the theory of fluid dynamics,

since some continuum fluid models are limits of the Boltzmann equation, which in turn is the limit of particle
dynamics [Gal19], and many continuum models are limits of other such models as one or more dimensionless
parameters, such as the Mach number, Froude number, Rossby number, and Alfvèn number, tend to zero. The
modern theory of two-scale singular limits of continuum fluid models and PDEs in general, in which all small
parameters tend to zero at the same rate, was initiated in [KM81,KM81], where smooth solutions of initial-value
problems for the compressible isentropic Euler or Navier-Stokes equations were shown to converge to solutions
of the corresponding incompressible equations, and a rate of convergence was demonstrated. Restrictions on the
initial data in that pioneering work were later eliminated [Uka86,Asa87,Sch94,Gre97a]. Analogous results have
subsequently been shown for a variety of initial and boundary conditions and for a wide variety of two-scale
singular limits arising in fluid dynamics and related equations [Gre97b,CG00,DH04,Sec06,Ala08,Gal08,CM13,
DHWZ13, LL18], including various forms of the MHD equations [Got90, JJL10, JJL12, JX18]. Some of these
papers include a convergence rate of the type that will be discussed below. Like the results presented in this
paper, the results discussed so far concern smooth solutions, but there is a parallel theory of singular limits of
weak solutions [LM98,DGLM99,FN09,CGS16].

The MHD system in three spatial dimensions that we study in this paper, derived in §A from a standard
formulation of that system, is

a(εMr)
(
∂tr + (u·∇)r) + a(εMr)ρ(εMr)

εM
∇·u = 0 (4a)
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ρ(εMr)
(
∂tu + (u·∇)u

)
+ a(εMr)ρ(εMr)

εM
∇r +∇ |b|

2

2 − (b·∇)b = ∂zb−∇b3
εA

, (4b)

∂tb + (u·∇)b + (∇·u)b− (b·∇)u = ∂zu−ez ∇·u
εA

, (4c)

∇·b = 0, (4d)

where

a(s) :=
p′(1 + s)

1 + s
, ρ(s) := 1 + s. (5)

The divergence-free condition (4d) on the magnetic field is preserved by the dynamics of (4c), and so is just
a restriction on the initial data. Hence straightforward calculations show that the system (4) has the form (1),
with V = (r,u,b).

Our main result is a rate of convergence of solutions of the MHD system (4) as the small parameters εA and εM
tend to zero. As a preliminary, we prove a uniform existence and a convergence result, including determining the
limit system. Before stating these results we discuss notations, operators, initial data, and parameters that will
be used in the statement of the theorem. First, we let ‖ ‖k denote the Hk norm. Next, for any vector w let its
“horizontal” part wh denote its x, y components (w1

w2
), and let Pdiv

h denote the two-dimensional Leray-Helmholtz
projection onto divergence-free velocity fields in the x, y plane or 2-torus, i.e.

Pdiv
h wh := wh −∇h∆

−1
h ∇h·wh, where ∇h :=

(
∂x
∂y

)
, ∆h := ∂2

x + ∂2
y . (6)

The large terms in (4) form the “Alfvén” and “Mach” operators

LAV :=

 0(
−∇hb3+∂zbh

0

)
(

∂zuh
−∇h·uh

)
 , LMV :=

(
−∇·u(−∇hr
−∂zr

)
03

)
, (7)

where for notational convenience we have normalized the pressure law p(ρ) to satisfy satisfy

p′(1) = 1 (8)

by rescaling εM. Also, the full average avf and the vertical average azf of any function f defined on the
3-torus T3 are

avf :=

∫∫∫
f dx dy dz∫∫∫
1 dx dy dz

, (az f)(x, y) :=

∫
f(x, y, z) dz∫

1 dz
. (9)

Although the uniform existence and convergence results require that the initial data satisfy the “well-
preparedness” condition

‖(ε−1
A LA + ε−1

M LM)V0‖n−1 ≤ c, (10)

they do not require any assumption about the rate at which the initial data converge to their limit. However,
such an assumption is obviously required in order to obtain a rate of convergence of solutions of the PDE. In the
convergence rate result we assume that the initial data has the form developed in §2, which is a specialization
of the general form of initial data satisfying (10). Specifically, after expanding the initial data in powers of the
small parameters and their ratio, the leading-order terms are assumed to be independent of the small parameters
in order to avoid degrading the convergence rate. However, valid estimates for any initial data satisfying (10)
below can be obtained simply by adding the size of the difference of the initial data when that difference is
larger than the estimates obtained below.

When the parameter µ in (3) is fixed then (1) and (4) essentially contain only one small parameter and
hence have only two time scales. Uniform existence and convergence results for initial-value problems of general
systems containing one small parameter were obtained in [KM81]. Moreover, their results remain valid with only
cosmetic changes to the proofs whenever µlim > 0. Convergence rate theorems for both specific and general
two-scale systems have been proven in [KM82, Sch88, Sch94, Che12, Che14]. We therefore focus on the more
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challenging case when µ→ 0, although our results will be phrased so as to remain valid when µlim > 0. It will
be convenient to express our convergence results using just powers of εM, by defining a parameter ν determined
by

εA = ε1+ν
M , or, equivalently, µ = ενM, i.e., ν :=

ln( 1
εA

)

ln( 1
εM

)
− 1 =

ln( 1
µ )

ln( 1
εM

)
, (11)

where in view of the results for two-scale singular limits we will assume for notational simplicity that

εA < εM, i.e., µ < 1 and ν > 0. (12)

To simplify the exposition we will assume that the spatial domain is periodic. The uniform existence result
remains valid with the same proof when the spatial domain is R3, while the the limit system is then identically
zero because it is independent of the vertical coordinate.

Throughout this paper c and C denote positive constants that are independent of εA and εM, which may
take different values in each appearance.

Theorem 1.1. Let n ≥ 3 be an integer. Assume that the spatial domain is T3 and that the small parameters
are restricted to the region

0 < εM ≤ ε0
M and εA ≥ c ε

1+ 1
n−1

M . (13)

Assume in addition that the initial data V0 := (r0,u0,b0) for system (4), which may depend on the small
parameters εA and εM, are uniformly bounded in Hn and satisfy (4d) and (10).

Uniform Existence.: Under the above conditions there exist fixed positive T and K such that for (εA, εM)
satisfying (13) the solution to (4) having the initial data V0 exists for 0 ≤ t ≤ T and satisfies

sup
0≤t≤T

‖V‖n + ‖Vt‖0 +

n∑
j=1

εj−1
M

(
min( εAεM

, 1)
)n−1

‖∂jtV‖n−j

 ≤ K. (14)

Convergence and Limit.: Assume in addition that the normalization (8) holds and that as (εA, εM) satisfying
(13) tend to zero, their ratio εA

εM
converges to some value µlim and the initial data V0 converges in Hn to

V
0
. Then the solution V = (r,u = (uh, u3),b = (bh, b3)) of the MHD system (4) with initial data V0

converges in C0([0, T ];Hn−α) for every α > 0. Its limit is independent of z, and is the unique solution V =
(r̄, (ūh, ū3), (b̄h, b̄3)) of the limit system

(1 + µ2
lim) [∂tr̄ + (ūh ·∇h)r̄] + µlim(b̄h ·∇h)ū3 = 0, (15a)

Pdiv
h

(
∂tūh + (ūh ·∇h)ūh − (b̄h ·∇h)b̄h

)
= 0, ∇h·ūh = 0, (15b)

∂tū3 + (ūh ·∇h)ū3 + µlim(b̄h ·∇h)r̄ = 0, (15c)

∂tb̄h + (ūh ·∇h)b̄h − (b̄h ·∇h)ūh = 0, ∇h·b̄h = 0, (15d)

b̄3 = avb̄03 − µlim(r̄ − avr̄0) (15e)

having initial data V
0
.

Rate of Convergence.: In addition to the original assumptions and the additional assumptions of the con-
vergence part, assume that the initial data for the MHD system have the more specific form (44), (46), (50)
and that (12) holds. Then there is a constant c independent of εA and εM such that for all t ∈ [0, T ],

‖(1− Pdiv
h az)uh

∥∥
j

+ ‖(1− az)bh‖j + ‖b3 − avb̄03 + µ(az r − avr̄0)‖j ≤ c ε1−(j−1)ν
M , j = 0, . . . , n− 1, (16a)

‖Pdiv
h az uh − ūh‖n−2 + ‖ az bh − b̄h‖n−2 ≤ c εM, (16b)

‖(1− az)r‖j + ‖(1− az)u3‖j ≤ c ε1−(j−1)ν
M , j = 1, . . . , n− 1, (16c)
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‖ az r − r̄‖n−2 + ‖ az u3 − ū3‖n−2 ≤ c
[
ε

1−max(n−5,0)ν
M + |µ− µlim|

]
. (16d)

Moreover, there exist O(1) correctors (r(cor), u
(cor)
3 ) defined in (133)–(134) such that

‖ az r − (r̄ + µ−µlim

1+µ2 r
(cor))‖n−2 + ‖ az u3 − (ū3 + (µ− µlim)u

(cor)
3 )‖n−2 ≤ c ε1−max(n−5,0)ν

M . (16e)

The uniform existence part of Theorem 1.1 is a special case of the corresponding general result for systems
(1) stated in Lemma B.1 and proven in §B, which is an improvement of [CJS18, Theorem 3.6]. The convergence
part of Theorem 1.1 will be proven in §C. The convergence-rate estimates in (16) are direct consequences of
the estimates (54), (66), (92), (115), and (135) proven in §3.

Under the scaling (13) all powers of εM appearing in (16) are positive, so a nontrivial rate of convergence
is obtained over the full range of allowed values of ν, in all the norms listed in the theorem. The corrector
estimate (16e) has been included because (13)–(11) imply that estimate (16d) is much weaker than the other
estimates in (16) in the main case of interest in which µlim = 0. The improved estimate (16e) involving the
corrector shows that (16d) is in fact sharp in this case, and gives a formula for the principal error term.

For well-prepared initial data like that considered here, the convergence rate for solutions of two-scale systems
is typically first order in the single small parameter [Sch88,Sch94]. That result depends crucially on the uniform
boundedness of the first time derivative of solutions being propagated for positive time, which does not generally
hold for three-scale systems (1) [CJS18, §2]. We use the time-integration method developed in [Che12, Che14]
to mitigate the effect of the lack of uniform boundedness of first time derivatives. Moreover, the estimates in
(16) are O(εM) for those components and norms for which uniform boundedness of the first time derivative
holds, and tend, except for (16e), to the two-scale O(εM) convergence rate as ν → 0, which makes (1) tend to a
two-scale system. Obtaining that asymptotic consistency is only possible on account of the improvement (14)
over the estimate εM‖Vt‖n−1 ≤ c in [CJS18].

The Hj estimates (16a) and (16c) for intermediate values of j are obtained using interpolation. Those
estimates are the starting point for an improved estimate for z-averages of products derived in §E, which is used
in the proof of (16b), and should be useful more generally.

One of the main techniques used in the proof of (16) is partitioning the solution into fast, intermediate, and
slow modes, and analyzing each mode separately. In contrast to the two-scale case (e.g. [Che14, §2]), the exact
eigenspaces of the large operator 1

εA
LA + 1

εM
LM having eigenvalues of sizes strictly O( 1

εA
), O( 1

εM
), and o( 1

εM
)

depend on the parameter µ. For simplicity, in §2 we define the fast, intermediate, and slow modes to be the
fixed projections onto the limits as µ→ 0 of the exact eigenspaces. These projections are also used to determine
the appropriate form of the initial data used in the convergence rate part of Theorem 1.1. However, certain
estimates in §3 for the intermediate modes require the use of the exact µ-dependent modes.

