Isomer spectroscopy in 133Ba and high-spin structure of 134Ba

L. Kaya,1,a A. Vogt,1 P. Reiter,1 M. Siciliano,2,3 N. Shimizu,4 Y. Utsumo,4,5 H.-K. Wang,6 A. Gargano,7 L. Coraggio,7 N. Itaco,7,8 K. Arnswald,1 D. Bazzacco,9 B. Birkenbach,1 A. Blazhev,1 A. Bracco,10 B. Bruyneel,11 L. Corradi,3 F. C. L. Crespi,10 G. de Angelis,3 M. Droste,1 J. Eberth,1 E. Farnea,9,b E. Fioretti,3 C. Fransen,1 A. Gadea,12 A. Giaz,10 A. Görgen,13,14,15 A. Gottardo,3 K. Hadyński-Kleń,3 H. Hess,1 R. Hirsch,1 P. R. John,16 J. Jolie,1 A. Jungclaus,17 V. Karayonchev,1 L. Kornwebel,1 W. Korten,14 S. Leoni,10 L. Lewandowski,1 S. Lunardi,2,9 R. Menegazzo,9 D. Mengoni,2,9 C. Michelagnoli,18 T. Mijatović,19 G. Montagnoli,2,9 D. Montanari,20 C. Müller-Gaertmann,1 D. Napoli,3 Zs. Podolyák,21 G. Pollarolo,22 F. Recchia,2,9 J.-M. Régis,1 N. Saed-Samii,1 E. Şahin,23 F. Sciarlassara,2,9 K. Schomacker,1 M. Seidlitz,1 B. Siebeck,1 P.-A. Söderström,24 A. M. Stefanini,3 O. Stezowski,25 S. Szilner,19 B. Szpak,26 E. Teruya,27 C. Ur,3 J. J. Valiente-Dobón,3 K. Wolf,1 K. Yanase,27 and K. O. Zell1

1Institut für Kernphysik, Universität zu Köln, D-50937 Köln, Germany
2Dipartimento di Fisica e Astronomia, Università di Padova, I-35131 Padova, Italy
3Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, I-35020 Legnaro, Italy
4Center for Nuclear Study, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
5Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
6College of Physics and Telecommunication Engineering, Zhoukou Normal University, Henan 466000, People’s Republic of China
7Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, I-80126 Napoli, Italy
8Dipartimento di Matematica e Fisica, Università degli Studi della Campania “Luigi Vanvitelli”, viale A. Lincoln 5, I-81100 Caserta, Italy
9Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova, Italy
10Dipartimento di Fisica, Università di Milano and INFN Sezione di Milano, I-20133 Milano, Italy
11CEA Saclay, Service de Physique Nuclaire, F-91191 GIF-sur-Yvette, France
12Istituto de Física Corpuscular, CSIC-Universidad de Valencia, E-46071 Valencia, Spain
13Department of Physics, University of Oslo, P. O. Box 1048 Blindern, N-0316 Oslo, Norway
14Institut de Recherche sur les lois Fondamentales de l’Univers – IRFU, CEA/DSM, Centre CEA de Saclay, F-91191 GIF-sur-Yvette Cedex, France
15Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
16Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany
17Instituto de Estructura de la Materia, CSIC, Madrid, E-28006 Madrid, Spain
18Institut Laue-Langevin (ILL), 38042 Grenoble Cedex 9, France.
19Ruder Boškovic Institute, HR-1 002 Zagreb, Croatia
20USIAS - Université de Strasbourg, IPHC-CNRS, F-67037 Strasbourg Cedex 2, France.
21Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
22Dipartimento di Fisica Teorica dell’Università di Torino and INFN, I-10125 Torino, Italy
23Department of Physics, University of Oslo, P. O. Box 1048 Blindern, N-0316 Oslo, Norway.
24Extreme Light Infrastructure-Nuclear Physics (ELI-NP), 077125 Bucharest-Magurele, Romania
25Université de Lyon, Université Lyon-1, CNRS/IN2P3, UMR5822, IPNL, F-69622 Villeurbanne Cedex, France
26Henryk Niewodniczański Institute of Nuclear Physics PAN, PL-31342 Kraków, Poland
27Department of Physics, Saitama University, Saitama City 338-8570, Japan

(Dated: May 14, 2019)

The transitional nuclei 134Ba and 133Ba are investigated after multinucleon transfer (MNT) employing the high-resolution Advanced GAmma Tracking Array (AGATA) coupled to the magnetic spectrometer PRISMA at the Laboratori Nazionali di Legnaro, Italy and after fusion-evaporation reaction at the FN tandem accelerator of the University of Cologne, Germany. The $J^\pi = 19^{+}/2^+$ state at 1942 keV in 133Ba is identified as an isomer with a half-life of 66.6(20) ns corresponding to a $B(E1)$ value of 7.6(2) × 10$^{-6}$ e2/fm2. The level scheme of 134Ba above the $J^\pi = 10^+$ isomer is extended to approx. 6 MeV. A pronounced backbending is observed at $\hbar\omega = 0.38$ MeV along the positive-parity yrast band. The results are compared to the high-spin systematics of the $Z = 56$ isotopes. Large-scale shell-model calculations employing the GCN50:82, SN100PN, SNV, PQM130, Realistic SM and EPQQM interactions reproduce the experimental findings and elucidate the structure of the high-spin states. The shell-model calculations employing the GCN50:82 and PQM130 interactions reproduce alignment properties and provide detailed insight into the microscopic origin of this phenomenon in transitional 134Ba.

a Corresponding author: levant.kaya@ikp.uni-koeln.de

b Deceased.
I. INTRODUCTION

Excitations in nuclei around mass $A \approx 130$ arise from the complex interplay of single-particle and collective degrees of freedom. Quasiparticle excitations play a key role for the presence of yrast-trap isomers. Several shell-model interactions are available for the description of neutron-rich $A \approx 130$ nuclei such as GCN50:82 [1, 2], SN100P [3], SVN [4], POM [5, 6], and Realistic SM [7, 8] including the configuration space for proton and neutrons $0g_{7/2}$, $1d_{5/2}$, $1d_{3/2}$, $s_{1/2}$, and $0h_{11/2}$ orbitals. Calculated transition probabilities between states constructed from these orbitals, especially of hindered transitions, are of particular interest for tests of all components of effective interactions, such as proton-proton, neutron-neutron, and proton-neutron correlations. However, the description of transition probabilities in this valence space is limited in the sense that $E1$ transitions cannot be evaluated since only the $h_{11/2}$ orbital acts as an intruder-parity orbital. Recent interactions have been driven by studies of excitations across the $N = 82$ neutron shell incorporating the two neutron orbitals $\nu 1f_{7/2}$ and $\nu 2p_{3/2}$. For example, the recently developed EPQMM interaction provides an extended cross-shell description of the $Z \geq 50$, $N \leq 82$ region [9].

A. Isomers along $N = 77$ isotones

Along the $N = 77$ isotones from 131Xe to 137Nd, $J^\pi = 19/2^+$ isomers, decaying through strong $E1$ transitions to the $J^\pi = 17/2^-$ state, are a common feature and were extensively studied in the past. Starting from semi-magic 127Sn, Pinston et al. [10] identified a $J^\pi = 19/2^+$ isomer with a half-life of 4.5(3) μs, decaying via a low energy 17-keV $E2$ transition towards the $J^\pi = 15/2^+$ state. Adding four protons, the level scheme of 131Xe was recently extended to approx. 5 MeV [11]. The first $J^\pi = 19/2^+$ state at 1805 keV, decaying via a 189.2 keV γ ray into the $J^\pi = 19/2^-$ state, has been identified as an isomer with an adopted half-life of 14(3) ns [12]. Approaching the $Z = 64$ subshell closure, isomeric $J^\pi = 19/2^+$ states are established in 135Ce at $E_x = 2125$ keV ($T_{1/2} = 8.2(4)$ ns [13]) and in 137Nd at $E_x = 2223.4$ keV (1-4 ns [14]). So far, only in 129Te the $J^\pi = 19/2^+$ state is still unobserved. Furthermore, higher lying $J^\pi = 23/2^+$ isomers were reported in 127Sn (0.9(3) μs [15]) and in 129Te (33(3)μs [16]). In 127Sn the seniority $\nu = 3$ multiplet is completed by the observation of a $J^\pi = (27/2^-)$ isomer with a half-life of 0.25(3) μs [15].

