REVIEW
346 Terahertz endoscopic imaging for colorectal cancer detection: Current status and future perspectives
Doradla P, Joseph C, Giles RH

MINIREVIEWS
359 Use and barriers to chromoendoscopy for dysplasia surveillance in inflammatory bowel disease
Shukla R, Salem M, Hou JK
368 Evolution of stereoscopic imaging in surgery and recent advances
378 Endoscopic ultrasonography - emerging applications in hepatology

ORIGINAL ARTICLE
389 Clinical impact of confocal laser endomicroscopy in the management of gastrointestinal lesions with an uncertain diagnosis

396 Impact of laparoscopic liver resection on bleeding complications in patients receiving antithrombotics
Fujikawa T, Kawamoto H, Kawamura Y, Emoto N, Sakamoto Y, Tanaka A

CASE REPORT
417 Russell body gastritis with Dutcher bodies evaluated using magnification endoscopy

425 Simultaneous Courvoisier’s and double duct signs
Agrawal S, Vohra S
World Journal of Gastrointestinal Endoscopy
Volume 9 Number 8 August 16, 2017

ABOUT COVER

Editorial Board Member of World Journal of Gastrointestinal Endoscopy, Jorg G Albert, MD, PhD, Associate Professor, Department of Internal Medicine I, Johann Wolfgang Goethe-University Hospital, D-60590 Frankfurt, Germany

AIM AND SCOPE

World Journal of Gastrointestinal Endoscopy (World J Gastroint Endosc, WJGE, online ISSN 1948-5190, DOI: 10.4253) is a peer-reviewed open access (OA) academic journal that aims to guide clinical practice and improve diagnostic and therapeutic skills of clinicians.

WJGE covers topics concerning gastroscopy, intestinal endoscopy, colonoscopy, capsule endoscopy, laparoscopy, interventional diagnosis and therapy, as well as advances in technology. Emphasis is placed on the clinical practice of treating gastrointestinal diseases with or under endoscopy.

We encourage authors to submit their manuscripts to WJGE. We will give priority to manuscripts that are supported by major national and international foundations and those that are of great clinical significance.

INDEXING/ABSTRACTING

World Journal of Gastrointestinal Endoscopy is now indexed in Emerging Sources Citation Index (Web of Science), PubMed, and PubMed Central.

FLYLEAF

I-III Editorial Board

EDITORS FOR THIS ISSUE

NAME OF JOURNAL
World Journal of Gastrointestinal Endoscopy

ISSN
ISSN 1948-5190 (online)

LAUNCH DATE
October 15, 2009

FREQUENCY
Monthly

EDITORS-IN-CHIEF
Atsushi Imagawa, PhD, Director, Department of Gastroenterology, Mitoyo General Hospital, Kani-cho, Kagawa 769-1695, Japan
Juan Manuel Herrerias Gutierrez, PhD, Academic Fellow, Chief Doctor, Professor, Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen Macarena, Sevilla 41009, Spain

EDITORIAL BOARD MEMBERS
All editorial board members resources online at http://www.wjgnet.com/1948-5190/editorialboard.htm

RESPONSIBLE ASSISTANT EDITOR
Xiang Li

RESPONSIBLE ELECTRONIC EDITOR
Ya-Jing Lu

RESPONSIBLE SCIENCE EDITOR
Fang-Fang Ji

PROOFING EDITOR-IN-CHIEF
Lian-Sheng Ma

PROOFING EDITORIAL OFFICE DIRECTOR
Jin-Lei Wang

EDITORIAL OFFICE
Xiu-Xia Song, Director
World Journal of Gastrointestinal Endoscopy
Baishideng Publishing Group Inc
7901 Stoneridge Drive, Suite 501, Pleasanton, CA 94588, USA
Telephone: +1-925-2238242
Fax: +1-925-2238243
E-mail: editorialoffice@wjgnet.com
Help Desk: http://www.f6publishing.com/helpdesk
http://www.wjgnet.com

PUBLISHER
Baishideng Publishing Group Inc
7901 Stoneridge Drive, Suite 501, Pleasanton, CA 94588, USA
Telephone: +1-925-2238242
Fax: +1-925-2238243
E-mail: bpgoffice@wjgnet.com
Help Desk: http://www.f6publishing.com/helpdesk
http://www.wjgnet.com

PUBLICATION DATE
August 16, 2017

COPYRIGHT
© 2017 Baishideng Publishing Group Inc. Articles published by this Open-Access journal are distributed under the terms of the Creative Commons Attribution Non-commercial License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited, the use is non-commercial and is otherwise in compliance with the license.