The only previous convergence rate result we know for evolutionary PDEs with two parameters tending to
zero independently appears in [FFGHR17], which considered the low Rossby and magnetic Reynolds number
limit of the stochastically-forced viscous incompressible rotating MHD system. Compared to the hyperbolic
system considered here the deterministic case without forcing [FFGHR17, p. 4444] of their system has many
simplifying features, including the absence of a matrix multiplying the time derivatives, which eliminates the
need for restriction (13), the presence of a closed L2 energy estimate, and the presence of regularizing viscous
terms whose diffusivity rates tend to infinity as the small parameters tend to zero, which yields a highly parabolic
system that induces smoothing when the large operator is used to determine the fast components in terms of
the slow component.

2. Analysis of the Large Operator

Following [CJS18, §4] but without treating each Fourier mode separately, let P0 denote the L2-orthogonal
projection operator onto the nullspace of LA, and let P1 denote the L2-orthogonal projection operator onto the
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nullspace of P0LMP0. Then R(I − P0) ⊆ N(P0LMP0) = R(P1) = N(I − P1), so R(I − P0) ⊥ R(I − P1), and
hence

(I − P0)(I − P1) = 0 = (I − P1)(I − P0). (17)

Expanding the factors in (17) shows that P0P1 = P1P0, which implies that P := P0P1 is an orthogonal projection
operator satisfying P(I − Pj) = 0 = (I − Pj)P for j ∈ {0, 1}. Moreover, (17) and the definition of P yield
(I − P0) + (I − P1) + P = I + (I − P0)(I − P1) = I, which shows that the sum of the fast, intermediate, and
slow modes defined by

VF := (I − P0)V, VI := (I − P1)V, VS := PV (18)

satisfies VF + VI + VS = V. These modes are the limits as µ → 0 of the direct sums of the eigenspaces of
LA + µLM whose eigenvalues are strictly O(1), O(µ), and o(µ), respectively [Kat82], [CJS18, §4]. Moreover,
since the Pj are orthogonal projections onto the null spaces of constant-coefficient differential operators they
commute with derivatives, and hence are also orthogonal in any Hk. Therefore estimates for the full solution
obtained by combining estimates for each mode are as sharp as the component estimates, modulo constant
factors.

The above results do not depend on the particular form of the operators LA and LM. We now calculate the
projections and modes for the MHD system (4). For brevity, we restrict consideration to V = (r,u,b) satisfying
∇·b = 0, which causes no difficulties since we only consider initial data and solutions satisfying that constraint.
Recall that Pdiv

h , az, and av were defined in (6) and (9).

Lemma 2.1. Assume that the spatial domain is T3 and that V = (r,u,b) where b satisfies ∇·b = 0. Then

(1) LAV = 0 iff ∂zuh = 0 = ∂zbh, ∇h·uh = 0, and b3 = avb3.

(2)
(

1
εA
LA + 1

εM
LM

)
V = 0 iff

∂zV = 0, ∇h·uh = 0, b3 = avb3 − εA
εM

(r − avr) . (19)

(3) The formulas for the projections are

P0 =

1 (
Pdiv

h az I2×2

1

) (
az I2×2

av

)
 , P1 =

az (
I2×2

az

)
I3×3

 ,

P =

az (
Pdiv

h az I2×2
az

) (
az I2×2

av

)
 ,

(20)

where all missing entries vanish.
(4) All eigenvalues of LA + µLM that are o(µ) are identically zero.
(5) Using the notations V` = (r`,u`,b`) for ` ∈ {F, I, S} and w` = (w`

h, w
`
3) for w ∈ {u,b}, the formulas

for the fast, intermediate and slow modes are

(
rF uF bF

)
=

(
0

(
(1− az Pdiv

h )uh

0

) (
(1− az)bh

(1− av)b3

))
,

(
rI uI bI

)
=

(
(1− az)r

(
02

(1− az)u3

)
03

)
,

(
rS uS bS

)
=

(
az r

(
Pdiv
h az uh

az u3

) (
az bh

avb3

))
.

(21)

In particular,
∇·bF = 0, ∇·bI = 0, ∇·bS = 0, (22)
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VS is independent of z, (23)

and
∇h·uSh = 0 = ∇h·bSh . (24)

(6) For any nonnegative integer j, there are constants c1 and c2 such that

c1‖(LA + µLM)V‖j ≤ ‖∂zuFh ‖j + ‖∇h·uFh ‖j + ‖∂z(bFh − µ∆−1∇h∂zr
I)‖j

+ ‖bF3 + µ∆−1∆hr‖j+1 + µ[‖∂zrI‖j + ‖∂zuI3‖j ]
≤ c2‖(LA + µLM)V‖j .

(25)

Proof. Applying LA to V yields
(
0,
(
∂zbh−∇hb3

0

)
,
(

∂zuh
−∇h·uh

))
. Hence the last part of LAV vanishes iff ∂zuh = 0

and ∇h·uh = 0. Taking the horizontal divergence of the second component of LA and using the fact that ∇·b = 0
yields

∇h·(∂zbh −∇hb3) = −∆b3. (26)

Hence if LAV = 0 then b3 is a constant, i.e., b3 = avb3, which implies further that ∂zbh = ∇hb3 = 0. On the
other hand, when those conditions hold then each term in the second part of LAV vanishes.

Similarly, (
1

εA
LA +

1

εM
LM

)
V =


− 1
εM
∇·u 1

εA

(
−∇hb3+∂zbh−

εA
εM
∇hr

)
− 1
εM

∂zr


1
εA

(
∂zuh
−∇h·uh

)

 . (27)

The last component of the second part vanishes iff

∂zr = 0, (28)

and since ∂zu3 = ∇·u − ∇h·uh, the first and last parts vanish iff ∇h·uh = 0 and ∂zu = 0. Next, use (26) and
(28) to write the horizontal divergence of the second part as

∇h·
(
−∇hb3 + ∂zbh −

εA
εM
∇hr

)
= −(∆b3 + εA

εM
∆hr) = ∆(b3 + εA

εM
r), (29)

which vanishes iff the last equation of (19) holds. That equation together with (28) implies that ∂zb3 = 0.
Finally, the last equation of (19) also shows that the horizontal components of the second part of (27) vanish
iff ∂zbh = 0.

The formula for P0 follows from the conditions for LAV to vanish in the first part of the lemma, and that
formula together with the formula for LM in (7) implies that

P0LMP0V = −
(
∂zu3,

(
0
∂zr

)
, 0
)
. (30)

Formula (30) implies the formula for P1, and the formulas for the Pj yield P.
The conditions (19) for (LA + µLM)V to vanish differ from the conditions to belong to the null space of P

only by adding an O(µ) term to the formula for b3. Hence the rank of the restriction to any Fourier mode of
N(LA+µLM) equals the rank of the restriction to that mode of P, which in turn equals the dimension of the direct
sum of all eigenspaces of LA + µLM in that Fourier mode having eigenvalues of size o(µ) [Kat82], [CJS18, §4].
Hence all such eigenvalues vanish identically.

The formulas (21) for the modes follow from their definition (18) and formula (20) for the projections.
Formula (21) for bS plus the fact that az b is independent of z imply that ∇·bS = 0, and trivially ∇·bI = 0,
which implies the rest of (22). Each component of VS contains az or av, so (23) holds. The left equation in
(24) follows from the presence of the operator Pdiv

h in the formula for uSh , while the right equation there follows
from (22)–(23).
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The formula for uFh in (21) and the formula (27) for (LA + µLM)V yield

‖∂zuFh ‖j = ‖∂zuh‖j ≤ c‖(LA + µLM)V‖j , (31)

‖∇h·uFh ‖j = ‖∇h·uh‖j ≤ c‖(LA + µLM)V‖j . (32)

By the ellipticity of ∆, formula (21) for bF3 , the first identity in (29) and (27),

‖bF3 + µ∆−1∆hr‖j+1 = ‖∆−1[∆(1− av)b3 + µ∆hr‖j+1 ≤ c‖∆b3 + µ∆hr‖j−1

= c‖∇h·(∇hb3 + µ∇hr − ∂zbh)‖j−1 ≤ c‖(LA + µLM)V‖j
(33)

Also, combining formula (21) for bFh , formula (27) for LA + µLM, and (33) yields

‖∂z(bFh − µ∆−1∇h∂zr
I)‖j = ‖∂z(bh − µ∆−1∇h∂zr)‖j

= ‖∂zbh − µ∇h∆
−1(∆r −∆hr)‖j

= ‖(∂zbh − µ∇hr −∇hb3) +∇h(b3 + µ∆−1∆hr)‖j
≤ ‖(LA + µLM)V‖j + ‖bF3 + µ∆−1∆hr‖j+1 ≤ c‖(LA + µLM)V‖j .

(34)

By the formula (21) defining the modes and formula (27) for LA + µLM,

µ‖∂zrI‖j = µ‖∂zr‖j ≤ c‖(LA + µLM)V‖j , (35)

µ‖∂zuI3‖j = µ‖∂zu3‖j = µ‖∇·u−∇h·uh‖j ≤ c‖(LA + µLM)V‖j (36)

Combining (31)–(36) yields the right inequality in (25), and the expressions estimated there yield all the terms
in (LA + µLM)V so the left inequality also holds. �

Solving the PDE for (LA + µLM)V and using the bounds (14) to estimate the result yields a bound for the
Hn−1 norm of that expression, which by (25) implies “static” estimates for the fast and intermediate modes,
which will be written explicitly in §3. However, we also need to obtain “dynamic” estimates for the intermediate
and slow modes via differential inequalities. To do so we cannot use the limit modes defined above. The exact
slow eigenspace of the zero eigenvalue of LA + µLM was determined in Lemma 2.1. In the next lemma we
obtain formulas for 7-vectors of Fourier multiplier operators Vα and Vβ and the self-adjoint Fourier multiplier
operator Q, such that

(LA + µLM)Vα · Ṽ + µQ∂zVβ · Ṽ = 0 = (LA + µLM)Vβ · Ṽ + µQ∂zVα · Ṽ (37)

for every vector-valued function Ṽ. Equations (37) imply that for every Fourier mode (k, l,m) the linear
combinations (Vα ± Vβ)ei(kx+ly+mz) are eigenfunctions of the operator LA + µLM with purely imaginary or

zero eigenvalues ∓imµQ̂ where

Q̂ := e−i(kx+ly+mz)
[
Qei(kx+ly+mz)

]
, (38)

i.e., they yield the exact µ-dependent intermediate eigenspaces. However, in §3 we will obtain dynamic estimates
for (1− az)Vα ·V and (1− az)Vβ ·V rather than (Vα ±Vβ) ·V, to reduce disruption to the structure of the
rest of the PDE. The operator 1− az is applied because the eigenvalues ±imµQ are only of size µ when m 6= 0.
Moreover, since ∇·b = 0 we will replace Vα by the variant Vno-div

α defined in (39) that omits the gradient term
in the magnetic field component.
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Since the limits as µ → 0 of Vα and Vβ should belong to the intermediate mode defined in (21), trying
various perturbations leads to the ansatz

Vα := Vdiv
α + Vno-div

α =

 0
03

µA∆−1∂z∇

+

 1
03

−µ
(

0
0
1

)
+ µ3

(
0
0
B

)
 ,

Vβ :=

 0(
µ2C∆−1∂z∇h

D

)
03

 ,

(39)

where the vectors have been normalized by setting the first component of Vα to the identity operator 1, and
factors of ∆−1 have been included so that if (A,B, C,D) are all homogeneous order zero Fourier multipliers then
all components of Vα and Vβ will also be Fourier multipliers of order zero. Furthermore, in the limit as µ→ 0
the operator −∂zQ should tend to the operator −∂z appearing in P0LMP0 in (30), i.e., Q should tend to one.