The data on low-spin states in 133Ba originate from earlier work employing β decay [17], (d, p) [18], and (n, γ) reactions [19]. The $J^\pi = 11/2^+$ neutron-hole isomer at 288 keV with a half-life of 38.93(10) h has been known to be the bandhead of the negative-parity yrast band since the 1940s [20]. First results on states above the $J^\pi = 11/2^-$ isomer were reported by Gizon et al. [21] employing a 12C+124Sn reaction. Excited states were observed up to 2.5 MeV excitation energy, among them a delayed γ-ray cascade with energies of 83, 681, and 889 keV deexciting an isomeric state at 1942 keV. In accordance with the level scheme of 131Xe, 135Ce, and 137Nd a spin of $J^\pi = 19/2^+$ was assigned to this state. However, a precise half-life of the 1942-keV state was not evaluated; the half-life was constrained to be in between 2 and 5 ns. Later, the level scheme was significantly extended by Jutttin et al. [22], using 13C induced reactions and the NORDBALL γ-ray array. In total, nine collective bands up to 7 MeV were observed. Moreover, it was concluded that the half-life of the 1942-keV state has to be much longer than the reported value in Ref. [21]. According to intensity correlations and a comparison with the $T_{1/2} = 52(6)$ ns $J^\pi = 5^-$ isomer in 134Ba [23], a half-life longer of 40-50 ns was suggested by the authors of Ref. [22].

B. High-spin structures of $Z = 56$ isotopes and $N = 78$ isotones

The combined contribution of neutron holes in the $N = 82$ core and proton particles in the high-$h_{11/2}$ orbital give rise to a plethora of high-spin structures with multi-quasiparticle character. Backbending and upbending phenomena in the positive-parity yrast bands of even-even Ba isotopes with mass $A \leq 132$ were systematically investigated in the past. Experimental data show the presence of two aligned S-bands very close in energy. While one band can be assigned to quasi-neutron alignment, the other can be assigned to proton alignment [24–31]. The description of such collective phenomena within the shell-model is quite demanding. Therefore, the majority of theoretical investigations of such systems were performed within collective models like the interacting boson model (IBM) [32–34], mean-field methods [35, 36], or the cranked shell model (CSM) [37, 38]. However, Ba isotopes have come within reach of untruncated shell-model calculations and, thus, are benchmarks for the predictive power of shell-model calculations [39–41]. More specific, the interplay between single-particle and collective excitations is subject of individual orbitals and interactions. Similar to the $J^\pi = 19/2^+$ isomers along the $N = 77$ chain, $J^\pi = 10^+$ states are characteristic isomers in $N = 78$ isotones. These isomers are interpreted as fully-angled $\nu h_{11/2}^{-2}$ configurations. The energy difference between $J^\pi = 10^+$ and the $J^\pi = 8^+$ states ranges from 18.5 keV in 130Te to 378 keV in 142Gd. The smooth evolution of the half-life with respect to the proton number is interrupted by a remarkable long half-life of $T_{1/2} = 8.39(11)$ ms [42] for the $J^\pi = 10^+$ isomer in 132Xe, whereby the $J^\pi = 8^+$ state has not been observed to date [43]. Adding two protons, the half-life of the $J^\pi = 10^+$ state in 134Ba was reported to be
2.63(14) μs [44]. In fact, the measured negative magnetic momentum of this state (μ = −2.0(1) μN [44, 45]) strongly supports a νh11/2 configuration. The Jπ = 5− state at Eγ = 1986 keV is also an isomer with a half-life of 52(6) ns and arises from a possible admixture of ν(h11/2) and ν(3h11/2) configurations [23].

The low-spin structure of 134Ba was studied in detail employing β decay [46]. Coulomb excitation [47] and (n, n′γ) reactions [48]. In contrast, information on the high-spin structure above the Jπ = 1986 (T1/2 = 2.63(14) μs [44]) isomeric state is tentative. The only evaluated data on high-spin states [49] refers to a preliminary level scheme from an unpublished JYFL annual report by Lönroth et al. [50] in 1990. In this study, two parallel cascades on top of the Jπ = 10+ isomer were identified using a 13C + 124Sn reaction inside the NORDBALL γ-ray spectrometer. Besides this work, two high-spin level schemes from unpublished work utilizing 13C + 124Sn and 13Be + 130Te reactions [51, 52], respectively, differ significantly from each other as well as from evaluated data [49, 50].

The scarce and contradictory experimental data in 133Ba and 134Ba together with recent theoretical advances motivate a refined investigation of high-spin features in both nuclei. In this article, we report and discuss new results on the high-spin regime of 133Ba and 134Ba. Excited states were populated in two complementary experiments using different reaction mechanisms. 134Ba was populated in a 136Xe + 208Pb multinucleon-transfer (MNT) experiment employing the high-resolution position-sensitive Advanced Gamma Tracking Array (AGATA) [53] in combination with the magnetic mass spectrometer PRISMA [54–56]. Furthermore, both 133Ba and 134Ba were investigated with a 13C + 124Sn fusion-evaporation experiment at the Institute of Nuclear Physics, University of Cologne. This paper is organized as follows: the experimental setup and data analysis of the two experiments are described in Sec. II, followed by the experimental results in Sec. III. A detailed comparison with shell-model calculations and systematics is presented in Sec. IV before the paper closes with a summary and conclusions in Sec. V.

II. EXPERIMENTAL PROCEDURE

A. 13C + 124Sn fusion-evaporation reaction

133Ba and 134Ba were populated simultaneously in a 13C + 124Sn fusion-evaporation reaction. The FN Tandem accelerator of the Institute of Nuclear Physics, University of Cologne delivered a 55-MeV 13C beam impinging onto an enriched 124Sn target with a thickness of 1.8 mg/cm² evaporated onto a 120-mg/cm² thick Bi backing plus a thick Cu layer for heat dissipation. The beam energy was optimized to populate mainly 133Ba and 134Ba via the (13C, 4n) and (13C, 3n) reaction channels, respectively. Both recoils and beam particles were stopped in the backing.

B. 136Xe + 208Pb multinucleon transfer

In a second experiment, 134Ba was populated in a 136Xe + 208Pb multinucleon-transfer experiment at the Laboratori Nazionali di Legnaro, Italy. In this experiment, a 6.84 MeV/nucleon 136Xe beam, accelerated by the PIAVE+ALPI accelerator complex, impinged onto a 1-mg/cm² 208Pb target. The Advanced Gamma Tracking Array (AGATA) [53] in a first demonstrator configuration [68] was placed at a distance of 18.8 cm from the target position to measure γ rays from excited states. The array consisted of nine large-volume electronically segmented high-purity Ge (HPGe) detectors in three triple cryostats [69]. An isotopic identification of the nuclide of interest was provided by the magnetic spectrometer PRISMA placed at the reaction’s grazing angle of θlab = 42°. An event registered by the PRISMA focal-plane detector in coincidence with an AGATA event was taken as a trigger for the data acquisition. In this way, the origin of the γ rays is distinguished, background from β decay is reduced, and a major fraction of isomeric γ-ray transitions is suppressed.