SPECIAL STATEMENT
All articles published in journals owned by the Baishideng Publishing Group (BPG) represent the views and opinions of their authors, and not the views, opinions or policies of the BPG, except where otherwise explicitly indicated.

INSTRUCTIONS TO AUTHORS
http://www.wjgnet.com/bpg/generinfo/204

ONLINE SUBMISSION
http://www.f6publishing.com
Evolution of stereoscopic imaging in surgery and recent advances

Katie Schwab, Ralph Smith, Vanessa Brown, Martin Whyte, Iain Jourdan

Abstract

In the late 1980s the first laparoscopic cholecystectomies were performed prompting a sudden rise in technological innovations as the benefits and feasibility of minimal access surgery became recognised. Monocular laparoscopes provided only two-dimensional (2D) viewing with reduced depth perception and contributed to an extended learning curve. Attention turned to producing a usable three-dimensional (3D) endoscopic view for surgeons; utilising different technologies for image capture and image projection. These evolving visual systems have been assessed in various research environments with conflicting outcomes of success and usability, and no overall consensus to their benefit. This review article aims to provide an explanation of the different types of technologies, summarise the published literature evaluating 3D vs 2D laparoscopy, to explain the conflicting outcomes, and discuss the current consensus view.

Key words: Three-dimensional laparoscopy; Endoscopy; Three-dimensional displays; Minimally invasive surgery; Stereoscopic

© The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Capture of true stereopsis from the operative field is crucial for the subsequent projection of a high quality stereoscopic image. The latest three-dimensional (3D) systems using dual channel stereoeendoscopes and passive polarizing stereoscopic projection generate high quality 3D images for minimally invasive surgery. There is subjective and objective laboratory based evidence supporting use of 3D vs two-dimensional for surgeons of all experience. However, their clinical application has yet to be addressed with Level 1 evidence.

INTRODUCTION

When Phillipe Bozzini first designed and used his "Lichtleiter" in 1803 to peer into the human body, the medical world unwittingly became reliant on observing the endoscopic view of the human body in only two-dimensions (2D).

In 1838 Charles Wheatstone[1] was the first to accurately describe and publish the phenomenon of stereopsis - "... the mind perceives an object of three dimensions by means of the two dissimilar pictures projected by it on the two retinae ...". He described in his paper how the illusion of light projecting outwards from the surface of a metal plate that had been turned on a lathe had brought him to this realisation. He demonstrated the validity of his proposed mechanism of stereopsis by creating the "Wheatstone Stereoscope". This created an illusion of stereopsis simply by projecting different images to each eye of the viewer. By adjusting each image to give an impression of the perspective that would have been seen by that eye the viewer was left with a sense of a three-dimensional (3D) image.

The first endoscopic procedures were performed with single eyepiece rigid scopes which provided a monocular view for the operating surgeon. In the 1970s these images were relayed via a camera to a video monitor. Thus was born the modern era of "off screen" videoscopic operating. In the late 1980s the first laparoscopic cholecystectomies were performed and popularity for laparoscopic surgery began to increase exponentially. This prompted a sudden rise in surgical and technological innovations as the benefits and feasibility of minimal access surgery became more universally recognised. As minimal access surgery became more widely adopted the steepness of the learning curve for surgeons became more apparent. In particular the monocular laparoscopic view providing two-dimensional viewing, and associated reduced depth perception, became the focus of technological advances. Attention therefore turned to producing a usable 3D endoscopic view for surgeons, utilising different technologies for image capture and image projection. These evolving visual systems have been assessed in various research environments with conflicting outcomes of success and usability, and no overall consensus to their benefit.

This review article aims to provide an explanation of the different types of technologies, summarise the published literature evaluating 3D vs 2D laparoscopy, to explain the conflicting outcomes, and discuss the current consensus view.

First stereoptic views

Binocular microscopes were first used in 1922 in otolaryngology to overcome the lack of depth perception associated with monocular operating microscopes by surgeon Gunnar Holmgren (1875-1954), Head of the University Clinic of Stockholm[2]. These provided a stereoptic magnified view of the operating field and were quickly adopted by Otolaryngology, Neurosurgery and Orthodontics. In the 1980s, a German surgeon, Dr. Gerhard Buess[3], pioneered Transanal Endoscopic Microsurgery (TEMS) utilising the first "stereosendoscope" with two optical channels, viewed through binocular eye pieces. In 1992, his team trialed the first prototype laparoscopic stereosendoscope in animal studies and clinically during laparoscopic cholecystectomies, and concluded the stereopsis facilitated complex laparoscopy[4].