Lemma 2.2. The vectors Vα and Vβ defined in (39) satisfy (37) with

Q =

√
2
(

1 + µ2 +
√

(1 + µ2)2 − 4µ2∂2
z∆−1

)−1

, i.e., Q̂ =
√

2√
1+µ2+

√
(1+µ2)2−4µ2 m2

k2+l2+m2

, (40)

provided that

C = −Q
(
1− µ2∂2

z∆−1Q2
)−1

, A = −CQ−1, B = ∂2
z∆−1CQ, D = Q−1. (41)

Proof. Substituting (39) into (37) yields

 0(
−µ3(B−CQ∂2

z∆−1)∇h

−µ∂z(1−DQ)

)
03

 = 0 =


−µ∂z(D −Q+ µ2C∆h∆−1)

03

µ2∂2
z∆−1(C +AQ)∇−

(
0
0

µ2∂z(C+Q−µ2BQ)

)
 , (42)

which will hold provided that

C +AQ = 0, DQ = 1, B = CQ∂2
z∆−1, C +Q = µ2BQ, D −Q+ µ2∆h∆−1C = 0. (43)

Solving the first three equations in (43) for A, D, and B yields the formulas for those operators claimed in
(41). Substituting those formulas into the fourth equation in (43) and solving the result for C yields the
formula for that operator in (41). Substituting the formulas obtained so far into the last equation in (43) yields
Q−1 −Q− µ2∆h∆−1Q(1− µ2∂2

z∆−1Q2)−1 = 0, whose only solution tending to one as µ→ 0 is (40). �

We now turn to explicating the form that initial data satisfying (10) takes.

Lemma 2.3. Initial data V0 = (r0,u0,b0) will be uniformly bounded in Hn and satisfy the constraint ∇·b0 = 0
and the condition (10) iff it has the form

r0 = r0,S + εMr
0,I , u0

h = u0,S
h + εAu0,F

h , u0
3 = u0,S

3 + εMu
0,I
3 ,

b0
h = b0,S

h + εAb0,F
h , b03 = avb03 − µ(1− av)r0,S + εAb

0,F
3 ,

(44)
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where every term w0,` with w ∈ {r, uh, u3,bh, b3} and ` ∈ {F, I, S} has the form specified for the w component
of the ` mode in (21), and may depend on (εA, εM) but satisfies

‖r0,S‖n +
[
‖∂zr0,I‖n−1 + εM‖r0,I‖n

]
+ ‖u0,S

h ‖n +
[
‖∂zu0,F

h ‖n−1 + ‖∇h·u0,F
h ‖n + εA‖u0,F

h ‖n
]

+ ‖u0,S
3 ‖n +

[
‖∂zu0,I

3 ‖n−1 + εM‖u0,I
3 ‖n

]
+ ‖b0,S

h ‖n +
[
‖∂zb0,F

h ‖n−1 + εA‖b0,F
h ‖n

]
+ | avb03|+ ‖b

0,F
3 + ∆−1∆hr

0,I‖n ≤ c

(45)

uniformly in those parameters, and

∇h·b0,S
h = 0 = ∇h·b0,F

h + ∂zb
0,F
3 . (46)

Proof. Since the terms in (44) are allowed to depend on εA and εM, that formula simply expresses the separation
of the initial data into fast, intermediate, and slow modes, with the factors of εA and εM and the inclusion of the
specific term −µ(1− av)r0,S being purely for later convenience. By Lemma 2.1, the condition ∇·b = 0 implies
that each mode is divergence-free, and the conditions ∇·b` = 0 for ` ∈ {F, I, S} clearly imply that ∇·b = 0, so
for initial data of the form (44) the conditions (46) are equivalent to the assumed condition that ∇·b0 = 0.

Since, as shown above, the square of the Hn norm of V0 equals the sum of the squares of the Hn norms of
its modes, the assumed uniform boundedness of ‖V0‖n is equivalent to

‖r0,S‖n + εM‖r0,I‖n + ‖u0,S
h ‖n + εA‖u0,F

h ‖n + ‖u0,S
3 ‖n + εM‖u0,I

3 ‖n
+ ‖b0,S

h ‖n + εA‖b0,F
h ‖n + | avb03|+ ‖ − µ(1− av)r0,S + εAb

0,F
3 ‖n ≤ c.

(47)

For k = n− 1 the sum of terms estimated in (25) is equivalent to the Hn−1 norm of (LA + µLM)V. Hence the
assumed uniform boundedness of 1

εA
‖(LA+µLM)V0‖n−1 becomes, for initial data V0 of the form (44) satisfying

(46),

‖∂zu0,F
h ‖n−1 + ‖∇h·u0,F

h ‖n + ‖∂z(b0,F
h −∆−1∇h∂zr

0,I)‖n−1 + ‖∂zr0,I‖n−1

+ ‖∂zu0,I
3 ‖n−1 + ‖ − ε−1

M (1− av)r0,S + b0,F3 + ε−1
M ∆−1∆hr

0,S + ∆−1∆hr
0,I‖n ≤ c.

(48)

Since the expression −µ(1− av)r0,S appearing in the last term in (47) can be estimated by the first term there

it can be omitted from that last term, leaving εA‖b0,F3 ‖n. Similarly, the expression −∂z(∆−1∆h)∂zr
0,I in the

third term of (48) can be omitted. Also the expression −ε−1
M (1 − av)r0,S + ε−1

M ∆−1∆hr
0,S in the last term of

(48) vanishes identically because r0,S is independent of z, leaving ‖b0,F3 + ∆−1∆hr
0,I‖n. The uniform bounds

for that term and for εM‖r0,I‖n from (47) imply the uniform boundedness of εM‖b0,F3 ‖n, so the modified term

εA‖b0,F3 ‖n for (47) can be omitted. However, since (48) only contains an O(1) estimate for ∂zr
0,I not r0,I itself,

it is not possible to omit the expression ∆−1∆hr
0,I from the term ‖b0,F3 + ∆−1∆hr

0,I‖n. Adding (47) and (48)
and making the above-mentioned modifications shows that (45) is equivalent to the uniform boundedness of
‖V0‖n + 1

εA
‖(LA + µεM)V0‖n−1 for initial data of the form (44). �

We note that, by a slight notational exception, the fast part of b03 in (44) is

(b03)F = −µ(1− av)r0,S + εAb
0,F
3 , (49)

showing that, to the leading O(µ) order, (b03)F only depends on the slow part of r0.
Although Lemma 2.3 determines the most general initial data satisfying the conditions needed for the ex-

istence and convergence results, as noted in the introduction we need more to obtain the rate of convergence.
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In order to allow the initial data to contain all modes but not interfere with the convergence rate, we will still
assume that the initial data have the form (44), and that (46) holds, but will assume that

all terms w0,` in (44) are uniformly bounded in Hn and each term w0,S is fixed, (50)

which automatically implies that (45) holds. We allow the w0,F , w0,I to depend on (εA, εM) because we only
bound the distance of the fast and intermediate modes to zero (i.e., estimate their Sobolev norms), not their
distance to any non-trivial limits.

3. Convergence Rate Estimates

Recall that “static” estimates are obtained by solving the PDE (4) for certain terms and bounding the norms
of the result via (14), while “dynamic” estimates are obtained via energy estimates for the time evolution.
We will estimate the size of the fast modes statically, the size of the intermediate modes statically and then
dynamically, and the difference between the slow modes and the solution of the limit system dynamically, with
earlier estimates used when deriving later ones. To optimize the use of earlier estimates we use the interpolation
estimate (145) to obtain smaller estimates in weaker norms. Recall that µ = εA

εM
= ενM is assumed to be less

than one. To see easily how the estimate to be obtained depends on the norm used, we introduce an increasing
geometric sequence

εj := ε1+ν−jν
M (51)

so that by (13), (11), ε0 = εA, ε1 = εM, εj = µεj+1, εn ≤ c.

3.1. Static estimates

Static estimates will be obtained by solving the PDE system for (LA +µLM)V and using the uniform bounds
(14) together with the standard Sobolev product and composition estimates

‖fg‖j ≤ c‖f‖n−1‖g‖j , j = 0, . . . , n− 1 (52)

‖F (g)‖n−1 ≤ C(‖g‖n−1), (53)

which will all be used henceforth without mention, plus the interpolation estimate (145). We will also need an
estimate for the time integral of certain fast terms, which will be obtained similarly from the time integral of
the PDE.

Theorem 3.1. Assume that the basic conditions of Theorem 1.1 hold. Then the fast component VF satisfies
the estimates

sup
t∈[0,T ]

[∥∥uFh
∥∥
j

+
∥∥∇h·uFh

∥∥
j

+
∥∥∂zuF∥∥j +

∥∥∂zbF∥∥j +
∥∥bFh

∥∥
j

+
∥∥(1− az)bF3

∥∥
j

+‖ az uFh ‖j+1 + ‖bF3 + µ∆−1∆hr‖j+1

]
≤ C εj , j = 0 . . . n− 1,

(54)

sup
t∈[0,T ]

[∥∥∥ ∫ t

0

az uFh dt
′
∥∥∥
n

+
∥∥∥∫ t

0

uFh dt
′
∥∥∥
n−1

+
∥∥∥∫ t

0

∇h·uFh dt′
∥∥∥
n−1

+
∥∥∥∫ t

0

az

(
bF3 + µ∆−1∆hr

S
)
dt′
∥∥∥
n

]
≤ C(T ) ε1+ν

M ,

(55)

and the intermediate component (rI , uI3) = ((1− az)r, (1− az)u3) satisfies

‖(rI , uI3)‖j ≤ c‖(∂zrI , ∂zuI3)‖j ≤ c εj+1 =
c εj
µ
, j = 0 . . . n− 1. (56)
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Note that the bounds in (55) for the time integrals of fast components are smaller than the bounds in (54)
for those components themselves.

Proof. Taking the Hk norm of both sides of εA times (1) and using the interpolation bounds (145) to estimate
the left side shows that

‖(LA + µLM)V‖j ≤ c ε1+ν−jν
M = c εj . (57)

Combining (57), (25) and the Poincaré inequality

‖(1− az)f‖j ≤ c‖∂zf‖j , (58)

yields (56). By (25), (57), and the fact that uF3 ≡ 0,

‖∂zuF ‖j + ‖∇h·uFh ‖j + ‖bF3 + µ∆−1∆hr‖j+1 ≤ c εj , j = 0, . . . , n− 1. (59)

Combining the definition (21) of the fast modes, the Poincaré inequality (58), the second inequality of (25),
and (57) yields[

‖∂zbF ‖j + ‖bFh ‖j + ‖(1− az)bF3 ‖j
]
≤ c‖∂zbF ‖j

≤ c
[
‖∂z(bFh − µ∆−1∇h∂zr

I)‖j + µ‖∂zrI‖j + ‖∂z(bF3 + µ∆−1∆hr)‖j + µ‖∂zrI‖j
]

≤ c‖(LA + µLM)V‖j ≤ c εj , j = 0, . . . , n− 1.