Pulse-shape analysis of the digitized detector signals was applied to determine the individual interaction points within the HPGe detectors [70], enabling the Ora-say forward-tracking algorithm [71] to reconstruct the individual emitted γ-ray energies, determine the first interaction point of the γ ray in the germanium and, thus,
the emission angle. Together with the kinematic information from PRISMA, a precise Doppler correction was performed. Further details on the analysis can be found in Refs. [72, 73].

III. EXPERIMENTAL RESULTS

A. 133Ba

A partial level scheme of 133Ba, including transitions of interest to this paper, is presented in Fig. 1(a). The determined half-lives of several isomeric states in 133Ba and 134Ba are summarized in Tab. I.

The 2366-keV ($J^\pi = 23/2^+$) state is the first excited state above the $J^\pi = 19/2^+$ isomer in 133Ba. Figure 2(a) shows a γ-time matrix gated on the 424-keV ($23/2^+ \rightarrow 19/2^+$) transition. Coincidences between all eight HPGe detectors of the HORUS array were employed. The timestamps of the 424-keV transition were acquired indepedently from the aforementioned approach. A three-dimensional γ-γ-time cube is exploited, comprising energies of two γ-rays respectively detected by a HPGe and a LaBr$_3$ detector and the corresponding timestamp difference between both events. Applying a narrow HPGe gate on the 424, 680, or 890-keV transitions, coincident γ-ray peaks are well separated from other lines in the LaBr$_3$ spectrum allowing clear gate conditions. The direct decay of the $E_x = 1942$-keV state at $E_x = 83$ keV is partially contaminated by x-rays of the 209Bi backing which have very similar energies. Consequently, since the Weisskopf half-life estimates for $E_x = 890$ and 681 keV is in the order of picoseconds and, therefore, considerably shorter than the half-life of the state of interest, an indirect gate is applied. Figures 2(f)-(i) show several spectra of time differences between HPGe and LaBr$_3$ events. In the time spectra shown in Figs. 2(f)-(g), the feeding 424-keV γ-ray is detected by HPGe detectors and the decaying 680-, and 890-keV transitions are detected by LaBr$_3$ detectors. Vice versa, in Figs. 2(h)-(i) the 424-keV feeding transition is detected by LaBr$_3$ detectors, while the decaying 680-, and 890-keV transitions are detected by HPGe detectors. Using the LaBr$_3$ detectors as start detectors, the prompt curve is sharper, as illustrated by comparing Figs. 2(f)-(g) with Figs. 2(h)-(i). The short-lived component in the prompt peak is mainly caused by Compton background. Half-lives are extracted by fitting a function of the form $N(t) = a \exp(t \ln(2)/T_{1/2}) + b$ to the tail of the time distributions. The parameter b window length, are fitted to the empirical equation Eq. 1:

$$N_t = N_0 \left(1 - A e^{-\frac{\ln(2)}{T_{1/2}}} \right)$$

where N_0, A, and the half-life $T_{1/2}$ are treated as free fitting parameters. Recently, this approach was successfully applied to isomers in the ns regime in 127Xe [74].

The combination of the high-energy resolution HPGe detectors and fast-timing LaBr$_3$ detectors is used to determine the half-life of the $E_x = 1942$-keV state independently from the aforementioned approach. A three-dimensional γ-γ-time cube is exploited, comprising energies of two γ-rays respectively detected by a HPGe and a LaBr$_3$ detector and the corresponding timestamp difference between both events. Applying a narrow HPGe gate on the 424, 680, or 890-keV transitions, coincident γ-ray peaks are well separated from other lines in the LaBr$_3$ spectrum allowing clear gate conditions. The direct decay of the $E_x = 1942$-keV state at $E_x = 83$ keV is partially contaminated by x-rays of the 209Bi backing which have very similar energies. Consequently, since the Weisskopf half-life estimates for $E_x = 890$ and 681 keV is in the order of picoseconds and, therefore, considerably shorter than the half-life of the state of interest, an indirect gate is applied. Figures 2(f)-(i) show several spectra of time differences between HPGe and LaBr$_3$ events. In the time spectra shown in Figs. 2(f)-(g), the feeding 424-keV γ-ray is detected by HPGe detectors and the decaying 680-, and 890-keV transitions are detected by LaBr$_3$ detectors. Vice versa, in Figs. 2(h)-(i) the 424-keV feeding transition is detected by LaBr$_3$ detectors, while the decaying 680-, and 890-keV transitions are detected by HPGe detectors. Using the LaBr$_3$ detectors as start detectors, the prompt curve is sharper, as illustrated by comparing Figs. 2(f)-(g) with Figs. 2(h)-(i). The short-lived component in the prompt peak is mainly caused by Compton background. Half-lives are extracted by fitting a function of the form $N(t) = a \exp(t \ln(2)/T_{1/2}) + b$ to the tail of the time distributions. The parameter b

<table>
<thead>
<tr>
<th>Isotope</th>
<th>E_x (keV)</th>
<th>J^π</th>
<th>$T_{1/2}$ Present work</th>
<th>Literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>133Ba</td>
<td>1942</td>
<td>19/2$^+$</td>
<td>66.6(20) ns</td>
<td>2-5 ns [21]</td>
</tr>
<tr>
<td>134Ba</td>
<td>2957</td>
<td>10$^+$</td>
<td>2.51(30) µs</td>
<td>2.63(14) µs [44]</td>
</tr>
<tr>
<td>134Ba</td>
<td>1986</td>
<td>5$^-$</td>
<td>48(5) ns</td>
<td>52(6) ns [23]</td>
</tr>
</tbody>
</table>
Figure 1. (Color online) (a) Partial level scheme of \(^{133}\)Ba including transitions feeding or deexciting the 1942-keV state which is subject of this paper. Transitions and excitation energies are given in keV. Intensities, energies and spins are adopted from Ref. [22]. (b) Partial level scheme assigned to \(^{134}\)Ba with the newly observed \(\gamma\) rays above the \(T_{1/2} = 2.51(30)\ \mu s\) (\(J^\pi = 10^+\)) and \(T_{1/2} = 48(5)\ ns\) (\(J^\pi = 5^-\)) isomers. Intensities are extracted from the HORUS data and normalized to the intensity of the 605-keV transition.

The beam-like Doppler-corrected singles \(\gamma\)-ray spectra

<table>
<thead>
<tr>
<th>(E_\gamma) (keV)</th>
<th>(E_i) (keV)</th>
<th>(E_f) (keV)</th>
<th>(I_i^\pi)</th>
<th>(I_f^\pi)</th>
<th>(I_i^J)</th>
<th>(I_f^J)</th>
</tr>
</thead>
<tbody>
<tr>
<td>466.2</td>
<td>5284.2</td>
<td>4818.0</td>
<td>14^+</td>
<td>16(3)</td>
<td>23(3)</td>
<td></td>
</tr>
<tr>
<td>501.2</td>
<td>6062.8</td>
<td>5561.6</td>
<td>16^+</td>
<td>14(2)</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>667.6</td>
<td>3624.8</td>
<td>2957.2</td>
<td>12^+</td>
<td>10^+</td>
<td>30(4)</td>
<td>20(2)</td>
</tr>
<tr>
<td>743.5</td>
<td>5561.6</td>
<td>4818.0</td>
<td>16^+</td>
<td>14^+</td>
<td>30(4)</td>
<td>20(2)</td>
</tr>
<tr>
<td>859.3</td>
<td>5677.3</td>
<td>4818.0</td>
<td>14^+</td>
<td>weak</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>871.0</td>
<td>5677.3</td>
<td>4806.2</td>
<td>13^+</td>
<td>weak</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>1181.5</td>
<td>4806.3</td>
<td>3624.8</td>
<td>13^+</td>
<td>12^+</td>
<td>38(4)</td>
<td>—</td>
</tr>
<tr>
<td>1193.2</td>
<td>4818.0</td>
<td>3624.8</td>
<td>14^+</td>
<td>12^+</td>
<td>50(5)</td>
<td>62(9)</td>
</tr>
</tbody>
</table>