Image capture

In the laparoscopic settling, an image of the operative field may be captured in one of two ways. A traditional rod-lens laparoscope may be used to transmit the light from the image to outside the patient where a video camera then captures the image and sends it as an electrical signal to an image processor. Rod lens technology is now being superseded by "chip on the tip" technology utilizing small camera chips which capture the image at the tip of the laparoscope and then transmit the electrical signal along the laparoscope to an image processor.

The technology used to capture the 3D characteristics of the operating field includes the laparoscope, the camera and the image processor. Various systems have been developed and trialed in the literature. Single channel systems attempt to extract two perspectives of the operative field from a single point of view by splitting the image either with a prism or filter. The result is therefore not a true binocular image[5]. Dual channel systems provide two horizontally separated images and thus produce two truly different perspectives of the operative field. "Insect eye" scopes allow for multiple images to be captured and processed simultaneously. There is significant variety in the design of the video capture systems, which results in differences in the quality of the perceived image.

Projection systems

Projection systems aim to deliver the 3D view to the observer. Early systems used active shuttering projection, where alternate left and right views are displayed at high frequency on a display. With these systems the operator wears active shuttering glasses so that each eye receives only the corresponding right or left eye image. Robotic systems evolved to use a fixed viewing environment, where, like in a microscope, the observer has a separate image displayed to each eye. This concept was used in Head Mounted Displays (HMDs) where each eye was provided with its own screen to achieve stereopsis. The latest commercial projection systems use passive polarizing technology, which allows for two images to be projected simultaneously in different polarized waveforms. A high definition image is made...
Most commonly, the vertical resolution remains at 1080 pixels and the image is therefore reduced by half to 540 pixels but the vertical resolution remains at 1080 pixels and the resulting image therefore remains high quality. When this technology was transferred from cinema projection systems to home television monitors the opportunity to use this system in the operating theatre became a possibility.

More recently there has been the experimental development of complex waveform projection systems (advanced systems based on anaglyph separation), autostereoscopic “glass-free” displays and holographic displays.

LITERATURE REVIEW

We aimed to identify from the literature, all published work evaluating 3D laparoscopic systems compared to 2D standard “classical laparoscopic” systems. PubMed, EMBASE, Ovid and Medline where used as search engines to identify any published full English language papers since 1996 which referenced stereopsis, 3D, vs two-dimensional or 2D, laparoscopy, endoscopic surgery, imaging and 3D. Overall, 361 titles were identified and 275 were discounted on further review of their titles. Of the 86 abstracts reviewed, 45 were further discounted as they didn’t compare 3D with 2D. Review of these 41 papers acknowledged another six papers not identified by the original search. In total, 47 papers reported assessing 3D imaging systems against 2D systems in laparoscopic surgery. A further four titles were discounted on reading the whole paper, leaving 43 to be assessed. Ninety-six percent of the studies describe laboratory based experiments, involving a variety of laparoscopic skills tasks, some from validated curriculum programmes and others designed to mimic advanced laparoscopic skills. The studies also use a variety of subjects from non-surgical participants to those with a variety of experience in laparoscopic surgery.

The number of tasks, repetitions, cross over in visual systems, assessment of a learning curve and number of individual subjects involved varied in each study. Universally, the common themes assessed in the majority of studies were the time for task completion and performance, either by clearly defined errors or by other assessment defined scoring systems.

There has been speculation for the last 18 years over the benefit of 3D operating visual systems, largely based on conflicting reports in the literature and the ongoing evolution of the system technology. We separated data by the type of optical or projection system in order to clarify the results and explain the conflicting outcomes observed by different researchers.

Single channel endoscope studies

We identified 13 studies which used single channelled scopes to capture the laparoscopic view (Table 1). Seven of these studies(6-12) utilised active shuttering projection systems with only one study(27) identifying a significant improvement in outcomes using the 3D system compared to the 2D standard. All of these studies also reported poor subjective outcomes associated with the 3D systems, including visual strain, headaches and nausea as well as an awareness of flickering of the screen. Four studies(13-16) assessed a second-generation 3D system, which used a single channel scope and projected left and right images to head mounted display systems, allowing individual eye projection without loss of light or image quality. Three of the studies reported significant improvement in performance for novices. The HMDs, although bulky, did not cause any of the cortical disturbances reported by the active shuttering systems. The final two studies(17,18) used single channel scopes and the latest passive polarizing systems. Neither identified a significant difference in respective outcomes with the 3D systems. Both studies reported that a period of adaptation was required to overcome any higher processing symptoms that the 3D visual system induced(27).