(60)

By the definition (21) of the fast modes

uFh = (1− az)uFh + az uFh = (1− az)uFh +∇h∆
−1
h az(∇h·uFh ). (61)

Note that ∆h is elliptic when applied to functions independent of z so

‖∇h∆
−1
h az f‖j+1 ≤ c‖f‖j . (62)

By (61), (58), (62), (25), and (57),

‖uFh ‖j + ‖ az uFh ‖j+1 ≤ ‖(1− az)uFh ‖j + ‖∇h∆
−1
h az(∇h·uFh )‖j+1

≤ c‖∂zuFh ‖j + c‖∇h·uFh ‖j ≤ c‖(LA + µLM)V‖j ≤ c εj j = 0, . . . , n− 1.
(63)

Combining (59), (60), and (63) yields (54).
The bounds on time integrals in (55) are obtained by integrating (1) with respect to time, which yields

∫ t

0

(LA + µLM)V = εA

(
A0(εMV)V|t0 −

∫ t

0

(εMVt · ∇VA0)V +

∫ t

0

d∑
i=1

Ai(V) Vxi

)
. (64)

For the MHD system (4), only the variable r appears in the argument of A0, and (4a) shows that the time
derivative of r is O(ε−1

M ), so the term εMVt · ∇VA0 is uniformly bounded. This yields the estimate

∥∥∥∫ t

0

(LA + µLM)V dt′
∥∥∥
n−1
≤ c εA = c ε1+ν

M . (65)

Since spatial operators commute with time integration, replacing every solution component in the second in-
equality of (25) with its time-integral from 0 to t and combining the result with the bound (65) yields (55) since
az r = rS . �
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3.2. Intermediate system dynamic estimates

Theorem 3.2. Assume that the conditions of the convergence part of Theorem 1.1 hold, and let (r,u,b) be the
solution obtained for the MHD system (4). Then

‖rI‖j + ‖uI3‖j ≤ c εmax(j,1), j = 0, . . . , n− 1. (66)

The case j = 0 in (66) was already proven in Theorem 3.1. The remaining cases in (66) are an improvement
over the corresponding cases in (56) by one factor of µ.

To prove (66) we will use the variables

α := (1− az)Vno-div
α ·V = (1− az)(r − µb3 + µ3CQ∆−1∂2

zb3),

β := (1− az)Vβ ·V = (1− az)(Du3 + µ2C∆−1∂z∇h·uh),
(67)

where the operators Vno-div
α , Vβ , C, D, and Q were defined in (39)–(41). As a preliminary we will derive a

system of PDEs satisfied by (α, β), with remainder terms that are consistent with the desired estimate (66).
The general idea is to apply each of the operators Vno-div

α and Vβ to the PDE, note that by Lemma 2.2 the
large terms of the result are ∂zQ applied to the other operator, and calculate the form of the order one terms.
To simplify that calculation we first simplify the original equations by moving to the right sides all terms whose
Hj norms can be estimated by a constant times εj or the Hj norms of rI and uI3 using (54), (56), and (145).
To do so we will the formulas (21) and in particular their consequence

u·∇ = (uS + uI + uF )·∇ = uS ·∇+ uI3∂z + uFh ·∇h. (68)

Starting from the MHD equations (4), we replace the argument εMr of ρ and a by εMr
S or zero where

possible and compensate by adding terms to the right sides of the equations, except that we retain a factor of
a(εMr

S) multiplying 1
εM
∇h·uh because that expression will then cancel exactly when we build the time evolution

equation for α, (72). In addition, we apply 1 − az to the equations since that operator appears in all terms of
the formulas (67) for α and β. Since slow modes are independent of z the operator 1 − az can be moved past
most coefficients. This yields

a(εMr
S)(∂t + (uS ·∇))rI + a(εMr

S)ρ(εMr
S)

εM
∂zu

I
3 + a(εMr

S)
εM

(1− az)∇h·uh = (1− az)R1, (69a)

ρ(εMr
S)(∂t + (uS ·∇))(1− az)uh + a(εMr

S)ρ(εMr
S)−1

εM
∇hr

I

+ (1− az)[∇h
|b|2

2 − (b·∇)bh]− (1−az)
εA

(∂zb
F
h −∇hb

F
3 − µ∇hr

I) = (1− az)R2,
(69b)

ρ(εMr
S)(∂t + (uS ·∇))uI3 + a(εMr

S)ρ(εMr
S)

εM
∂zr

I − (bSh ·∇h)(1− az)bF3

= (1− az)R3,
(69c)

(∂t + (uS ·∇))(1− az)b3 − (bSh ·∇h)u
I
3 + (1− az) 1

εA
∇h·uh = (1− az)R4, (69d)

where the equation for bh has been omitted since it does not enter into α or β, and

R1 := −a(εMr)
(
uI3∂zr + (uFh ·∇h)r

)
+
(
a(εMr

S)− a(εMr)
)

(∂tr + (uS ·∇)r)

+
a(εMr

S)ρ(εMr
S)− a(εMr)ρ(εMr)

εM
(∇h·uh + ∂zu

I
3) + a(εMr

S)
1− ρ(εMr

S)

εM
∇h·uh,

(70a)

R2 := −ρ(εMr)
(
uI3∂zuh + (uFh ·∇h)uh

)
+
(
ρ(εMr

S)− ρ(εMr)
)

(∂tuh + (uS ·∇)uh)

+
a(εMr

S)ρ(εMr
S)− a(εMr)ρ(εMr)

εM
∇hr,

(70b)
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R3 := −ρ(εMr)
(
uI3∂zu3 + (uFh ·∇h)u3

)
+
(
ρ(εMr

S)− ρ(εMr)
)

(∂tu3 + (uS ·∇)u3)

+
a(εMr

S)ρ(εMr
S)− a(εMr)ρ(εMr)

εM
∂zr − bh · ∂zbFh + (bFh ·∇h)b

F
3 ,

(70c)

R4 = −
(
uI3∂zb3 + (uFh ·∇h)b3

)
− (∇h·uh)b3 + (bFh ·∇h)u3. (70d)

Wherever uI3 appears undifferentiated in Ri, the Hj norm of the term in which it appears can be estimated by a
constant times the Hj norm of uI3, for j = 0, . . . , n−1. Similarly, for any smooth function F and j = 0, . . . , n−1,

‖F (εMr
S)−F (εMr)
εM

‖j ≤ c‖rI‖j , and ‖[F (εMr
S) − F (εMr)](∂tV + (uS ·∇)V)‖j ≤ cεM‖rI‖j(‖Vt‖n−1 + ‖V‖n) ≤

c‖rI‖j . By (54), terms containing uFh , bFh , ∇h·uFh = ∇h·uh, or ∂zb
F
h without further derivatives can be estimated

in the Hj norm by cεj , for 0 ≤ j ≤ n− 1. Since these cases cover all the terms in the Ri,

4∑
i=1

‖(1− az)Ri‖j ≤
4∑
i=1

‖Ri‖j ≤ c(‖(rI , uI3)‖j + εj), j = 0, . . . , n− 1. (71)

To obtain the evolution equation for α, subtract µa(εMr
S) times (69d) from (69a) and add a(εMr

S)µ3CQ∆−1∂2
z

applied to (69d) to the result. Then commute CQ∆−1∂2
z past uS·∇, make the coefficient of the large terms that

do not cancel be aρ everywhere while compensating via terms on the right side, force the function to which
µ(bSh ·∇h) is applied to be β√

1+µ2
for reasons to be explained later and again compensate on the right side, and

use the identity 1 = QD from (41) that makes the large terms exactly involve β, as we know from (37) that
they must. This yields

a(εMr
S)(∂t + (uS ·∇))α+ µ√

1+µ2
(bSh ·∇h)β +

a(εMr
S)ρ(εMr

S)

εM
Q∂zβ = Rα,1 +Rα,2 +Rα,3 +Rα,4, (72)

where

Rα,1 := (1− az)R1 − µa(εMr
S)(1− az)R4 + µ3a(εMr

S)CQ∆−1∂2
zR4 (73)

comes from the right sides of the modified equations (69),

Rα,2 := −µ3a(εMr
S)[CQ∆−1∂2

z ,u
S ]·∇(1− az)bF3 (74)

comes from commuting the operator applied to (69d) past the coefficient uS3 ,

Rα,3 := −µεM a(εMr
S)−1

εM
(bSh ·∇h)u

I
3 + µ3a(εMr

S)CQ∆−1∂z
[
(bSh ·∇h)∂zu

I
3

]
+ µ3a(εMr

S)ρ(εMr
S)−1

εA
CQ∆−1∂2

z (∇h·uh)
(75)

comes from adding compensating terms to the right side and moving entire terms there, and

Rα,4 := µ(bSh ·∇h)
(

β√
1+µ2

− uI3
)

(76)

comes from forcing the term involving bSh ·∇h to have the desired form, and will be rearranged further later.
Similarly, to obtain the evolution equation for β, add µ2C∆−1∂z∇h· applied to (69b) to D applied to (69c),

and rearrange terms in similar fashion as for (72). Then force the function to which bSh ·∇h is applied on the left
side of the equation to be µ√

1+µ2
α for reasons to be explained later, and subtract appropriate constants from the



TITLE WILL BE SET BY THE PUBLISHER 15

factors appearing inside commutators since that does not affect their value, in order to facilitate estimate the
size of the resulting terms. Also, to ensure the symmetry of the resulting system for α and β, multiply the large

term µ2

εA
(1− az)C∆−1∂z∇h·(∂zbh−∇hb3− µ∇hr) appearing on the left side of the equation by a(εMr

S)ρ(εMr
S)

and compensate by adding a(εMr
S)ρ(εMr

S)− 1 times that term to the right side. By (41), the resulting large
term exactly involves α. This yields

ρ(εMr
S)(∂t + (uS ·∇))β + µ√

1+µ2
(bSh ·∇h)α+

a(εMr
S)ρ(εMr

S)

εM
Q∂zα = Rβ,1 +Rβ,2 +Rβ,3 +Rβ,4, (77)

where

Rβ,1 := D(1− az)R3 + µ2C∆−1∂z∇h·(1− az)R2

comes from the right sides of (69),

Rβ,2 = −µ2εM[D−1
µ2 , ρ(εMr

S)−1
εM

](∂t + (uS ·∇))uI3 − µ2ρ(εMr
S)[D−1

µ2 ,uS ]·∇uI3 − µ2[D−1
µ2 , a(εMr

S)ρ(εMr
S)−1

εM
]∂zr

I

− µ2εM[C∆−1∂z∇h,
ρ(εMr

S)−1
εM

] · (∂t + (uS ·∇))(1− az)uFh − µ2ρ(εMr
S)[C∆−1∂z∇h,u

S ]∇(1− az)uFh

− µ2[C∆−1∂z∇h,
a(εMr

S)ρ(εMr
S)−1

εM
] · ∇hr

I

comes from commuting the operators applied to (69c) and (69b) past coefficients in those equations,

Rβ,3 := −µ2 a(εMr
S)ρ(εMr

S)−1
εM

C∆−1∆h∂zr
I−µ2C∆−1∂z∇h · (∇h

|b|2
2 − (b·∇)bh)

− µ2 a(εMr
S)ρ(εMr

S)−1
εA

C∂z(bF3 + µ∆−1∆hr)

comes from moving terms to the right side, balancing a term added on the left side, and using (26), and

Rβ,4 := µ√
1+µ2

(bSh ·∇h)α+D(bSh ·∇h)(1− az)bF3 (78)

comes from forcing the term involving bSh ·∇h to have the desired form, and will be rearranged further later.
We now estimate the terms Rα,i and Rβ,i. Since the operators applied to the Ri in Rα,1 and Rβ,1 are all

bounded, (71) implies that

‖Rα,1‖j + ‖Rβ,1‖j ≤ c(‖(rI , uI3)‖j + εj), j = 0, . . . , n− 1. (79)

The terms in Rα,2 and Rβ,2 all involve commutators, and the following lemma says that the commutator
gains one derivative, which in many cases is a vital improvement.

