Weakly-Supervised 3D Pose Estimation from a Single Image using Multi-View Consistency
Rochette, Guillaume, Russell, Chris and Bowden, Richard (2019) Weakly-Supervised 3D Pose Estimation from a Single Image using Multi-View Consistency In: 30th British Machine Vision Conference (BMVC 2019), Cardiff, Wales.
|
Text
Weakly-Supervised 3D Pose Estimation.pdf - Accepted version Manuscript Download (2MB) | Preview |
Abstract
We present a novel data-driven regularizer for weakly-supervised learning of 3D human pose estimation that eliminates the drift problem that affects existing approaches. We do this by moving the stereo reconstruction problem into the loss of the network itself. This avoids the need to reconstruct 3D data prior to training and unlike previous semi-supervised approaches, avoids the need for a warm-up period of supervised training. The conceptual and implementational simplicity of our approach is fundamental to its appeal. Not only is it straightforward to augment many weakly-supervised approaches with our additional re-projection based loss, but it is obvious how it shapes reconstructions and prevents drift. As such we believe it will be a valuable tool for any researcher working in weakly-supervised 3D reconstruction. Evaluating on Panoptic, the largest multi-camera and markerless dataset available, we obtain an accuracy that is essentially indistinguishable from a strongly-supervised approach making full use of 3D groundtruth in training.
Item Type: | Conference or Workshop Item (Conference Paper) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Divisions : | Faculty of Engineering and Physical Sciences > Electronic Engineering | ||||||||||||
Authors : |
|
||||||||||||
Date : | 2019 | ||||||||||||
Related URLs : | |||||||||||||
Depositing User : | Clive Harris | ||||||||||||
Date Deposited : | 17 Sep 2019 07:33 | ||||||||||||
Last Modified : | 17 Sep 2019 07:33 | ||||||||||||
URI: | http://epubs.surrey.ac.uk/id/eprint/852639 |
Actions (login required)
![]() |
View Item |
Downloads
Downloads per month over past year