University of Surrey

Test tubes in the lab Research in the ATI Dance Research

Learning to live on a Mars day: Fatigue countermeasures during the Phoenix Mars Lander mission

Barger, L.K., Sullivan, J.P., Vincent, A.S., Fiedler, E.R., McKenna, L.M., Flynn-Evans, E.E., Gilliland, K., Sipes, W.E., Smith, P.H., Brainard, G.C. and Lockley, S.W. (2012) Learning to live on a Mars day: Fatigue countermeasures during the Phoenix Mars Lander mission Sleep, 35 (10). pp. 1423-1435.

Full text not available from this repository.

Abstract

Study Objectives: To interact with the robotic Phoenix Mars Lander (PML) spacecraft, mission personnel were required to work on a Mars day (24.65 h) for 78 days. This alien schedule presents a challenge to Earth-bound circadian physiology and a potential risk to workplace performance and safety. We evaluated the acceptability, feasibility, and effectiveness of a fatigue management program to facilitate synchronization with the Mars day and alleviate circadian misalignment, sleep loss, and fatigue. Design: Operational field study. Setting: PML Science Operations Center. Participants: Scientific and technical personnel supporting PML mission. Interventions: Sleep and fatigue education was offered to all support personnel. A subset (n = 19) were offered a short-wavelength (blue) light panel to aid alertness and mitigate/reduce circadian desynchrony. They were assessed using a daily sleep/work diary, continuous wrist actigraphy, and regular performance tests. Subjects also completed 48-h urine collections biweekly for assessment of the circadian 6-sulphatoxymelatonin rhythm. Measurements and Results: Most participants (87%) exhibited a circadian period consistent with adaptation to a Mars day. When synchronized, main sleep duration was 5.98 ± 0.94 h, but fell to 4.91 ± 1.22 h when misaligned (P < 0.001). Self-reported levels of fatigue and sleepiness also significantly increased when work was scheduled at an inappropriate circadian phase (P < 0.001). Prolonged wakefulness (� 21 h) was associated with a decline in performance and alertness (P < 0.03 and P < 0.0001, respectively). Conclusions: The ability of the participants to adapt successfully to the Mars day suggests that future missions should utilize a similar circadian rhythm and fatigue management program to reduce the risk of sleepiness-related errors that jeopardize personnel safety and health during critical missions.

Item Type: Article
Authors :
NameEmailORCID
Barger, L.K.
Sullivan, J.P.
Vincent, A.S.
Fiedler, E.R.
McKenna, L.M.
Flynn-Evans, E.E.
Gilliland, K.
Sipes, W.E.
Smith, P.H.
Brainard, G.C.
Lockley, S.W.s.lockley@surrey.ac.uk
Date : 2012
DOI : 10.5665/sleep.2128
Uncontrolled Keywords : Circadian, Light, Performance, Shift work, Sleep, 6 hydroxymelatonin o sulfate, actimetry, adult, alertness, article, circadian rhythm, clinical article, fatigue, female, human, light dark cycle, light exposure, male, priority journal, questionnaire, scientist, sleep disorder, sleep time, sleep waking cycle, somnolence, space flight, task performance, urinalysis, wakefulness, work schedule, Actigraphy, Adult, Circadian Rhythm, Fatigue, Female, Humans, Male, Mars, Neuropsychological Tests, Phototherapy, Psychomotor Performance, Sleep, Sleep Deprivation, Work Schedule Tolerance
Depositing User : Clive Harris
Date Deposited : 17 Jun 2020 01:41
Last Modified : 17 Jun 2020 01:41
URI: http://epubs.surrey.ac.uk/id/eprint/857903

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year


Information about this web site

© The University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom.
+44 (0)1483 300800