Lemma 3.3. ( [MS01, Lemma 2.5]) Let P̂ (k, l,m) be homogeneous of degree zero and real analytic for (k, l,m) 6=
(0, 0, 0), and let P be the Fourier multiplier operator defined by P̂ f = P̂ f̂ . Then for all n ≥ 3, f ∈ Hn(T3),
j ∈ 1, . . . , n, and g ∈ Hj−1,

‖[P, f ]g‖j ≤ c‖f‖n‖g‖j−1. (80)

The constant-coefficient pseudo-differential operators appearing in the commutators in Rα,2 and Rβ,2 are all

homogeneous of degree zero and bounded uniformly in µ (in particular (88) below implies a bound on D−1
µ2 ),

and they are real analytic for (k, l,m) 6= (0, 0, 0) since the denominators in the formulas for C, D, and Q in
(40), (41) are positive for µ < 1, so they satisfy the conditions of Lemma 3.3. The expressions to which the
commutators are applied have one of two forms: either they consist of a single spatial derivative applied to a fast
or intermediate component that is estimated in (54) or (56), or they are some component of (∂t+ (uS·∇))V. In
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the former case the expression contains a factor µp with p ≥ 2, so by Lemma 3.3 its Hj norm for j = 0, . . . , n−1
can be estimated by

cµ2‖∇((1− az)bF3 , u
I
3, r

I ,uFh )‖max(0,j−1) ≤ cµ2‖((1− az)bF3 , u
I
3, r

I ,uFh )‖max(1,j) ≤ cµ2εj+2 ≤ c εj .

In the latter case the expression contains the factor µ2εM so by the interpolation bounds (145) its Hj norm for
j = 0, . . . , n− 1 can be estimated by cµ2εM(‖Vt‖j−1 + c) ≤ cµ2εMµ

−j ≤ cµεj . Hence

‖Rα,2‖j + ‖Rβ,2‖j ≤ c εj , j = 0, . . . , n− 1. (81)

To estimate the terms in Rα,3 and Rβ,3 note that those terms either have a factor µ2εM that is smaller than
all εj , have a zeroth-order pseudo-differential operator applied to ∂zr

I , bz (after applying the z-derivative in the
expression to some factor of b), ∇h·uh, or ∂z(b

F
3 +µ∆−1∆hr), all of which have their Hj norms estimated in (54)

or (56), or have a zeroth-order pseudo-differential operator applied to ∆−1∂z[(bh·∇h)∂zu
I
3]. In the first case using

the uniform estimate (14) shows that the Hn−1 norm is bounded by c ε0. In the middle cases each term contains a
factor of µ2 so itsHj norm is bounded by cµ2εj+1 ≤ c εj . In the final case, since ‖∆−1∂zf‖j ≤ c‖f‖max(j−1,0) and

the term contains a factor of µ3, it is bounded by cµ3‖∇∂zuI3‖max(j−1,0) ≤ cµ3‖∂zuI3‖max(j,1) ≤ cµ3εj+2 ≤ cµεj .
Together, these yield

‖Rα,3‖j + ‖Rβ,3‖j ≤ c εj , j = 0, . . . , n− 1. (82)

For j ≤ n− 2 the terms Rα,4 and Rβ,4 can be estimated by using the fact that (54) and (56) imply that

µ‖VF
∗ ‖j+1 + µ2‖VI‖j+1 ≤ c(µεj+1 + µ2εj+2) ≤ c εj , j = 0, . . . , n− 2, (83)

where VF
∗ means all components of VF except az b

F
3 , which is not estimated in (54). The estimate ‖Rα,4‖j +

‖Rβ,4‖j ≤ cεj can therefore be obtained for j ≤ n− 2 by using the formulas for α and β in (67) together with

the facts that D−1
µ2 is a bounded zeroth-order pseudo-differential operator and that

bF3 = (bF3 + µ∆−1∆hr) + µ∆−1∂2
zr
I − µ(r − avr) (84)

plus estimates similar to those used for Rα,3 and Rβ,3.
However, (83) is not valid for j = n− 1 because (54) and (56) do not hold for j = n. We therefore rearrange

Rα,4 and Rβ,4 to be linear combinations of the terms

∇h·uh, ∂zu
F , ∂zb, ∇(bF3 + ∆−1∆hr), ∂zr and ∂zu3 (85)

whose Hj norms are estimated in (54) or (56) even though they involve a first derivative of V; in addition a
factor of µ must be present multiplying the terms ∂z(r

I , uI3) to compensate for the extra factor of 1
µ in (56).

Substituting (84) into the formula for α in (67) and solving the result for rI yields

(1 + µ2)rI = α+ µ(1− az)(bF3 + µ∆−1∆hr) + µ2∆−1∂2
zr
I − µ3CQ∆−1∂2

zr
I . (86)

Applying (1−az) to (84), which turns the final −µ(r−avr) into −µrI , dividing (86) by 1 +µ2 and substituting
the result for that final rI , and substituting the result into (78) shows that Rβ,4 equals

µ( 1√
1+µ2

− 1
1+µ2D)(bh ·∇h)α (87)

plus a sum of terms involving operators of order zero applied to the expressions in (85) whose Hj norms can
be bounded by c εj using (54) and (56). To estimate (87) we use the identity

D =
√

1 + µ2 − 4µ2∆−1∂2
z(√

µ2(2−4∆−1∂2
z)+µ4+1+µ2+1

)(√
2

√√
µ2(2−4∆−1∂2

z)+µ4+1+µ2+1+2
√
µ2+1

)
(88)
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derived from (41), which makes the constant term in (87) cancel. The other term in (88) contains a factor of
∂z multiplied by an operator of order −1, the z-derivative of all the constituents of α are estimated in (54) and
(56), and an overall factor of µ is present in (88), so the Hj norm of Rβ,4 is bounded by a constant times εj
even for j = n − 1. Similarly, substituting formula (67) for β into the definition (76) of Rα,4 and substituting
(88) into the result makes the constant term from (88) cancel. All remaining terms involve the expressions from
(85) and so can be estimated by a constant times εj since an overall factor of µ is present. This yields

‖Rα,4‖j + ‖Rβ,4‖j ≤ c εj , j = 0, . . . , n− 1. (89)

Proof of Theorem 3.2. The system (72), (77) has the form of the Klainerman-Majda two-scale theory. Moreover,
(67) plus estimates similar to those above yield

‖α− rI‖j + ‖β − uI3‖j ≤ c εj , j = 0, . . . , n− 1. (90)

Together with the estimates (79), (81), (82), and (89), (90) shows that the Hj norm of the right sides of
those equations is bounded by a constant times ‖(α, β)‖j + εj . Hence the standard Klainerman-Majda energy
estimates show that

max
0≤t≤T

‖(α, β)‖j ≤ c(‖α(0), β(0))‖j + εj), j = 0, . . . , n− 1. (91)

The initial data (44), (50) satisfies ‖VI‖n−1

∣∣
t=0
≤ c εM = c ε1, so (90) implies that ‖α(0), β(0))‖j ≤ cε1 and

hence (91) implies that max0≤t≤T ‖(α, β)‖j ≤ c max(εj , ε1) for j = 0, . . . , n − 1. Using (90) once more yields
(66). �

3.3. Equations and estimates for horizontal components of the slow mode

Like for the intermediate mode dynamic estimates, estimating the difference between the slow modes of the
solution to the original system and the solution of the limit system requires PDEs for the exact zero eigenspace of
the operator LA +µLM. The horizontal velocity and magnetic field slow modes belong to that eigenspace, so we
will write the equations for those modes as the limit equations plus error terms, by applying the projection P onto
the slow horizontal modes to the original system, expanding all dependent variables into fast, intermediate, and
slow modes, and moving all terms except those involving purely slow modes to the right sides of the equations.
The remaining slow modes will be treated in the following subsection.

Theorem 3.4. Assume that the conditions of the convergence part of Theorem 1.1 hold. Let (r,u,b) be the
solution of the MHD system (4), and let (r̄, ūh, ū3, b̄h, b̄3) be the solution of the limit system (15) whose initial
data is the limit (r0,S ,u0,S ,b0,S + µlim(1− av)r0,S) of the initial data (44) of the original system. Then

‖uSh − ūh‖n−2 + ‖bSh − b̄h‖n−2 ≤ c εM. (92)

Before proving Theorem 3.4 we need to derive appropriate equations. Since all slow modes contain the
averaging operator az in the z direction, it will be convenient to write the equations in conservation form, so
that derivatives with respect to z disappear when az is applied. In particular,

az(w·∇f + (∇·w)f) = az∇·(fw) = az∇h·(fwh) = az(wh ·∇hf + (∇h·wh)f). (93)

Adding the continuity equation (138a) to the momentum equation (4b) yields

∂t(ρu) + u·∇(ρu) + (∇·u)(ρu) +∇Φ− b·∇b = ε−1
A (∂zb−∇b3), (94)

where Φ is some scalar-valued function defined on T3, i.e., periodic in x, y, z. Apply Pdiv
h az to the first two

components of (94) and az to the first two components of (4c), and simplify the result by using the identity (93)
not only with w = u but also with w = b since the constraint ∇·b = 0 implies that b·∇f equals ∇·(fb). The
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resulting equations can be further simplified by using the definitions (21) of the modes to obtain the identities
az bh = bSh and az(ρuh) = az(ρuSh ) + az(ρuFh ) = (az ρ)uSh + az(ρuFh ), and then using the facts that ρ = 1 + εMr
and az uFh is a gradient to obtain Pdiv

h az(ρuFh ) = εMPdiv
h az(ruFh ). This yields

∂t Pdiv
h ((az ρ)uSh ) + Pdiv

h az∇h·
(
ρuh ⊗ uh − bh ⊗ bh

)
= −εM ∂t Pdiv

h az(ruFh ), (95a)

∂t bSh + az∇h·
(
uh ⊗ bh − bh ⊗ uh

)
= 0, (95b)

where the tensor product⊗ follows the convention that∇h·(uh⊗bh) = uh·∇hbh+(∇h·uh)bh. Since ∂tPdiv
h ((az ρ)uSh ) =

∂tu
S
h + εM∂tPdiv

h ((az r)u
S
h ), (95) together with the bounds (14) and (13) and the relation (11) show that

‖∂tuSh ‖n−1 + ‖∂tbSh ‖n−1 ≤ c. (96)

Recalling that uh and bh have no intermediate part, we separate them into their fast and slow parts in the
tensor products in (95a):

az∇h·
(
ρuh ⊗ uh − bh ⊗ bh

)
= az∇h·

(
ρuSh ⊗ uSh − bSh ⊗ bSh

)
+ az∇h·

((
ρuSh ⊗ uFh − bSh ⊗ bFh

)
+ trsp

)
+ az∇h·

(
ρuFh ⊗ uFh − bFh ⊗ bFh

) (97)

where trsp denotes the tensor transpose. By (23)–(24), the slow parts (uSh ,b
S
h ) are independent of z and

divergence-free, so the first term on the right side of (97) simplifies to uSh ·∇h((az ρ)uSh )− bSh ·∇hb
S
h . Also, since

bSh is independent of z while (21) shows that az bFh = 0, the expression − az∇h·(bSh ⊗ bFh ) appearing in the
second term on the right in (97) is identically zero. Next, we can drop the Pdiv

h operator from (95a) at the
cost of adding a term ∇hθ(t, x, y) to that equation, since a 2-vector is in the kernel of Pdiv

h if and only if it is a
horizontal gradient. Thus, (95a) becomes

∂t((az ρ)uSh ) + uSh ·∇h((az ρ)uSh )− bSh ·∇hb
S
h

= −εM∂t az(ruFh )− az∇h·
(
ρ uSh ⊗ uFh + trsp

)
− az∇h·

(
ρuFh ⊗ uFh − bFh ⊗ bFh

)
+∇hθ .