Dual channel endoscope studies

Robotic “fixed screen” studies: Nine studies investigated the effect of stereopsis in laparoscopic surgery utilising the Da Vinci robotic system (Intuitive, California United States) (Table 2)(19-27). Stereopsis is achieved with a binocular endoscope and two camera heads for separate left and right image capture. Each image is received by the respective eye, simultaneously using a fixed console, alleviating the need for shuttering, polarizing or head mounted projection. All studies reported significant improvement in performance with the Da Vinci system in 3D mode over 2D mode. Notably, performance advantages were independent of participant experience(27).

Studies using screen projection and eye-glass technology

Five studies reported outcomes with binocular stereo-endoscopes (Table 3), alternating screen image and active shuttering glasses(28-32). Four of the five studies reported significant improvements in performance with 3D systems(28-32). In the one study (Wentink et al(30), 2002) the screen was placed very close to the surgeon while the working environment from the stereooroscope was 12 cm. This produces conflict between convergence and focus for the operating surgeon, and it is therefore unsurprising that the 3D system showed poorer performance.

Eight studies evaluated passive polarizing screen and glass technology (Table 3)(33-40). Two of these studies retrospectively compared a series of operations (laparoscopic cholecystectomies and laparoscopic...
Table 1 Single channelled scopes

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Year</th>
<th>Projection system for 3D</th>
<th>Who and what assessed</th>
<th>Objective outcomes</th>
<th>Subjective outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>McDougall et al[7]</td>
<td>1996</td>
<td>Active shuttering screen and glasses</td>
<td>22 urological and gynaecological surgeons, non-novice Pig-lab, laparoscopic vessel dissection and securing, suturing and knot tying</td>
<td>Time for completion, No significant difference found</td>
<td>3D not felt to enhance image quality or enhance performance. Blurred vision and eye fatigue with 3D Glasses bothersome and dizziness reported 50% felt no improved performance although 66% felt depth perception improved 40% felt reduced image quality and dimmer; 10% reported dizziness and eye strain</td>
</tr>
<tr>
<td>Dion et al[8]</td>
<td>1997</td>
<td>Active shuttering screen and glasses</td>
<td>Surgeons and non-surgeons. Lab visual (n = 8) and motor skills (n = 9) 32 surgeons, 11 with and 21 without laparoscopic experience 1 × lab based skills task</td>
<td>Time and errors. Improvement in both with 3D Time for completion in 2D and 3D (1 repetition). No significant difference</td>
<td></td>
</tr>
<tr>
<td>Chan et al[9]</td>
<td>1997</td>
<td>Active shuttering screen and glasses</td>
<td>24 surgical residents, minimal laparoscopic experience</td>
<td>Time to completion of 3 skills tasks in each visual system (2 × repetitions) No significant difference</td>
<td>Although 48% preferred 3D A/S screen over all, 7% and 25% respectively reported headaches with 3D screen and 3D HMD. 82% found HMD uncomfortable</td>
</tr>
<tr>
<td>Hanna et al[10]</td>
<td>1998</td>
<td>Active shuttering screen and glasses (A/S)</td>
<td>4 surgical SpRs performing 60 laparoscopic cholecystectomies</td>
<td>Time for completion and errors No significant difference</td>
<td>Visual strain, headache and facial discomfort with 3D system</td>
</tr>
<tr>
<td>Mueller et al[11]</td>
<td>1999</td>
<td>Active shuttering screen and glasses</td>
<td>30 subjects (10 with and 20 without laparoscopic experience) 4 × lab based skills tasks for all, then experienced did suturing tasks</td>
<td>Time for attempts, and success/ failure of attempt No significant difference</td>
<td>Reported loss of concentration, headaches and distraction with 3D system</td>
</tr>
<tr>
<td>Herron et al[12]</td>
<td>1999</td>
<td>3D (active shuttering screen and glasses) and 3D HMD</td>
<td>50 laparoscopic novices 3 × lab based skills tasks</td>
<td>Time to completion of 3 skills tasks in each visual system (2 × repetitions) No significant difference</td>
<td></td>
</tr>
<tr>
<td>Mueller-Richter et al[13]</td>
<td>2003</td>
<td>3D (active shuttering screen and polarising glasses) and 3D Autostereoscopic screen</td>
<td>59 laparoscopic novices 3 × lab based skills tasks</td>
<td>Number of completions in time limit and subjective difficulty No significant difference</td>
<td>Flickering reported with both 3D systems</td>
</tr>
<tr>
<td>Bhayani et al[14]</td>
<td>2005</td>
<td>HMD</td>
<td>24 surgical residents, minimal laparoscopic experience. 1 × lab based skills task</td>
<td>Time for completion in 2D and 3D (1 repetition) Significant reduction in time</td>
<td>> 50% preferred the 3D system and found task easier in 3D No subjective assessment on physical symptoms</td>
</tr>
<tr>
<td>Patel et al[15]</td>
<td>2007</td>
<td>HMD</td>
<td>15 novices and 2 experts 5 × lab based skills tasks</td>
<td>Time and accuracy in 2D and 3D (1 repetition) of the novices compared to the experts Significant difference in both for novices only in 3D</td>
<td></td>
</tr>
<tr>
<td>Bittner et al[16]</td>
<td>2008</td>
<td>HMD</td>
<td>2 novices, 2 intermediate and 2 experts 2 × lab based suturing tasks (based on handedness, visual system and articulating needle holder)</td>
<td>Time and accuracy in 2D and 3D (multi repetitions with each variable) No significant difference</td>
<td>83% felt improved depth perception. No reported physical symptoms</td>
</tr>
<tr>
<td>Votanopoulos et al[17]</td>
<td>2008</td>
<td>HMD</td>
<td>36 surgical residents and medical students (11 with and 25 without laparoscopic experience) 6 × lab based skills tasks (rpt 3/12 later)</td>
<td>Time and errors in 2D and 3D (1 repetition) Significant improvement in time and errors in novice group only</td>
<td></td>
</tr>
<tr>
<td>Kong et al[18]</td>
<td>2009</td>
<td>Passive polarising screen and glasses</td>
<td>21 novices and 6 experienced surgeons 2 × lab based skills tasks</td>
<td>Time and errors in 2D and 3D (4 repetitions of each over 4 d) Significant reduction in errors in 3D novices, no other significant difference noted</td>
<td>Dizziness and eye fatigue in novice with 3D system which improved with time</td>
</tr>
<tr>
<td>Mistry et al[19]</td>
<td>2013</td>
<td>Passive polarising screen and glasses</td>
<td>31 medical students (novices) 4 × lab based skills tasks (MISTELS)</td>
<td>Task Performance in 2D and 3D as per MISTELS scoring system No significant difference</td>
<td></td>
</tr>
</tbody>
</table>

