Lattice Boltzmann Modelling of Water Transport in Hydrates Agglomerates

Miryea Nicole Borg, D.A. Faux, P. J. McDonald
Department of Physics, University of Surrey, UK

BACKGROUND
It is well known that sorption hysteresis and first cycle irreversibility exists for cement materials. Experiments show that cement microstructure is dynamic both during and after de/sorption. The Lattice Boltzmann (LB) method is a robust technique to simulate fluid (liquid and vapour) transport in porous materials. This project aims to simulate drying and wetting of model hydrate microstructures through repetitive de/sorption cycles using LB.

METHOD
LB is a partial differential solver method optimised for fluid dynamics. Fluid packets at lattice nodes are repeatedly moved to neighbouring nodes (streaming step) where they relax towards a local equilibrium (collision step), as shown in Figure 1.

An equilibrium function f_i^eq determines the physics. The function $f_i^\text{eq} = \omega_i \rho \left(1 + \frac{\mathbf{e}_i \cdot \mathbf{u}}{c_s^2} + \frac{(\mathbf{e}_i \cdot \mathbf{u})^2}{2c_s^2} - \frac{\mathbf{u} \cdot \mathbf{u}}{2c_s^2} \right)$ yields Navier-Stokes equations of fluid dynamics.

- ω_i: Weight factor along direction i
- \mathbf{e}_i: Lattice velocity vector along direction i
- ρ: Fluid density
- c_s^2: Lattice speed of sound
- \mathbf{u}: Macroscopic fluid velocity

- An additional fluid-fluid pressure term within f_i^eq forces and controls liquid-vapour separation [1].
- A bounce-back rule and fluid-solid term [1] determine the equilibrium contact angle at a solid interface.
- In this work, the fluid capillary pressure is calculated and used to move colloidal particles [2].

CONCLUSIONS AND OUTLOOK
This work provides initial validation of LB methods needed to study the microstructural rearrangement of cement gel during sorption cycles. Future work will compare de/sorption in simulated versions of Jennings colloidal and Feldman & Sereda quasi-continuous sheet structures, whilst introducing effects of solid swelling and mechanical distortion.

ACKNOWLEDGEMENTS
This project has received funding from the European Union’s Horizon 2020 research and Innovation programme under the Marie Skłodowska-Curie grant agreement No 764691.

REFERENCES

Figure 1: A Lattice Boltzmann calculation cycle. (a) Fluid located at a lattice node, (b) streams to neighbour nodes and (c) relaxes (collides)

Figure 2: Excess pressure (ΔP) in a liquid drop is inversely proportional to the drop radius (r), defined by the Laplace equation

Figure 3: Control of contact angle by varying solid density ($\mu \text{L/u}^2$) at values of 100, 200, 300 and 500, from left to right

Figure 4: Fluid rise in a capillary tube at time steps of 0, 5k, 10k and 15k LB cycles, from left to right

Figure 5: A fluid drop is placed between two wetting particles. Left to right shows capillary forces re-equilibrating the system at time steps of 50, 5k, 10k and 15k LB cycles

Figure 6: Drying of a simple colloidal solution with ten particles at time steps of 0, 4k, 8k and 11.5k LB cycles, from left to right