The second term on the right side is a “slow-fast” product, which can be rewritten using time-integrated variable

A(t, ·) :=

∫ t

0

az uFh dt
′ , (98)

as the time derivative of a small term plus a small term, since (55) shows that

‖A‖n ≤ c ε1+ν
M . (99)

For example,

az(ρuSh ⊗ uFh ) = az(uSh ⊗ uFh ) + εM az(ruSh ⊗ uFh ) = uSh ⊗ (az uFh ) + εM az(ruSh ⊗ uFh )

= ∂t(u
S
h ⊗ A)−

(
∂tu

S
h

)
⊗ A + εM az(ruSh ⊗ uFh ) .

Hence we obtain

(∂t + (uSh ·∇h))
(
(az ρ)uSh

)
− bSh ·∇hb

S
h = ∂t Ξ1 + ξ1 +∇hθ , ∇h·uSh = 0 (100)

with
Ξ1 := −εM az(ruFh )−∇h·

(
uSh ⊗ A + trsp

)
,

ξ1 := ∇h·
{(
∂tu

S
h

)
⊗ A + trsp

}
− εMaz∇h·(ruSh ⊗ uFh + trsp)− az∇h·

(
ρ uFh ⊗ uFh − bFh ⊗ bFh

)
.
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The bound (54) together with the constraint (13), the relation (11) between the parameters and the definition
(51) of the εj implies that ‖uFh ‖n−1 + ‖bFh ‖n−1 ≤ c ενM. Using that estimate, the time-derivative bound (96),
estimate (99) for A, the formula ρ = 1 + εMr, and Corollary E.3 yields the estimates

‖Ξ1‖n−1 + ‖ξ1‖n−2 ≤ c ε1+ν
M . (101)

Applying the same ideas to the slow magnetic equation (95b), and in particular noting that az(uSh⊗bFh +trsp) =
0 yields

(∂t + (uSh ·∇h))b
S
h − bSh ·∇hu

S
h = ∂t ΞbSh

+ ξbSh , ∇h·bSh = 0, (102)

with

ΞbSh
:= −∇h·

[
A⊗ bSh − trsp

]
, ξbSh := ∇h·

[
A⊗ ∂tbSh − trsp

]
− az∇h·

(
uFh ⊗ bFh − trsp

)
. (103)

The same bounds as for (101) show that

‖ΞbSh
‖n−1 + ‖ξbSh ‖n−2 ≤ c ε1+ν

M . (104)

The equation for the time evolution of uSh can be further simplified using an equation for the time evolution
of rS . By the first part of (24) and the facts from (21) that uIh = 0 and az r = rS , the vertically-averaged
equation (147) simplifies to

∂t r
S + uSh ·∇h(r

S) = − az∇h·(ruFh )− ε−1
M ∇h·(az uFh ) . (105)

Using the time-integrated variable A from (98), (105) can be rewritten as

(∂t + (uSh ·∇h))(εMr
S) = −εM az∇h·(ruFh )− ∂t∇h·A. (106)

Subtracting uSh times (106) from (100) noting that az ρ = 1 + εMr
S , and rewriting the term uSh ∂t∇h·A on the

right side of the result as ∂t(u
S
h (∇h·A))− (∂tu

S
h )∇h·A yields

(1 + εMr
S)(∂t + (uSh ·∇h))u

S
h − bSh ·∇hb

S
h = ∂t Ξ2 + ξ2 +∇hθ2 , ∇h·uSh = 0, (107)

where

Ξ2 := Ξ1 + uSh∇h·A, ξ2 := ξ1 − (∂tu
S
h )∇h·A + εMuSh az∇h·(ruFh ) (108)

also satisfy

‖Ξ2‖n−1 + ‖ξ2‖n−2 ≤ c ε1+ν
M (109)

in view of the estimate (101) and the same bounds used to obtain that estimate.
Now move the εMr

S term to the right side of (107) and replace ∂tΞ2 there by its divergence-free part, which
only changes the divergence term, to obtain

(∂t + (uSh ·∇h))u
S
h − bSh ·∇hb

S
h = ∂t ΞuSh

+ ξuSh +∇hθuSh
, ∇h·uSh = 0 (110)

with

ΞuSh
:= Pdiv

h Ξ2, ξuSh := ξ2 − εMrS(∂t + (uSh ·∇h))u
S
h . (111)

Using the estimate (109), the fact from (96) that ∂tu
S
h = O(1), and the fact that the projection Pdiv

h does not
increase Sobolev norms yields

‖ΞuSh
‖n−1 ≤ c ε1+ν

M , ‖ξuSh ‖n−2 ≤ c εM (112)

in view of the term that is explicitly O(εM) in the definition (111) of ξuSh .
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Proof of Theorem 3.4. The functions (ūh, b̄h) satisfy the systems

(∂t + (ūh ·∇h))ūh − (b̄h ·∇h)b̄h = ∇hΦ, ∇h·ūh = 0, (113)

(∂t + (ūh ·∇h))b̄h − (b̄h ·∇h)ūh = 0. (114)

We now apply Theorem D.1 to the system (110), (102) for u := (uh,bh) and the system (113), (114) for
U := (ūh, b̄h). Assumptions (44) and (50) ensure that the difference in their initial data is O(ε1+ν

M ). Since ΞuSh

contains Pdiv
h , Ξu := (ΞuSh

,ΞbSh
) and ΞU := 0 satisfy LΞu = 0 = LΞU , where L = (∇h· 0 ). Define ξu = (ξuSh , ξbSh )

and ξU = 0. The estimates (112), (104) together with the above-mentioned estimate on the difference of the
initial data then imply that the hypotheses of Theorem D.1 hold with k = n, r = 1, and δ = εM. Hence the
conclusion of that theorem yields (92). �

3.4. Equations and estimates for remaining slow modes

The third component of equation (4b) implies that there are no large terms in the PDE for uS3 := az u3, i.e.,(
0,
(

02

uS3

)
, 03

)
is a zero eigenvector of the full large operator LA + µLM. However, as shown in Lemma 2.1, the

µ-dependent zero eigenvector of LA + µLM having a nontrivial projection onto the density component is not

just the slow mode rS . Specifically, (19) implies that Vr =
(
az, 03,

(
02
−µ az

))
satisfies (LA + µLM)Vr · Ṽ = 0 for

all functions Ṽ, which by the MHD system (4) and the skew-adjointness of (LA + µLM) implies that the PDE
satisfied by az(r − µb3) = Vr ·V will contain no large terms. We therefore need to calculate the PDE system
satisfied by az(r−µb3) and az u3. It turns out that while the PDEs for those two variables are coupled by terms
that are strictly O(1), their coupling to other components of the solution contains only terms that are o(1) and
so can be considered as small perturbations.

Theorem 3.5. Under the conditions of Theorem 3.4,

‖rS − r̄‖n−2 + ‖uS3 − ū3‖n−2 ≤ c
[
ε

1−max(n−5,0)ν
M + |µ− µlim|

]
. (115)

Proof. Writing the variables in (148) in terms of fast, intermediate, and slow components and using the facts
that the slow components are independent of z, uSh and bSh have zero horizontal divergence, the vertical averages
of rI , uI3 and bFh vanish, and bS3 is constant in time as well as space transforms that equation into

∂t(r
S − µ az b

F
3 ) + (uSh ·∇h)(r

S − µ az b
F
3 ) + µ(bSh ·∇h)u

S
3

= − az{∇h·[(r − µb3)uFh ]} − µ az[∇h·(uI3bFh )]

= −∇h·[(rS − µ az b3) az uFh ]− az∇h·
[(
rI − µ(1− az)bF3

)
uFh

]
−µ az[∇h·(uI3bFh )]

(116)

Replacing uSh , bSh , and µ on the left side of (116) by their limit values, and compensating by adding terms to
the right side yields

[∂t + (ūh ·∇h)] (rS − µ az b
F
3 ) + µlim(b̄h ·∇h)u

S
3 = ∂tΞrS−µ az bF3

+ ξrS−µ az bF3
, (117)

where

ΞrS−µ az bF3
:= −∇h·

[
(rS − µazb3)

∫ t

0

az uFh

]
= −∇h·

[
(rS − µazb3)A

]
ξrS−µ az bF3

:= ∇h·
[
(∂t(r

S − µazb3))A
]
− az∇h·

[(
rI − µ(1− az)bF3

)
uFh

]
− µ az[∇h·(uI3bFh )]

+ (ūh − uSh )·∇h(r
S − µ az b

F
3 ) + µ((b̄h − bSh )·∇h)u

S
3 + (µlim − µ)(b̄h ·∇h)u

S
3 .

(118)
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Since ∂tb
S
3 ≡ 0, (116) implies a uniform Hn−1 bound for ∂t(r

S − µ az b3). Using in addition the uniform
estimate (14), estimate (99) for A, the estimate (92) for the convergence rate of the horizontal components, and
Corollary E.3 shows that

‖ΞrS−µ az bF3
‖n−1 ≤ c ε1+ν

M , ‖ξrS−µ az bF3
‖n−2 ≤ c [εM + |µ− µlim|] . (119)

The third component of (94) can be written as

∂t(ρu3) + u·∇(ρu3) + (∇·u)(ρu3) + ∂zΦ− bh ·∇hb3 = 0.

Applying the vertical averaging operator az and using (93) reduces this to

∂t(az(ρu3)) + az[uh ·∇h(ρu3)] + az[(∇h·uh)(ρu3)]− az[bh ·∇hb
F
3 ] = 0.