NA: Not available; 3D: Three-dimensional; 2D: Two-dimensional; HMD: Head mounted display.
Specific performance metric score

Significant difference in 3D for 3D Da Vinci

Time take for repetitive cycles:

Da Vinci and prototype

7 surgeons (3 experienced with Da Vinci, 4 not)

Active shuttering screen vs standard (2D)

Only 33% felt 3D better view

No detrimental symptoms reported

Not available; 3D: Three-dimensional; 2D: Two-dimensional.

Table 2

Table 2 Dual channel laparoscopes - Robotic fixed screen

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Year</th>
<th>Projection system for 3D</th>
<th>Who and what assessed</th>
<th>Objective outcomes</th>
<th>Subjective outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Falk et al[24]</td>
<td>2001</td>
<td>Da Vinci</td>
<td>15 experienced laparoscopic surgeons (increasing difficulty)</td>
<td>Time and errors in 2D and 3D and 2DHD (1 repetition in each view)</td>
<td>Significant differences in time and errors in 3D</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No detrimental symptoms reported</td>
</tr>
<tr>
<td>Munz et al[25]</td>
<td>2004</td>
<td>Da Vinci</td>
<td>11 experienced laparoscopic surgeons</td>
<td>Errors and performance (ICSAD assessment - time, no. movements and distance moved)</td>
<td>Significant difference in both in 3D</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 × lab based skills tasks</td>
<td></td>
<td>No detrimental symptoms reported</td>
</tr>
<tr>
<td>Moorthy et al[26]</td>
<td>2004</td>
<td>Da Vinci</td>
<td>10 surgeons of varying experience</td>
<td>Time and distance travelled of instruments in 2D and 3D</td>
<td>Significant difference in both in 3D</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lab based suturing task</td>
<td></td>
<td>No detrimental symptoms reported</td>
</tr>
<tr>
<td>Badani et al[27]</td>
<td>2005</td>
<td>Da Vinci</td>
<td>7 surgeons (3 experienced with Da Vinci, 4 not)</td>
<td>Significant difference in both in 3D</td>
<td>Non significant improvement in 3D</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No detrimental symptoms reported</td>
</tr>
<tr>
<td>Blavier et al[28]</td>
<td>2007</td>
<td>Da Vinci</td>
<td>2 × lab based suturing tasks</td>
<td>Significant difference in 3D in all areas</td>
<td>Significant difference in both in 3D</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>40 medical students</td>
<td>Errors, performance and learning curve</td>
<td>No detrimental symptoms reported</td>
</tr>
<tr>
<td>Byrn et al[29]</td>
<td>2007</td>
<td>Da Vinci</td>
<td>12 surgeons of varying experience</td>
<td>Time and errors in 2D and 3D</td>
<td>Significant difference in both in 3D</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lab based skills task</td>
<td></td>
<td>No detrimental symptoms reported</td>
</tr>
<tr>
<td>Blavier et al[30]</td>
<td>2007</td>
<td>Da Vinci</td>
<td>4 × lab based skills tasks</td>
<td>Specific performance metric score</td>
<td>Significant difference in 3D in all tasks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60 medical students</td>
<td></td>
<td>No detrimental symptoms reported</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(increasing difficulty)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fishman et al[31]</td>
<td>2008</td>
<td>Da Vinci and prototype Ames stereoscopic camera</td>
<td>12 subjects of varying exposure to stereoptic systems</td>
<td>Time for completion while altering binocular disparity of stereoptic camera until 0% (matching 2D vision)</td>
<td>No detrimental symptoms reported</td>
</tr>
<tr>
<td>Blavier et al[32]</td>
<td>2009</td>
<td>Da Vinci</td>
<td>Lab based skills task using Da Vinci manipulator</td>
<td>Time for task completion and estimation of time in 2D or 3D not both</td>
<td>Significant difference in 3D for novices, similar results for experts</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>80 subjects (60 novice individuals and 20 expert laparoscopic surgeons)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3

Table 3 Dual channel laparoscopes - Screen projection and glasses

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Year</th>
<th>Projection system for 3D</th>
<th>Who and what assessed</th>
<th>Objective outcomes</th>
<th>Subjective outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birkett et al[33]</td>