The extended level scheme of \(^{134}\)Ba achieved in the present work is displayed in Fig. 1(b). Measured intensities of coincident \(\gamma\) rays above the \(J^\pi = 10^+\) isomer in \(^{134}\)Ba obtained from the HORUS and AGATA experiments are summarized in Tab. II. Intensities are from the HORUS \(^{133}\)C + \(^{124}\)Sn reaction \((I_i^J)\) as well as from the AGATA \(^{136}\)Xe + \(^{208}\)Pb experiment \((I_f^J)\). The independently measured intensities show a consistent assignment of states and transitions. The uncertainties in the transition energies are \(\pm 0.5\) keV. Spin/parity assignments are supported by angular-correlation measurements, shell-model calculations, and systematics.
of 134Ba from the 136Xe + 208Pb AGATA experiment is shown in Fig. 3(a). The corresponding Ba mass distributions is depicted in the inset Fig. 3(b). Random background is significantly suppressed by gating on the prompt peak in the time-difference distribution between AGATA and PRISMA. The FWHM of the prompt coincidence peak is about 16 ns for identified beamlike particles. Due to the presence of two long-lived $J^\pi = 10^+$ and $J^\pi = 5^+$ isomers in the level scheme of 134Ba, transitions of the yrast $10^+ \rightarrow 8^+ \rightarrow 6^+ \rightarrow 4^+ \rightarrow 2^+ \rightarrow 0^+$ cascade and the $5^- \rightarrow 4^-$ transition are suppressed in the spectrum. None of the known low-spin excited yrare states below 3 MeV [48] were populated. As reported in Ref. [50], we identify the 285-, 761-, and 970-keV γ-rays to be transitions of the negative-parity band of 134Ba. The measured relative intensities of the three γ-rays supports the known ordering of the γ-rays within the negative-parity band. New peaks well above the background level are observed at energies of 171, 178, 466, 668, 744, and 1193 keV. As the negative-parity band is completely identified, it is most likely that the new transitions are members of cascades feeding the $J^\pi = 10^+$ isomer. The existence of 681-914-800-keV and 1131-547-keV cascades feeding the $J^\pi = 10^+$ isomer suggested by Lönnroth et al. [50] could not be confirmed. Transitions at energies of 171 and 178 keV could not be assigned using the HORUS data, as discussed below.

134Ba was also populated in the 13C + 124Sn fusion-evaporation reaction. Figure 4(a) shows a background-subtracted γ-time matrix, gated on the delayed $2^+ \rightarrow 0^+$ 605-keV transition. Transitions feeding the $J^\pi = 10^+$ isomer are visible at negative time differences in this matrix representation. Time distributions following an exponential decay curve are visible at energies of 668...
Figure 3. (a) Doppler-corrected γ-ray spectrum gated on 134Ba identified with PRISMA in the 136Xe + 208Pb experiment. Random background is reduced with a gate on the prompt peak in the spectrum of time differences between AGATA and PRISMA. Insets (b) represent the mass spectra of the Ba isotopes obtained with PRISMA. The applied mass gates 134Ba are marked black.

Figure 4. (Color online) γ-time matrix with respect to the $2^+ \rightarrow 0^+$ 605 keV transition. (b) Time spectrum between the 668- and 605-keV transitions, extracted from γ-time matrix. (c) One-dimensional γ-ray spectrum gated on the prompt time-peak, relative to the 605-keV transition. Transitions below the $J^\pi = 10^+$ isomer are predominantly visible. (d) Projection of a γγ-matrix sorted by gating on negative timestamp difference relative to the timestamp of the delayed ground-state band of 134Ba with 605-, 796-, 810-, 625- or 121-keV transitions. Only transitions above the $J^\pi = 10^+$ isomer are visible. See text for details.

Transitions below the long-lived $J^\pi = 10^+$ isomer were identified by a gated one-dimensional γ-ray spectrum exhibiting coincidences within the prompt time peak relative to the 605-keV transition. The corresponding spectrum is shown in Fig. 4(c). The positive-parity E2 ground-state band is visible up the $10^+ \rightarrow 8^+$ 121-keV decay. To assign the new transitions to the known level scheme of 134Ba, events were further sorted into a three-dimensional γγγ-cube, whereby one γ ray corresponds to a transition in the E2 ground-state band up to the $J^\pi = 10^+$ isomer (605-, 796-, 810-, 625- or 121-keV). Thereafter, events were further processed into a prompt two-dimensional γγ-matrix including double-coincidences (within 100 ns) which meet the condition of...
negative timestamp differences up to 300 ns from the delayed reference timestamp of the 605-, 796-, 810-, 625- or 121-keV transitions. The requirements ensure that the $\gamma\gamma$-matrix exhibits only transitions above the $J^\pi = 10^+$ isomer. Figure 4(d) shows the γ-ray projection of this matrix. The spectrum is dominated by transitions at 466, 668, 744, 1182, and 1193 keV. The intensity balance in both the AGATA (Fig. 3(a)) and HORUS (Fig. 4(d)) experiments require the newly observed 668-keV transition to be placed directly above the $J^\pi = 10^+$ isomer, de-excitng a new state at 3625-keV excitation energy. Various $\gamma\gamma$-coincidence spectra from this matrix are shown in Figs. 5(a)-(d). Figure 5(a) presents the γ-ray spectrum with a gate on 668 keV. The spectrum exhibits anticipated coincidence peaks at 466, 501, 744, 859, 871, 1182, and 1193 keV. The 668-keV transition is in mutual coincidence with the 1193-, 744-, and 501-keV transitions (Fig. 5(b)-(c)). Thus, all three γ-rays form a cascade on top of the 3625-keV state. By gating on the 668-keV transition, the intensity balance requires that the 1193-keV transition is placed on top of the 668-keV transition. Moreover, the ordering of the 744-, and the 501-keV transitions above the newly established $E_x = 4818$ keV state agrees with the intensity balance of the $\gamma\gamma$ projections gated on the 668- and 1193-keV transitions. Other peaks at 466, 859, 871, and 1182 keV are observed to be in coincidence with the 668-keV transition (Fig. 5(a)). Moreover, the 871- and 1182-keV lines are in mutual coincidence de-populating two states at $E_x = 5677$ and 4806 keV. The absence of the 871-1182-keV cascade and the occurrence of the 859-keV peak in Fig. 5(b) requires the 859-keV transition to be placed parallel to this cascade. Additionally, the 871-1182-keV cascade corresponds to the sum energy of the 1193-859-keV cascade, supporting the assignment. A 466-keV transition is in coincidence with the 1193-668-keV cascade (Fig. 5(a)), but not with the 744-keV transition. Consequently, the 466-keV γ ray is placed on top of the 4818-keV state.

Going to the negative-parity band, Fig. 5(d) shows a γ-ray spectrum for 134Ba obtained by gating on the $5^- \rightarrow 4^+$ 585-keV transition. The spectrum demonstrates that the 761-970-285-keV cascade is placed on top of the $J^\pi = 5^-$ isomer. The inset Fig. 5(d) visualizes the time spectrum between the 761-970-285-keV and the 585-796-605-keV cascades. An exponential decay-curve fit (red solid line). The fitted half-life is 48(5) ns.

Spin assignments can be tested in the HORUS experiment with the procedure discussed in Sec. II A. Figure 6(a) shows a benchmark angular-correlation fit of the experimentally deduced relative intensity distribution (data points) with a theoretical angular-correlation function (line) of the $4^+ \rightarrow 2^+$ 727-keV decay in 134Ba, gated on the 605-keV transition. Fixing the multipole-mixing ratio of the 605-keV transition to quadrupole character ($\delta_2 = 0$) and varying the δ_3 value yields a χ^2 minimum of 1.1. The obtained multipole-mixing ratio of $\delta_2 = 0.02(3)$ is in agreement with the expected quadrupole character.