In order to treat the term az[bh ·∇hb
F
3 ] we write az b

F
3 as

az b
F
3 = −µ∆−1∆hr

S + az(bF3 + µ∆−1∆hr
S) = −µ(rS − avrS) + az(bF3 + µ∆−1∆hr

S) (120)

in accordance with the expression estimated in (54). Using (120) while noting that (bSh ·∇h)(avrS) = 0, and
using the facts from (5), (23), and (21) that ρ = 1 + εMr, r

S and uS3 are independent of z and az u
I
3 = 0 = uF3 ,

which imply that az(ρuS3 ) = (1 + εMr
S)uS3 , az(ρuI3) = εM az(rIuI3), and az r = rS , we obtain

(1 + εMr
S)
[
∂t + (uSh ·∇h)

]
uS3 + uS3

[
∂t + (uSh ·∇h)

]
(εMr

S) + µ(bSh ·∇h)r
S

= (bSh ·∇h)[az(bF3 + µ∆−1∆hr
S)] + az{(bFh ·∇h)(1− az)bF3 } − εM(uSh ·∇h)(az(rIuI3))

− εM∂t az(rIuI3)−∇h·
[
(∂tA)uS3

]
− az{∇h·(uFh uI3)} − εM az{∇h·(uFh ru3)},

(121)

where the last line results from separating the various modes in az{∇h·(uFh ρu3)} and using the definition of A

from (98). Since there are no terms of size ε−1
A in the equations for the time evolution of r or u3, (121) implies

that

‖∂tuS3 ‖n−1 ≤ c. (122)

Subtracting uS3 times (106) from (121), moving the term εMr
S
[
∂t + (uSh ·∇h)

]
uS3 to the right side of the

result, noting that the two terms involving A partially cancel and rewriting the remaining term (∂tA·∇h)u
S
3 as

∂t[(A·∇h)u
S
3 ]− (A·∇h)∂tu

S
3 yields

(∂t + (uSh ·∇h))u
S
3 + µ(bSh ·∇h)r

S= ∂tΞ̃uS3 + ξ̃uS3 + (bSh ·∇h)[az(bF3 + µ∆−1∆hr
S)] (123)

where

Ξ̃uS3 = (A·∇h)u
S
3 − εM az(rIuI3),

ξ̃uS3 = az{(bFh ·∇h)(1− az)bF3 } − εM(uSh ·∇h)(az(rIuI3))− az{∇h·(uFh uI3)} − εM az{∇h·(uFh ru3)}

+ εMu
S
3 az∇h·(ruFh )− (A·∇h)(∂tu

S
3 )− εMrS

[
∂t + (uSh ·∇h)

]
uS3 .

As a step towards symmetrizing the system consisting of (117), (123), we want to replace rS in the last term
on the left side of (123) by rS−µ az b

F
3 , which requires adding a balancing term involving az b

F
3 , which must also

be rewritten using (120). This leads us to write µ(bSh ·∇h)r
S as k1(bSh ·∇h)(r

S−µ az b
F
3 )+k2(bSh ·∇h)(az b

F
3 +µrS).

Equating those two expressions and comparing the coefficients of (bSh ·∇h)(az b
F
3 ) shows that k2 = k1µ, and then
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comparing the coefficients of (bh ·∇h)r
S yields k1 = µ

1+µ2 ,

µ(bSh ·∇h)r
S = µ

1+µ2 (bSh ·∇h)(r
S − µ az b

F
3 ) + µ2

1+µ2 (bSh ·∇h)(az b
F
3 + µrS)

= µ
1+µ2 (bSh ·∇h)(r

S − µ az b
F
3 ) + µ2

1+µ2 (bSh ·∇h)[az(bF3 + µ∆−1∆hr
S)],

(124)

where the second equation follows as in (120). Substituting (124) into (123), moving the second term from
(124) to the right side of the resulting equation and combining it with the similar term already present, and
replacing uSh , bSh and µ on the left side of the result by their limiting values and compensating on the right side
yields

[∂t + (ūh ·∇h)]u
S
3 + µlim

1+µ2
lim

(b̄h ·∇h)(r
S − µ az b

F
3 ) = ∂tΞuS3 + ξuS3 (125)

where

ΞuS3 = Ξ̃uS3 + 1
1+µ2 (bSh ·∇h)

[ ∫ t

0

az(bF3 + µ∆−1∆hr
S)
]

(126)

ξuS3 = ξ̃uS3 + 1
1+µ2 (∂tb

S
h ·∇h)

[
−
∫ t

0

az(bF3 + µ∆−1∆hr
S)
]

+ (ūh − uSh )·∇hu
S
3

+ µ
1+µ2 ((b̄h − bSh )·∇h(az b

F
3 + µrS) + ( µlim

1+µ2
lim
− µ

1+µ2 )(b̄h ·∇h)(az b
F
3 + µrS).

(127)

The system consisting of (117), (125) can be symmetrized by multiplying the latter equation by 1 + µ2
lim. The

estimates used to obtain (119) together with the time-derivative estimates (96), (122) and the time-integrated
estimate (55) show that

‖ΞuS3 ‖n−1 ≤ c ε1+ν
M , ‖ξuS3 ‖n−2 ≤ c [εM + |µ− µlim|] . (128)

Using (15e) and the fact that avr0,S is a constant, the limit equations (15a) and (15c) can be rewritten as
the system

[∂t + (ūh ·∇h)] {(1 + µ2
lim)r̄ − µ2

lim avr0,S}+ µlim(b̄h ·∇h)ū3 = 0, (129)

[∂t + (ūh ·∇h)] ū3 + µlim

1+µ2
lim

(b̄h ·∇h){(1 + µ2
lim)r̄ − µ2

lim avr0,S} = 0, (130)

for the dependent variables (1+µ2
lim)r̄−µ2

lim avr0,S and ū3, which has the same form as the system (117), (125)
for the dependent variables rS − µ az b3 and uS3 , except that the terms on the right sides are omitted. Since the
evolution equation for r shows that avr = avr0 = avr0,S + εM avr0,I = avr0,S ,

rS − µ az b
F
3 = (1 + µ2)rS − µ2 avr − µ az(bF3 + µ(r − avr))

=
[
(1 + µ2)rS − µ2 avr0,S

]
− µ az(bF3 + µ∆−1∆hr).

(131)

Hence, by (44), (50), the difference between the initial data for the two systems is bounded in Hn by a constant
times ε1+2ν

M + |µ−µlim|. In view of that bound plus the estimates (119), (128) for the right sides of (117), (125),
Theorem D.1 shows that

‖(rS − µ az b
F
3 )− {(1 + µ2

lim)r̄ − µ2
lim avr0,S}‖n−2 + ‖uS3 − ū3‖n−2 ≤ c [εM + |µ− µlim|] . (132)

By (131), the static estimate (54) with j = n− 3 applied to the −µ az(bF3 +µ∆−1∆hr) term of (131) shows that
(132) implies that (115) holds. �

As discussed in the introduction, the term |µ−µlim| is the dominating error term in (132) and (115) whenever
µlim = 0, but that term will be eliminated in Theorem 3.6 below by adding corrector terms.
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Theorem 3.6. Let (r(cor), u
(cor)
3 ) be the solution of the inhomogeneous linear system

∂tr
(cor) + (ūh ·∇h)r

(cor) + µ(b̄h ·∇h)u
(cor)
3 = −(b̄h ·∇h)ū3 − (µ+ µlim)(∂t + (ūh ·∇h))r̄, (133)

∂tu
(cor)
3 + (ūh ·∇h)u

(cor)
3 + µ

1+µ2 (b̄h ·∇h)r
(cor) = − 1−µµlim

(1+µ2)(1+µ2
lim)

(b̄h ·∇h)((1 + µ2)r̄ − µ2 avr0,S) (134)

having initial data zero. If the conditions of Theorem 3.4 hold then

‖rS − (r̄ + µ−µlim

1+µ2 r
(cor))‖n−2 + ‖uS3 − (ū3 + (µ− µlim)u

(cor)
3 )‖n−2 ≤ c ε1−max(n−5,0)ν

M . (135)

Proof. Since (µ − µlim)(µ + µlim) = µ2 − µ2
lim and avr0,S is a constant, adding µ − µlim times (133) to (129)

yields

[∂t + (ūh ·∇h)] {(1 + µ2)r̄ − µ2 avr0,S + (µ− µlim)r(cor)}+ µ(b̄h ·∇h)(ū3 + (µ− µlim)u
(cor)
3 ) = 0, (136)

Similarly, since (µ−µlim) times 1−µµlim

(1+µ2)(1+µ2
lim)

equals µ
1+µ2 − µlim

1+µ2
lim

, adding µ−µlim times (134) to (130) yields

[∂t + (ūh ·∇h)] {ū3 + (µ− µlim)u
(cor)
3 }+ µ

1+µ2 (b̄h ·∇h){(1 + µ2)r̄ − µ2 avr0,S + (µ− µlim)r(cor)} = 0. (137)

Equations (136)–(137) have the same form as as the system (117), (125) for the dependent variables rS−µ az b3
and uS3 , except that the terms on the right sides are omitted and all occurrences of µlim in the coefficients on
the left sides are replaced by µ. Omitting the step of replacing µ by µlim in the derivation of (117), (125) yields
those equations with all occurrences of µlim on the left sides replaced by µ and the terms of order µ − µlim

omitted from their right sides. Since the terms of order µ2 in (136) now involve µ2 rather than µ2
lim, as in (131)

and in contrast to (129), there is also no longer a term of size O(|µ− µlim|) in the difference in the initial data.
Hence applying Theorem D.1 now yields an estimate without the term involving |µ− µlim|, and by using (131)
the estimate so obtained can be written as (135). �

Appendix A. Derivation of the MHD system

Suitably scaled, the motion of an isentropic compressible, conducting, inviscid fluid is modeled by the MHD
system ( [Dav01, §3.8])

∂tρ+∇·(ρu) = 0 (138a)

∂t(ρu) + u·∇(ρu) + (∇·u)ρu + ε−2
M ∇p(ρ) + ε−2

A B× (∇×B) = 0, (138b)

∂tB−∇×(u×B) = 0, (138c)

∇·B = 0. (138d)

Here εM denotes the well-known Mach number, ρ is the fluid density, p(ρ) is the pressure law that satisfies
p′ > 0, u is the fluid velocity, and B is the magnetic field. The parameter εA, as we call the Alfvén number
in this article, is the ratio between flow velocity and speed of the magnetosonic waves; in [KM81] the Alfvén
number is the reciprocal of our version.

We consider the case in which a uniform magnetic field is applied in the direction ez parallel to the z-axis,
which subjects the fluid to a large Lorenz force. To reformulate the system (138) into a form to which the
results of [CJS18] can be applied, we begin by rescaling the magnetic field and the density via

B = ez + εAb, ρ = 1 + εMr. (139)

Applying calculus identities for the curl, subtracting u times (138a) from (138b), and multiplying (138a) by
a(εMr) from (5) yields the system (4).
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Appendix B. Improved Uniform Bound

Lemma B.1. Let n ≥ s0 + 1 be an integer, where s0 := bd2c + 1 is the Sobolev embedding exponent, i.e., the

smallest integer s for which ‖f‖L∞ ≤ c‖f‖Hs . Assume that the spatial domain is Rd or Td and that the system
(1) and its initial data V0 satisfy the following conditions:

(1) the operators LA and LM are constant-coefficient differential operators of order at most one and are
skew-adjoint on L2,

(2) the matrices Ai are smooth symmetric functions for j ≥ 0 and the matrix A0 is positive definite,
(3) the small parameters are restricted to the region (13),
(4) the initial data V0, which may depend on the small parameters εA and εM, are uniformly bounded in

Hn and satisfy the “well-preparedness” condition (10).

