University of Surrey

Test tubes in the lab Research in the ATI Dance Research

Modelling and Measurement Analysis of The Satellite Mimo Radio Channel.

Ekpe, Unwana M. (2012) Modelling and Measurement Analysis of The Satellite Mimo Radio Channel. Doctoral thesis, University of Surrey (United Kingdom)..

[img]
Preview
Text
27558491.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (13MB) | Preview

Abstract

The increasing demand for terrestrial and satellite delivered digital multimedia services has precipitated the problem of spectrum scarcity in recent years. This has resulted in deployment of spectral efficient technologies such as MIMO for terrestrial systems. However, MIMO cannot be easily deployed for the satellite channel using conventional spatial multiplexing as the channel conditions here are very different from the terrestrial case, and it is often dominated by line of sight fading. Orthogonal circular polarization, which has long been used for increasing both frequency reuse and the power spectral density available to earth-bound satellite terminals, has recently been recommended for directly increasing the throughput available to such devices. Following that theme, this thesis proposes a novel dual circular polarisation multiplexing (DCPM) technique, which is aimed at the burgeoning area of throughput-hungry digital video broadcasting via satellite to handheld devices (DVB-SH) and digital video broadcast to the next generation of handheld (DVB-NGH) systems. In determining the working limits of DCPM, a series of measurement campaigns have been performed, from which extensive dual circular polarised land mobile satellite (LMS) channel data has been derived. Using the newly available channel data and with the aid of statistical channel modelling tools found in literature, a new dual circular polarised LMS MIMO channel model has been developed. This model, in contrast with previously available LMS MIMO channel models, is simpler to implement since it uses a distinct state-based empirical-stochastic approach. The model has been found to be robust and it easily lends itself to rapid implementation for system level MIMO and DCPM analysis. Finally, by way of bit error rate (BER) analysis in different channel fading conditions, it has been determined when best to implement polarisation multiplexing or conventional MIMO techniques for DVB-type land mobile receivers. It is recommended that DCPM be used when the channel in predominantly Ricean, with co-polar channel Rice factors and sub-channel cross correlation values greater than 1dB and 0. 40 respectively. The recommendations provided by this research are valuable contributions, which may help shape the evolving DVB-NGH standardisation process.

Item Type: Thesis (Doctoral)
Divisions : Theses
Authors : Ekpe, Unwana M.
Date : 2012
Additional Information : Thesis (Ph.D.)--University of Surrey (United Kingdom), 2012.
Depositing User : EPrints Services
Date Deposited : 24 Apr 2020 15:26
Last Modified : 24 Apr 2020 15:26
URI: http://epubs.surrey.ac.uk/id/eprint/855191

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year


Information about this web site

© The University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom.
+44 (0)1483 300800