Based on the known $J^\pi = 10^+$ spin of the 2957-keV state, the spins of the newly established 3625- and 4818-keV states in 134Ba are evaluated. Scenarios of $J_1 = \{10, 11, 12\}$ δ_1 $J_2 = 10$ $\delta_2 = \text{fixed}$ $J_3 = 10$ and $J_1 = \{11, 12, 13\}$ δ_1 $J_2 = 11$ $\delta_2 = \text{fixed}$ $J_3 = 10$ were tested for the 1193-668-keV cascade. Fits with several fixed multipole-mixing ratios of the 668-keV transitions ($\delta_2 = 0, \pm 0.05, \pm 0.1, \pm 0.15 ...$) yields χ^2 values of larger then 2.3. In contrast, the $J_1 = 14$ δ_1 $J_2 = 12$ $\delta_2 = \text{fixed}$ $J_3 = 10$ hypothesis with fitted $\delta_1 = -0.01(3)$ value for the 1193-keV transition yields the best χ^2 value of 1.3, as shown in Fig. 6(b). Apart from that, similar fits assuming a non-zero δ_2 value for the 668-keV transition yield significantly worse χ^2 values. Hence, the best agreement is obtained for a pure-quadrupole $J_1 = 14 \rightarrow J_2 = 12 \rightarrow J_3 = 10$ cascade. Since a $M2$ multipolarity in this cascade would cause long lived states and other isomer, a positive parity is assigned
to the 3625- and 4818-keV states. Employing the same method, the spin of the newly established excited state at 5562 keV is determined. The 744-1193-keV cascade is best reproduced assuming a spin of $J = 16$ for the 5562 keV state ($\chi^2 = 1.4$). In accordance with the fitted $\delta_1 = 0.01(2)$ value, a positive parity is assigned for the 5562-keV state. In contrast, the 1182-keV transition yields a dipole character with multipole-mixing ratio of $\delta_1 = -0.06(4)$. Consequently, the spin/parity of the 4806-keV state is interpreted as $J = 13^+$. The bandhead of the negative-parity band at $E_x = 1986$ keV and the first excited state above the bandhead at $E_x = 2271$ keV were identified as $J^\pi = 5^-$ and $J^\pi = 7^-$ states by Lönnroth et al. [50]. However, spin/parity assignments of states on top of the bandhead with excitation energies of 3240 and 4001 keV were tentative in the previous work. Similarly to the aforementioned discussion, Fig. 6(c) shows the experimentally deduced angular-correlation intensity distribution for the coincident γ rays at 285 and 970 keV, compared to calculated values for different scenarios with spin values of $J = 7, 8,$ and 9 for the 3240-keV state. A hypothesis of $J = 9$ for the 3240-keV state yields the best result. The vanishing multipole-mixing ratio of $\delta_1 = 0.00(2)$ indicates a negative parity of the 3240-keV state. Going to higher states in the band, angular-correlation fits with spin assignments of $J = 9$ and 10 for the 4001-keV state yield only limited agreement with the data. Instead, a good match is obtained by assuming a $J = 11$ state with dominant quadrupole ($E2$) character ($\delta_1 = 0.02(3)$). The results are given in Fig. 1(b).

IV. SHELL-MODEL CALCULATIONS AND DISCUSSION

The obtained lifetime of the $19/2^+$ state in 133Ba and the extended high-spin level schemes of 134Ba are discussed and compared with the results of shell-model theory and systematics. Five shell-model calculations were carried out in an untruncated 50 $\leq \Lambda \leq 82$ $gdsh$ valence space. The single-particle space is generated by the valence nucleons occupying the $0g_{7/2}, 1d_{5/2}, 1d_{3/2}, 2s1/2,$ and $0h_{11/2}$ orbitals, outside doubly-magic 100Sn.

In a further calculation using the EPQQM interaction, the $gdsh$ valence space is enlarged by the $1f_{7/2}$ neutron orbit above the $N = 82$ shell closure to calculate the $E1$ transition strength value of the $19/2^+ \rightarrow 19/2^-$ transition in 133Ba. Shell-model calculations were carried out employing the shell-model code NUSHELLX@MSU [75] and the massive-parallelization code KSHELL [76].

The first calculation is conducted with the effective interaction GCN50:82 [1, 2]. The interaction is derived from a realistic G matrix based on the Bonn-C potential [77]. Empirical monopole corrections to the original G matrix are introduced by fitting different combinations of two-body matrix elements to sets of experimental excitation energies from even-even and even-odd semi-magic nuclei.

The second calculation is carried out with the jj55pm Hamiltonian (referred to as the SN100PN interaction) [3]. The Hamiltonian consists of four terms describing the neutron-neutron, neutron-proton, proton-proton, and Coulomb repulsion between the protons individually. A renormalized G matrix derived from the CD-Bonn interaction [77] was employed to construct the realistic two-body residual interaction. The proton and neutron single-particle energies are based upon the energy levels in 133Sb and 131Sn.

Another calculation is conducted with the SNV interaction [4]. The interaction combines the proton-proton N82GYM interaction [78] with the semi empirical SNBG3 neutron-neutron interaction [79] and the monopole-based universal (V_{MU}) interaction for the proton-neutron part [80, 81]. Both, the SNBG3 and N82GYM interaction are G-matrix-based interactions. The SNBG3 interaction is obtained by combining the next-to-next-to-leading order interaction with a x^2 fit of levels including $3\pi^-$ states along ($N \leq 82$) Sn isotopes. Strengths of the central and the tensor force from the original V_{MU} interaction are multiplied by 0.84 and 1.3, respectively, to fit the experimental data of one-proton separation energies in Sb isotopes [82]. Very recently, the interaction...
A fourth calculation is performed utilizing the framework of the pair-truncated shell model, denoted as PQM130 (Pairing+QQ+Multipole for mass region 130). The approach leverages a pairing-plus-quadrupole interaction that consists of spherical single-particle energies, a monopole-pairing, a quadrupole-pairing, and a quadrupole-quadrupole interaction. The Hamiltonian in each neutron and proton space is diagonalized separately and afterwards the total Hamiltonian is diagonalized in the truncated space. More details on the calculation are given in Refs. [5, 6].

A fifth calculation is performed in the framework of the realistic shell model [7, 8], denoted as Realistic SM. Single-particle energies and two-body effective interactions are determined from the established CD-Bonn free nucleon-nucleon potential [77] using the $V_{\text{corr},k}$ approach with a cutoff momentum of $\Lambda = 2.6$ fm$^{-1}$, plus the Coulomb force for protons. The effective shell-model Hamiltonian is derived iteratively by means of the many-body perturbation theory in the Q-box folded diagram expansion, including all diagrams up to third order in the interaction. More details can be found in Ref. [83].

The last calculation is conducted in the framework of the extended pairing plus quadrupole-quadrupole force with monopole corrections model (EPQQQM) [84–87]. Single-particle energies (SPEs) were adopted from the experimental excited states of 33Sb (proton SPEs) and 131Sn (neutron SPEs). The g_{dsh} valence space is enlarged by the $\nu_1 f_{7/2}$ neutron orbit above the $N = 82$ shell closure. Calculations within this large valence space allow us to describe $E1$ transitions. The interaction was recently successfully applied to neutron-rich nuclei around 132Sn [9, 88–91].