Then there exist fixed positive T and K such that for (εA, εM) satisfying (13) the solution to (1) having the
initial data V0 exists for 0 ≤ t ≤ T and satisfies (14); in particular the solution is uniformly bounded in Hn.

Proof. Lemma B.1 differs from Theorem 3.6 of [CJS18] only by having different weights multiplying the norms
of time derivatives. Hence it suffices to show that in all places in the proof of [CJS18, Theorem 3.6] where the
use of the weights

max
0≤t≤T

 n∑
j=0

εjM‖∂
j
tV‖n−j + ‖Vt‖0

 ≤ K (140)

was justified the use of the improved weights in (14) is also justified. There are only two such places, namely
where it was shown that the weighted sum of norms is bounded at time zero and where it was shown that the
small parameters scale out of the estimate for the time derivative of an appropriately weighted energy.

As noted in [CJS18, proof of Lemma 3.5], assumption (10) ensures that ‖Vt

∣∣
t=0
‖n−1 is bounded uniformly

in the small parameters and the PDE (1) then yields the estimates ‖∂jtV
∣∣
t=0
‖n−j ≤ c ε1−j

A for 1 ≤ j ≤ n.
Therefore, for 1 ≤ j ≤ n,

εj−1
M

(
min

(
εA
εM
, 1
))n−1

‖∂jtV
∣∣
t=0
‖n−j ≤ εj−1

M

(
min

(
εA
εM
, 1
))n−1 (

c ε1−j
A

)
≤ c

(
min

(
εA
εM
, 1
))n−j

≤ c,

which shows that the weighted sum of norms in (14) is also bounded at time zero uniformly in the small
parameters.

The energy estimate both in [CJS18] and here makes use of the norms

‖f‖`,A0
:=

√√√√ ∑
0≤|α|≤`

∫
(Dαf)TA0(εMV)Dαf dx, (141)

where V is a solution to (1) and Dα = ∂α1
x1
· · · ∂αdxd . As shown in [CJS18], in order to prove a weighted energy

estimate like (140) or (14) it suffices to obtain a uniform bound for

E := ‖V‖2n,A0
+ ‖Vt‖20,A0

+

n∑
j=1

w2
j‖∂

j
tV‖2n−j,A0

, (142)

where the weights wj are εjM for the estimate (140) or

wj = εj−1
M

(
min

(
εA
εM
, 1
))n−1

, 1 ≤ j ≤ n (143)
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for the estimate (14). Moreover, in the estimates [CJS18, (3.12), (3.24)] for d
dtE, the only facts used about the

weights wj to prove a uniform bound for E are that for some finite c that may be different in each appearance

εM ≤ cw1, (144a)

εMwj ≤ cwj+1 for 1 ≤ j ≤ n− 1, (144b)

wk ≤ c
J∏
j=1

wkj whenever

J∑
j=1

kj = k, (144c)

εMwk ≤ c
J∏
j=1

wkj whenever

J∑
j=1

kj = k + 1. (144d)

Since (144d) can be obtained by substituting (144c) with k replaced by k + 1 into (144b) with j set equal to
k, it suffices to prove (144a)–(144c). The definitions (143) imply that (144b) holds provided that c there is at

least one, while both (144a) and (144c) reduce to the condition εM ≤ c
(

min
(
εA
εM
, 1
))n−1

that is equivalent to

(13). �

Combining estimate (14) with the standard Sobolev interpolation inequality ‖f‖r ≤ Cr,s‖f‖
r
s
s ‖f‖

1− rs
0 for

0 ≤ r ≤ s (e.g. [Maj84, (2.32)]), yields the following result.

Corollary B.2. When the basic conditions of Theorem 1.1 hold and µ ≤ 1 then

‖Vt‖j ≤ cµ−j = c ε−jνM j = 0, . . . , n− 1. (145)

Appendix C. Convergence and Limit

The convergence part of Theorem 1.1 follows from [CJS18, Theorem 4.6] when µlim = 0, and from simple
modifications of convergence results for two-scale singular limits when µlim > 0. Since we need explicit formulas
for the limit equations and will use some of the formulas derived below in §3 we indicate a direct unified proof.

Proof of the convergence part of Theorem 1.1. The uniform bounds on V and Vt provide compactness, which
together with the uniqueness of solutions to the limit equations ensures the convergence of V, in C0([0, T ];Hn−α)
for any α > 0 and weak-∗ in L∞([0, T ];Hn), to a limit V as εA, εM tend to zero with their ratio converging to
a given limit µlim, with Vt converging weak-∗ in L∞([0, T ], Hn−1) to Vt.

Multiplying (1) by εA or applying εMP0 to it, and taking the limit yields

(LA + µlimLM)V = 0 = P0LMV. (146)

Identities (146) and Lemma 2.1 imply that V is independent of z, the horizontal parts of its velocity and
magnetic field are divergence free, and (15e) holds. If the spatial domain is R3 then V must therefore vanish,

so from now on that domain is T3. By (20) and (27), P
(

1
εA
LA + 1

εM
LM

)
= ( 1

εM
az∇h·uh, 03, 03). Taking the

limit of the equations with no large terms in P applied to (4) yields (15b), (15c), (15d).
To determine the limit equation for the density, divide (4a) by a(εMr), which puts it in conservation form,

and apply az to obtain

∂t(az r) + az[∇h·(ruh)] + 1
εM

az(∇h·uh) = 0. (147)

To eliminate the large term in (147), write the third component of (4c) in conservation form as ∂tb3 +∇·(b3u)−
∇·(u3b) + ε−1

A ∇h·uh = 0, apply µ az and subtract the result from (147), which yields

∂t[az(r − µb3)] + az{∇h·[(r − µb3)uh]}+ µ az[∇h·(u3bh)] = 0. (148)
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Taking the limit of (148), using facts that V is independent of z and that ūh and b̄h are divergence free, and
substituting (15e) into the result yields (15a). �

Appendix D. Perturbation Theorem

The following perturbation theorem is a variant of [Che14, Lemma 3.2]), and can be proven by similar
methods.

Theorem D.1. Suppose that u and U are solutions in C0([0, T ];Hk) of

A0(u)ut +

d∑
i=1

Ai(u)uxi = F + L∗v +A0(u)∂tΞu + ξu, Lu = 0, (149)

A0(U)Ut +

d∑
i=1

Ai(U)Uxi = F + L∗V +A0(U)∂tΞU + ξU , LU = 0, (150)

having the same initial value u0 ∈ Hk, where k ≥ bd2c + 2, the matrices Ai are smooth and symmetric and
A0 is positive-definite, F is a given function of t and x, L is a first-order differential operator with constant
coefficients, with L∗ denoting its L2-adjoint, and Ξu, ΞU , ξu, and ξU satisfy

‖Ξu‖k−r + ‖ΞU‖k−r + ‖ξu‖k−r−1 + ‖ξU‖k−r−1 ≤ cδ for some 0 ≤ r ≤ k − 1,

LΞu = 0 = LΞU , and ‖∂tΞU‖k−r−1 ≤ c.

Then max0≤t≤T ‖u− U‖k−r−1 ≤ cδ.

Appendix E. Calculus Inequalities for vertical averages

The following result is sharper than what would be obtained by the standard product estimate (e.g., [Maj84,
Proposition 2.1A], because the entire product is estimated using the W 1,1 norm rather than pulling out one
factor in the L∞ norm, and the Gagliardo-Nirenberg inequalities are used in dimension two rather than three.

Lemma E.1. For all j ≥ 1 there exists a constant Cj such that for f, g ∈ Hj(T3)

‖ az(fg)‖Hj−1(T2) ≤ Cj
(
‖f‖Hj(T3)‖g‖L2(T3) + ‖f‖L2(T3)‖g‖Hj(T3)

)
. (151)

Proof. We first prove (151) for j = 1: By the Gagliardo-Nirenberg inequality ‖h‖L2(T2) ≤ c‖h‖W 1,1(T2) and the
Cauchy-Schwartz inequality,

‖ az(fg)‖L2(T2) ≤ c‖ az(fg)‖W 1,1(T2) ≤ c
(
‖f‖H1(T3)‖g‖L2(T3) + ‖f‖L2(T3)‖g‖H1(T3)

)
.

Now let j be any integer greater than one. By the definition of the Hj−1 norm, the result for the case j = 1,
the Sobolev interpolation inequality, and Young’s inequality for products aσb1−σ ≤ a+ b for 0 ≤ σ ≤ 1,

‖ az(fg)‖Hj−1(T2) ≤ c
∑
|α|≤j−1

‖ az(Dα
x,y(fg))‖L2(T2) (152)

≤ c
∑

|β|+|γ|≤j−1

‖ az((Dβ
x,yf)(Dγ

x,yg))‖L2(T2)

≤ c
∑

|β|+|γ|≤j−1

(
‖f‖H|β|+1(T3)‖g‖H|γ|(T3) + ‖f‖H|β|(T3)‖g‖H|γ|+1(T3)

)
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≤ c
∑

0≤i≤j−1

([‖f‖Hi+1‖g‖L2 + ‖g‖Hi‖‖f‖H1 ] + [‖f‖Hi‖g‖H1 + ‖g‖Hi+1‖f‖L2 ])

≤ c (‖f‖Hj‖g‖L2 + ‖g‖Hj−1‖f‖H1 + ‖f‖Hj−1‖g‖H1 + ‖g‖Hj‖f‖L2)

A second application of the Sobolev interpolation inequality followed by Young’s inequality shows that each of
the terms in the final line of (152) in which the Hj−1 and H1 norms appear is bounded by the sum of the two
terms there in which the Hj and L2 norms appear, which yields (151) for j > 1. �

Corollary E.2. Consider integer n ≥ 3 and a geometric sequence {εj} with common ratio 1
µ ≥ 1 and εn ≤ c.

Suppose v(x, y, z), w(x, y, z) ∈ Hn(T3) satisfy the “interpolative estimates”∥∥(v, w)
∥∥
Hj(T3)

≤ c εj , j = 0, . . . , n− 1,
∥∥(v, w)

∥∥
Hn(T3)

≤ c.

Then

‖ az(vw)‖Hn−1(T2
x,y) ≤ cε0, ‖ az(vw)‖Hn−2(T2

x,y) ≤ cε0 µ. (153)

Proof. By Lemma E.1, ‖ az(vw)‖j−1 ≤ c(‖v‖j‖w‖0 + ‖v‖0‖v‖j) ≤ cεjε0. Since εn ≤ c and εn−1 ≤ µεn ≤ cµ,
this implies (153). �

In view of the uniform Hn estimate (14), the static estimates (54), (56), and the relations (13), (11) between
the parameters, Corollary E.2 yields the following estimates for products of components of various modes.

Corollary E.3. Assume that the basic conditions of Theorem 1.1 hold. Let vF , wF be either (1− az)bF3 or any
component of VF except bF3 and let vI , wI be any component of VI . Then,

sup
0≤t≤T

{
‖ az(vFwF )‖n−1 + µ‖ az(vIvF )‖n−1 + µ2‖ az(vIwI)‖n−1 + ‖ az∇·(vIuFh )‖n−2 + εM‖vF ‖n−1

}
≤ c εA,

and the estimates also hold when µ or µ2 on the left side is replaced by εM.

The estimate of εM‖vF ‖n−1 does not use Lemma E.1 but is included for convenience.
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