<td>1994</td>
<td>Active shuttering screen and Active glasses then polarised glasses vs 2D</td>
<td>10 Subjects? experience</td>
<td>Time take for repetitive cycles;</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Active shuttering screen and glasses</td>
<td>2 × lab based skills tasks</td>
<td>No difference in simples task, reduced time in complex task</td>
<td>No</td>
</tr>
<tr>
<td>Peitgen et al[34]</td>
<td>1996</td>
<td>Active shuttering screen and glasses</td>
<td>60 subjects (20 novices, 20 beginners, 20 advanced laparoscopic surgeons)</td>
<td>Time and accuracy of tasks</td>
<td>Both significantly improved in 3D, independent of experience</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Active shuttering screen and glasses</td>
<td>2 × lab based skills tasks</td>
<td></td>
<td>NA</td>
</tr>
<tr>
<td>Wentink et al[35]</td>
<td>2002</td>
<td>Active shuttering screen and polarised glasses vs TFT display vs projection vs standard (2D)</td>
<td>8 surgeons with polaroscopic experience</td>
<td>Time for task completion, 10 repetitions but only 2 surgeons per visual system</td>
<td>No improvement with 3D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Active shuttering screen and glasses</td>
<td>Lab based skills task</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jourdan et al[36]</td>
<td>2004</td>
<td>Active shuttering screen and glasses</td>
<td>8 experienced laparoscopic surgeons</td>
<td>Time and errors, 10 repetitions each, in each visual system</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Active shuttering screen and glasses</td>
<td>5 × lab based skills tasks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feng et al[37]</td>
<td>2010</td>
<td>Active shuttering screen and polarised glasses (8D vs 2D SD vs 2D HD)</td>
<td>27 subjects (16 novices, 11 with varying laparoscopic experience)</td>
<td>Time and errors (1 × repetition, in only 1 of the visual systems)</td>
<td>Significant improvement in both in 3D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Active shuttering screen and polarised glasses (8D vs 2D SD vs 2D HD)</td>
<td>Lab based skills task</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hubber et al[38]</td>
<td>2003</td>
<td>Prototype passive polarising screen and glasses (novices)</td>
<td>16 Medical Students (novices)</td>
<td>Time and economy of movement</td>
<td>Significant improvement in both over 2D systems in 3D, economy of movement improved in 3D vs HD, not 5D 2D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prototype passive polarising screen and glasses (novices)</td>
<td>Lab based skills tasks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Honeck et al[39]</td>
<td>2012</td>
<td>Passive polarising screen and glassed</td>
<td>10 novices and 10 experienced laparoscopic surgeons</td>
<td>Time and errors (10 repetitions of each task in each visual condition)</td>
<td>No significant improvement in time, reduction in errors significant in both groups in 3D system</td>
</tr>
<tr>
<td>Smith et al[40]</td>
<td>2012</td>
<td>Passive polarising screen and glassed</td>
<td>5 × lab based skills tasks</td>
<td>Significant improvement in time and errors in 3D</td>
<td>No</td>
</tr>
</tbody>
</table>
gynaecological operations) with case matched procedures in standard 2DHD systems\(^\text{36,37}\). Both reported a significant reduction in operating times for case matched procedures. Six laboratory based studies identified significant improvements in most of the tested parameters when tasks were performed in 3D\(^\text{33-35,38-40}\). Two other studies (Honeck et al\(^\text{34}\), 2012, and Cicione et al\(^\text{38}\), 2013) found varied performance improvements in 3D. Honeck found reduced errors but no significant time improvements, while Cicione et al\(^\text{38}\) (2013) found an overall significant improvement with 3D over 2D. These advantages were only observed in the expert subgroup when performing one task, the “Peg Transfer”. However both studies only allowed for a single repetition of tasks in 3D and 2D before comparison. In studies which allowed for repetitions and plateauing of the learning curve in both visual environments before comparison, there was a universal improvement when comparing 3D over 2D, independent of experience\(^\text{33,35,39,40}\).