A. 134Ba

A comparison of the experimentally obtained energy spectrum of 134Ba with the results of the shell-model calculations is presented in Fig. 7. Moreover, yrare $J^* = 2^+_1$, 4^+_2, and 8^+_3 states from the literature are compared as further benchmarks for the validity of the shell-model calculations. All calculations reproduce the hitherto known members of the positive-parity ground-state band up to the $J^* = 10^+$ isomer quite well. In particular, the excitation energy of the $J^* = 10^+$ isomer is predicted at 2.953 (GCN50:82), 2.517 (SN100PN), 2.911 (SNV), 2.915 (PQM130), and 3.010 MeV (Realistic SM) which are in excellent agreement with the experimentally determined 2.957 MeV. The small 121 keV energy gap between the $J^* = 8^+$ and the 10^+ states is reasonable reproduced with calculated energy gaps of 10 and 60 keV in the GCN50:82 and PQM130 interactions, respectively. However, the $J^* = 10^+$ and 8^+ states are interchanged in the SN100PN, SNV, and Realistic SM calculations.

In Sec. III B a $16^+ \rightarrow 14^+ \rightarrow 12^+ \rightarrow 10^+$ cascade with γ-ray energies of 744, 1193, and 668 keV was newly established. This assignment is supported by calculated transition energies of 672, 1327, 609 keV (GCN50:82), 674, 1016, 765 keV (SNV), 744, 1215, 675 keV (PQM130), and 893, 997, 732 keV (Realistic SM) for this cascade. Although the excitation spectrum calculated by SN100PN is more compressed, the relative position of the $J^* = 16^+, 14^+, 12^+$, and 10^+ states is in good agreement with the experimental excitation spectrum.

The 5677-keV state decays partially via a one-step decay into the $J^* = 14^+$ state and via a two-step cascade through the $J^* = 13^+$ state into the $J^* = 12^+$ state. Consequently, this state is interpreted to have a spin of $J = 14$ or 15. The yrast $J^* = 15^+$ state is predicted 376 (GCN50:82), 352 (SNV), 478 (SN100PN), and 514 keV (PQM130) above the $J^* = 14^+$ state, which contradicts the observed 859 keV energy difference between the $E_x = 5677$ keV and the $J^* = 14^+$ state. Similarly, a possible $J^* = 14^+_2$ state is predicted slightly above the $J^* = 14^+_1$ state. Consequently, a positive parity for the state at $E_x = 5677$ keV is unlikely. A better agreement of a $J^* = 14^+_2$ or 15^+_1 assignment is achieved for the 5284-keV state which is only 466 keV above the $J^* = 14^+_1$ state. However, no conclusive assignment can be made, since the calculated level density of states is too high.

Going to the negative-parity band, the calculations tend to overpredict the excitation energy of the $J^* = 5^-$ bandhead. GCN50:82 predict the state at 2278 keV, SN100PN at 2030 keV, SNV at 2043 keV and PQM130 at 2118 keV compared to the experimental 1986 keV excitation energy. A good agreement is obtained for the position of the calculated $J^* = 7^-$ state which deviates only 84 (GCN50:82), 37 (SN100PN), 163 (SNV) and 161 keV (PQM) from the experimental excitation energy. On the other hand, $J^* = 5^-, 6^-$ and 7^- states are permuted in the PQM130 calculation. All shell model calculations consistently support a large energy gap of 972 (GCN50:82), 788 (SN100PN), 933 (SNV), and 895 keV (PQM130) between the $J^* = 9^-$ and $J^* = 7^-$ states, which agrees well with the observed 970 keV. The $J^* = 11^-$ state is calculated to be 763-935 keV higher in excitation energy with respect to the $J^* = 9^-$ state, supporting an $J^* = 11^-$ assignment for the $E_x = 4001$ keV state.

Moreover, the shell-model results provide insight into the structure of the isomeric states and the new established levels in 134Ba. States below the $J^* = 10^+$ isomer are dominated by proton spin contributions. For example, the total spin of the $J^* = 8^+$ state is attributed to $26\% \nu_{2\times} \otimes \pi_{0^+}$ and $20\% \nu_{0^+} \otimes \pi_{8^+}$ with a leading configuration of $\nu (d_{5/2}^2 h_{11/2}) \otimes (g_{7/2}^2 d_{5/2})$, using GCN50:82. On the other hand, a predominant neutron spin takes over from the $J^* = 10^+$ state onwards. The $J^* = 10^+$ isomer is calculated to be of $(\nu h_{11/2}^2)$ character with a configuration of $39\% \nu_{10^+} \otimes \pi_{8^+}$ and $32\% \nu_{10^+} \otimes \pi_{2^+}$. Up to spin 16^+, the first high-spin states above the $J^* = 10^+$ isomer consist of a neutron ν_{2g_9} configuration coupled to even-spin proton configurations. According to the GCN50:82
systematically investigated in the past. Starting from the positive-parity yrast bands of even-even Ba isotopes were served when approaching the bandheads of the S-bands. Cranking calculations showed that the proton alignment occurs after neutron-hol alignment [29]. A negative-parity state unambiguously assigned a neutron-hole configuration. The calculation describes the negative-parity states above the $J^\pi = 5^-$ isomer with a neutron angular momentum of $7\hbar$ coupled to the proton quadrupole excited states (0$^+$, 2$^+$, 4$^+$).

Figures 8(a)-(b) show the evolution of several states in the positive- and negative-parity yrast band along the $N = 78$ isobars ranging from 130Te to 142Gd. The newly established states of 134Ba are marked with thicker lines. The $16^+ \rightarrow 14^+ \rightarrow 12^+ \rightarrow 10^+$ cascade in 134Ba fits the systematics (Fig. 8(a)). Moreover, the reevaluated negative-parity band is in good agreement with the systematics (Fig. 8(b)). Similar to the $N = 78$ chain, Fig. 8(c) presents the evolution of positive-parity excited states along the Ba isotopes. The midshell Ba nuclei exhibit excitation spectra which are rotational in character, while a gradual change to a vibrational character is observed when approaching the $N = 82$ shell closure. 134Ba lies in between demonstrating the transitional character of this nuclei.

Backbending and upbending phenomena in the positive-parity yrast bands of even-even Ba isotopes were systematically investigated in the past. Starting from the midshell 122Ba, proton and neutron-hole align in a continuous way along the yrast line. Blocking arguments are used to assign the first alignment to a proton crossing [24]. In 124Ba the yrast sequence above the $J^\pi = 10^+$ state splits into two stretched $E2$ cascades with two distinct alignments. According to blocking arguments and by comparing crossing frequencies in neighboring nuclei 125Ba and 125Cs, the alignment in 124Ba with the lower critical frequency was assigned to a pair of $h_{11/2}$ protons, while the alignment with the higher critical frequency is generated by a $h_{11/2}$ neutron-hole pair [25].

The band structure in 126Ba has similar character like the one in 124Ba. Calculated routhians indicate a higher crossing frequency for neutron-hole pairs than for proton pairs in 126Ba [26]. Since the two S-bands in 126Ba are degenerated, no unambiguous assignment is possible [27, 28]. A change in the nuclear structure is observed in 130Ba where four $J = 10^+$ states are observed within a small energy range of 343 keV. Two $J = 10^+$ states are the bandheads of the S-bands. Cranking calculations suggest that the proton alignment occurs after neutron-hole alignment [29]. A negative α-factor of the $J^\pi = 10^+$ state unambiguously assigned a neutron-hole $\nu h_{11/2}$ configuration to the S-band in 132Ba [30]. This assignment
was confirmed by calculations within the framework of pair-truncated shell-model approach [31]. So far, no evidence for proton alignment was reported in literature for \(^{132}\text{Ba}\).