Comparing different scopes and projection systems

Four publications described using more than one type of 3D system in their comparison of 3D vs 2D (Table 4)\(^\text{41-44}\). Hanna et al\(^\text{42}\) (2000) assessed single-channel scope and dual-channel scope systems, both using active shuttering screen/glasses systems compared to a standard 2D system when performing laboratory based bowel anastomosis. The 3D systems were evaluated together, rather than separately and showed no significant difference in time or precision compared to 2D. However, closer analysis of the data implies the dual channel scope demonstrated a trend of improved time and precision compared to its single channel counterpart. Visual strain was reported using both stereoendoscopes. Wilhelm et al\(^\text{45}\) (2014) reported all performance parameters were superior in 3D over 2D using a variety of experimental and commercially available systems, although visual disturbance related to the autostereoscopic screen only. Finally, Wagner et al\(^\text{43}\) (2012), compared single channel scope with HMD technology (in 3D and 2D settings) with robotic dual channel fixed screen technology (2D and 3D settings) and demonstrated significant time reductions with robotic 3D across all other laparoscopic outcomes.

Other prototype projection systems

Four publications assessed prototype projection systems (Table 5)\(^\text{45-48}\). Three used autostereoscopic screen technology with binocular scopes thus negating the need for eyewear\(^\text{46,48}\). Improvements in all outcomes were seen with the 3D group. Storz et al\(^\text{47}\) (2011) used a novel projection system with a wavelength multiplex camera and monitor with wavelength polarizing eyewear (a technology based on original anaglyph systems). This again returned a true sense of stereopsis and improvements in outcomes were significant in 3D over 2D.

DISCUSSION

There is subjective and objective laboratory based evidence supporting use of 3D vs 2D for surgeons of all experiences as it provides the most realistic view of the operating field. It is also evident that stereoscopic imaging technology is continuing to evolve to generate higher quality 3D images.
Capture of true stereopsis from the operative field is crucial for the subsequent projection of a true stereoscopic image. However, with such focus on producing an effective projection system, the acquisition and true stereopsis of the image has sometimes been overlooked. It is clear from this review that in systems that compromised on the capture of two truly separate images of the operative field, they yielded no advantage for the participants using 3D over 2D. In studies using dual channel stereendoscopes, the separate lenses within the laparoscope provided a greater spatial impression of stereopsis. Consequently, for the operator, there is a more accurate appreciation of depth. Fishman et al. (2008) concluded there was deterioration in laparoscopic performance by reducing horizontal lens separation in an experimental dual channel scope (thereby reducing stereopsis impression). However single channel systems produce images of greater clarity and resolution due to the greater size of the single optic channel for light transfer. Single channel optics can produce convincing stereopsis only at close operating distances, whereas dual channel systems provide significant stereopsis in larger cavities, where there is greater distance from the end of the stereendoscope to the operating site. Close operating or near field objects with dual channel systems can cause visual discomfort due to the fixed focal point of the two lenses and our natural convergence conflicting. Therefore it is not surprising that the majority of studies which utilised single channel

<table>
<thead>
<tr>
<th>Table 4 Comparing multisystems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref.</td>
</tr>
<tr>
<td>van Bergen et al.</td>
</tr>
<tr>
<td>Hanna et al.</td>
</tr>
<tr>
<td>Wilhelm et al.</td>
</tr>
<tr>
<td>Wagner et al.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 5 Other prototype projection systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref.</td>
</tr>
<tr>
<td>Taffinder et al.</td>
</tr>
<tr>
<td>Ohuchida et al.</td>
</tr>
<tr>
<td>Storz et al.</td>
</tr>
<tr>
<td>Khoshabeh et al.</td>
</tr>
</tbody>
</table>

NA: Not available; 3D: Three-dimensional; 2D: Two-dimensional; HMD: Head mounted display.
laparoscopes did not show a benefit of 3D laparoscopy as all used target operating points distant to the scopes key stereoptic capabilities, irrespective of the projection system employed.

Modern projection systems attempt to provide as true a representation of the natural 3D view as possible, whilst balancing comfort and visual ease for the observer(s) and maintaining the brightness and resolution quality of the image. Active systems caused visual disturbances, headaches and symptoms of nausea due to the conflict of convergence and accommodation, as well as flickering and discomfort for the viewer due to the cumbersome battery powered glasses.

Early 3D images had poor resolution and luminosity as early cameras could not cope with low light levels or capture at high resolution. Projection systems were equally constrained by low refresh rates, low resolution and brightness. This added to discomfort and degraded the early 3D view[33,35]. Falk et al[39], 2001, demonstrated that image quality is vital for precision and surgical performance, as 2DHD systems produced better results when compared with standard view 2D and 3D. The use of polarizing glasses and filters over the shunting screen provides a more comfortable wear experience for the observer but this is at the expense of image brightness.

Head-mounted displays provide good quality images with no degradation in quality or light and preserve the normal hand-eye axis[39]. However open sided head units, which do not block surrounding visual stimuli, can cause headaches and dizziness due to conflicting information from visual input and body position whilst with sealed units the surgeons are isolated from their surroundings and unable to react to unforeseen environmental incidents[30].

The Da Vinci robotic system (intuitive, United States) allows for fixed console viewing and so provides an unparalleled quality of stereopsis for the surgeon. All the studies which assessed binocular and biocular (same view through each eye, therefore 2D view)[51], showed statistically significant advantages with 3D performance for time and errors, reduced motion, and all other comparative markers for surgical performance. There can be no doubt that the advantages noted were purely due to the improvement in view provided by reintroduction of natural stereoptic depth cues. However use of the robot is limited to a relatively small number of procedures where advantage of the robotic platform over standard laparoscopic techniques has been established.

Later studies (Table 3), which used binocular endoscopes and the latest passive polarizing projection systems, identified no subjective impairment or “side effects” to using the 3D systems. The majority identified significant differences in their respective markers of surgical performance when comparing classical laparoscopy to 3D systems. Whilst surgeon experience does affect outcomes, it must be appreciated that experience in classical laparoscopy leads to the development of techniques to overcome the lack of stereopsis. This therefore favours poorer outcomes with the 3D system in studies where the assessment was made after short exposure times and single repetition of skills[34,38,39]. Studies which accounted for learning curves by allowing familiarisation with the system with multiple repetitions and well powered sample sizes demonstrate clearly the benefits in performance achievable with 3D laparoscopy.[31,33,35,40]

High quality experimental studies have shown that the latest 3D systems using dual channel stereo-endoscopes and passive polarizing technology provide a “near natural” view, almost comparable to that observed by the Da Vinci. However, their clinical application has yet to be addressed with Level 1 evidence. The only randomised clinical trial assessing 3D systems[9], and addressed by Cochrane review[54], showed no discernible difference for laparoscopic cholecystectomy performance. However, this study is over ten years old and the system assessed used a single channel scope and active shuttering projection, which was unlikely to have provided a true spatial impression of the operating field throughout. Studies that investigated the clinical application of the latest 3D systems identify performance advantages but are underpowered[36,37]. Establishing the benefits of these systems can only truly be addressed within randomised clinical trials, using appropriately powered sample sizes.

REFERENCES

Fishman JM, Ellis SR, Hassler CJ, Stern JD. Effect of reduced stereoscopic camera separation on ring placement with a surgical...