A comparison of the net aligned angular momentum \(t_x(\omega)\) of the positive-parity band in \(^{134}\text{Ba}\) with the corresponding bands in lower even-mass neighbors is displayed in Fig. 9(a)–(b). While the net aligned angular momentum plot for the S-band originating from neutron-hole alignment is shown in Fig. 9(a), the similar plot for proton alignment, is displayed in Fig. 9(b). The ground-state cascade below the crossing serves as reference and is fitted according to Harris et al. [95] via \(I_{x,\text{coll.}} = a\omega + c\omega^3\).

The determined parameter is incorporated into the net aligned angular momentum for a given spin \(J^x_I\) of the state: \(i_x = I_x - I_{x,\text{coll.}}\), where \(I_x = (I_x^+ + I_x^-)/2\) with \(I^+ = \sqrt{J^x_I(J^x_I + 1)}\). Overall, the alignment pattern of \(^{132}\text{Ba}\) shows a considerable similarity with respect to \(^{134}\text{Ba}\) (c.f. Fig. 9(a)). The crossing frequency at which the alignment occurs is mass-dependent in both cases. Figure 9(c) shows a summary of experimentally determined crossing frequencies between S-bands and the ground-state bands for proton and neutron-hole alignment as a function of neutron number along Ba isotopes. Since the proton alignment increases and the neutron alignment decreases with mass number, the new determined crossing frequency in \(^{134}\text{Ba}\) matches the systematics of neutron-hole alignment. Consequently, in accordance with the similarity with the neutron-hole alignment in \(^{132}\text{Ba}\) (c.f. Fig. 9(a)), it is reasonable to assign the band crossing in \(^{134}\text{Ba}\) to neutron-hole \(\pi h_{11/2}^{-2}\) alignment.

To further inspect the above-mentioned alignment properties in \(^{134}\text{Ba}\), the results of the shell-model calculations are reparametrized into the total aligned angular momenta \(I_x\) as a function of the rotational frequency \(\hbar\omega\). Figure 10(a) compares the extracted theoretical and experimental total aligned angular momenta for all five calculations. Calculated \(I_x\) values for the \(J^\pi = 8^+_1\) and \(10^+_1\) states of the SNV, SN100PN, and Realistic SM interactions are not considered, since all three interactions revised the ordering of both states. The critical frequency at which alignment occurs is slightly underestimated by the SN100PN interaction, while the SNV and Realis-
The role of the $\pi h_{11/2}$ and $\nu h_{11/2}$ orbitals are scrutinized by a separate calculation by prohibiting more than one proton in the $\pi h_{11/2}$ orbital. Using this truncation, proton alignment components are prevented in the calculations. Results of calculated $B(E2)$ values are presented in Fig. 10(c). Obviously, the overall result is very similar to the untruncated calculation; the good agreement with respect to the experimental values remain unaltered. However, the decreasing trend of the $B(E2)$ values at spin 6h and 8h is interrupted by this truncation. The increase of the $B(E2)$ values at spin 6h and 8h indicate that proton components are crucial to describe both states. On the other hand, $B(E2)$ values between states above the $J^\pi = 10^+$ isomer are unaffected by the truncation, underpinning the assumption that these states are predominantly of neutron character with negligible proton $h_{11/2}$ configuration admixture. This observation is in accordance with the negative measured g-factor of the $J^\pi = 10^+$ state by Bell et al. [44]. It is concluded that proton components play a critical role at the beginning of the alignment process at the $J^\pi = 6^+$ state and subsequently two-neutron $h_{11/2}$ alignment becomes pivotal above the $J^\pi = 10^+$ state.

B. 133Ba

The level structure of the even-odd isotope 133Ba is more complex in comparison to the even-even partner 134Ba. Since $B(E1)$ transition strength values cannot be evaluated in the $0g_{7/2}d_{5/2}d_{3/2}2s_{1/2}0h_{11/2}$ valence space, a microscopic discussion of the isomeric property of the $J^\pi = 19/2^+$ state is presented in the following by the GCN50:82, SN100PN, and SNV calculations. Subsequently, results from a truncated calculation including the neutron $\nu f_{7/2}$ orbital are discussed using EPQOM. An untruncated calculation in the $gdsh + \nu(1f_{7/2}2p_{1/2})$ valence space is not feasible since the m-scheme dimension would exceed the nowadays computational limits of approx. 10^{10}.

The calculated excitation energy of each positive/negative parity state as a function of the angular momentum J were computed utilizing the SNV interaction. A so-called $E2$ map [75] of the results is shown in Fig. 11(a). States are connected with lines. The line widths are proportional to the $B(E2)$ strength between the states. The adopted effective charges are 1.6e and 0.8e for protons and neutrons, respectively. The SNV interaction predicts the $J^\pi = 19/2^+$ state at 1870 keV, which is in good agreement with the experimental value of 1942 keV. Other positive-parity states with spins $15/2h$ and $17/2h$ are predicted at excitation energies of 2145 and 2555 keV, which is significantly higher than the excitation energy of the $J^\pi = 19/2^+$ state. Consequently, the $J^\pi = 19/2^+$ state cannot decay into another positive-

Figure 10. (a) Comparison between experimental and calculated total aligned angular momenta I_x as a function of the rotational frequency ω, employing GCN50:82, SN100PN, SNV, PQM130, and Realistic SM calculations for 134Ba. Only a partial comparison with SN100PN and SNV is displayed since both interactions predict the $J^\pi = 8_1^+$ state above the $J^\pi = 10_1^+$ state. (b)-(c) Calculated reduced quadrupole transition strengths for yrast $B(E2)$ values employing the GCN50:82 and SN100PN interactions. Experimental values are visualized as black filled dots, taken from Refs. [44, 47]. (b) The first calculation uses the complete $gdsh$ valence space; (c) the second one prohibits more than one proton in the $\pi h_{11/2}$ orbital.
parity state and becomes a high-spin isomer.

Figure 11. (a) E2 map: Calculated excitation energy against spin of positive- and negative-parity states of 133Ba obtained by the SNV calculation. The widths indicate the E2 transition probabilities. Decomposition of the total angular momentum I into I_L in their proton and neutron components for $J^\pi = 19/2^+$ and $J^\pi = 19/2^-$ states in (b)-(c) 133Ba and (e)-(f) 131Xe, employing the GCN50:82 (filled blue boxes) and the SN100PN interaction (empty red boxes). $J^\pi = 19/2^+$ states arise from couplings of a $h_{11/2}$ neutron-hole to the $J^\pi = 5^+$ states in (d) 134Ba and (g) 132Xe.

A similar isomeric $J^\pi = 19/2^+$ state with a half-life of 14(3) ns was observed in the $-2p$ isotope 131Xe [12]. Figures 11(b)-(c) and (e)-(f) show the decomposition of the total angular momentum I into I_L in proton and neutron components for $J^\pi = 19/2^+$ and $19/2^-$ states in 133Ba and 131Xe, employing the GCN50:82 (filled blue boxes) and the SN100PN interactions (empty red boxes). No significant deviations between both calculations are visible. Differences have been observed very recently in 130Ba [94]. The experimental energy gaps between both states are 189 keV in 131Xe and 83 keV in 133Ba. Theoretical values are higher with 362/188 keV in 131Xe (GCN50:82/SN100PN) and 249/164 keV in 133Ba. Both interactions predict the $J^\pi = 19/2^+$ state to have predominant $\nu_{19/2^+} \otimes \pi_0^+$ spin configuration. Neutron $\nu(h_{11/2}^2 s_{1/2}^1 d_{3/2}^2)$ components account for 29/31%

Table III. Average occupation numbers for protons (π) and neutrons (ν) in each single-particle orbit of the gdsh model space for $J^\pi = 19/2^+$ and $19/2^-$ states in 133Ba employing the EPQQM interaction.

<table>
<thead>
<tr>
<th>J^π</th>
<th>π/ν</th>
<th>0$g_{7/2}$</th>
<th>1$d_{5/2}$</th>
<th>1$d_{3/2}$</th>
<th>2$s_{1/2}$</th>
<th>0$h_{11/2}$</th>
<th>1$f_{7/2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{19}/^{2+}$</td>
<td>π</td>
<td>3.59</td>
<td>2.17</td>
<td>0.16</td>
<td>0.06</td>
<td>0.03</td>
<td>–</td>
</tr>
<tr>
<td>$^{19}/^{2+}$</td>
<td>ν</td>
<td>7.35</td>
<td>5.57</td>
<td>2.37</td>
<td>1.35</td>
<td>0.97</td>
<td>–</td>
</tr>
<tr>
<td>$^{19}/^{2-}$</td>
<td>π</td>
<td>3.83</td>
<td>1.67</td>
<td>0.28</td>
<td>0.17</td>
<td>0.05</td>
<td>–</td>
</tr>
<tr>
<td>$^{19}/^{2-}$</td>
<td>ν</td>
<td>7.81</td>
<td>5.74</td>
<td>2.88</td>
<td>1.55</td>
<td>0.90</td>
<td>–</td>
</tr>
</tbody>
</table>

(CG50:82/SN100PN) in 131Xe and 22/24% in 133Ba. Significant proton couplings to this neutron configuration are 7/16% $\pi(g_{7/2}^2)$ and 9/58% $\pi(g_{7/2}^2 d_{3/2}^2)$ in 131Xe and 9/12% $\pi(g_{7/2}^2 d_{5/2}^2)$ in 133Ba. The $J^\pi = 19/2^-$ states in 131Xe and 133Ba have a fragmented pattern of proton and neutron components as visible in Fig. 11(c) and (f). The spin mainly arises from couplings of $\nu_{19/2^-} \otimes \pi_0^+$, $\nu_{15/2^-} \otimes \pi_2^+$, and $\nu_{11/2^-} \otimes \pi_4^+$. The dominant configuration is attributed to 9/7% $\nu(h_{11/2}^3 d_{3/2}^2) \otimes \pi(g_{7/2}^2 d_{5/2}^2)$ in 131Xe and 7/9% $\nu(h_{11/2}^3 d_{3/2}^2) \otimes \pi(g_{7/2}^2 d_{5/2}^2)$ in 133Ba. The isomeric character can be traced back to the stretched neutron spin $\nu_{19/2^-}$ of the $J^\pi = 19/2^+$ state, which hinders a decay into the $\nu_{11/2^-}$ components of the $J^\pi = 19/2^-$ state in both nuclei. Overall, the $J^\pi = 19/2^+$ and $19/2^-$ states have very similar structures in both nuclei. Consequently, the additional proton pair of 133Ba is mainly paired with respect to 131Xe.

Two refined calculations using the EPQQM interaction are employed: (i) an untruncated calculation without cross-shell excitations comprising the gdsh valence space and (ii) a truncated calculation prohibiting proton excitations into the 1$d_{5/2}$, 2$s_{1/2}$, and 0$h_{11/2}$ orbitals but allowing cross-shell excitations into the neutron 1$f_{7/2}$ orbital. The upper part of Tab. III shows the calculated occupation numbers of protons and neutrons for the $J^\pi = 19/2^+$ and $19/2^-$ states in 133Ba. The EPQQM results confirm the leading configurations of $\nu(h_{11/2} d_{3/2}^2 s_{1/2}^1/2)$ (N$_{v11/2}$ = 9.27, N$_{v3/2}$ = 1.35) for initial $J^\pi = 19/2^+$ state and of $\nu(h_{11/2}^{+3})$ (N$_{v11/2}$ = 9.02) for final $J^\pi = 19/2^-$ state consistently with the other calculations (c.f. Tab. IV in discussion below). The $J^\pi = 19/2^+$ state is calculated to have 1.94 MeV excitation energy which is in excellent agreement with the experimental value.

In addition, the valence space is enlarged by the neu-
tron $1f_{7/2}$ orbital. In order to make the dimension of the configuration space tractable, proton excitations into the $1d_{3/2}$, $2s_{1/2}$, and $0h_{11/2}$ orbitals are forbidden, which is reasonable since the corresponding occupation is neglected small and EPQQM predicts a high degree of $g_7/2$ and $d_{5/2}$ occupation for protons at both states. (see Tab. III). Applying this truncation, the excitation energy of the $J^\pi = 19/2^+$ state is slightly shifted to 1.75 MeV.

The impact of the truncation and the inclusion of the $1f_{7/2}$ orbital on the calculated average occupation numbers is visualized in the lower part of Tab. III.

The occupation of the $1f_{7/2}$ orbital amount to approx. 0.2. The pure two ($N_{\nu h_{11/2}} = 9.97$) and three ($N_{\nu h_{11/2}} = 9.02$) neutron-hole configuration from the untruncated calculation of initial and final states is rearranged in favor of the $\nu 1f_{7/2}$ occupation (c.f. $N_{\nu h_{11/2}} = 9.77$ for initial and $N_{\nu h_{11/2}} = 8.81$ for final states). The $E1$ transition operator between both states is driven by the share of $1f_{7/2}$ cross-shell configurations. Thus, it has a perturbative but decisive role for a detailed description of the overall configuration of these states. The theoretical $B(E1;19/2^+ \rightarrow 19/2^-)$ transition strength is computed to be $5 \times 10^{-4} e^2fm^2$. Effective charges of $e_\pi = 1.7$ and $e_\nu = 0.7$ were employed. The theoretical $B(E1)$ value overpredicts the experimental value of $7.6(2) \times 10^{-4} e^2fm^2$ by almost two orders of magnitude.

In Refs. [10, 14, 21] it was suggested that the $J^\pi = 19/2^+$ states in odd-mass nuclei along $N = 77$ arise from couplings of a neutron-hole to the $J^\pi = 5^-$ state in even-mass $N = 78$ nuclei. As mentioned above in Sec. IV A, the leading configuration of the $J^\pi = 5^-$ state in 134Ba is $\nu(s_{1/2}h_{11/2})$ generating fully stretched $\nu g_5^- \otimes \pi 0^+$ and $\nu g_5^- \otimes \pi 2^+$ spin contributions. (see Fig. 11(d)). The same applies for 132Xe as shown in Fig. 11(g). In accordance with the Pauli Principle, an additional $h_{11/2}$ neutron-hole couples with a spin of $9/2^h$ to this configuration. Consequently, the spin decompositions of both states are very similar but those of the $J^\pi = 19/2^+$ state is shifted by a neutron spin of $9/2h$ with respect to the $J^\pi = 5^-$ state in both nuclei. The leading $\nu(h_{11/2}^g s_{1/2}^h)$ configuration of the $J^\pi = 19/2^+$ state in 133Ba and the connection to the $J^\pi = 5^-$ isomer in 134Ba are scrutinized by investigating the evolution of calculated average occupation numbers of neutrons in the gdsh model space for $J^\pi = 19/2^+$ and 5^- isomers in 133Ba and 134Ba, respectively, as listed in Tab. IV. The average occupation of the neutron $h_{11/2}$ orbital for the $J^\pi = 5^-$ state in 134Ba is $N_\nu \approx 10.78$, indicating a one-neutron $\nu h_{11/2}^g$ configuration. A partial occupation of the $\nu s_{1/2}$ orbital ($N_\nu \approx 1.36$) supports a predominant $\nu h_{11/2}^g s_{1/2}^h$ configuration. Compared to this, a decrease to $N_\nu \approx 9.88$ for the $\nu h_{11/2}^g$ orbital of the $J^\pi = 19/2^+$ state is observed, while the occupation of the remaining orbitals stays constant. These observations and the aforementioned discussion of spin contributions corroborates that the $J^\pi = 19/2^+$ state arises predominantly from a coupling of a neutron-hole and the $J^\pi = 5^-$ state in 134Ba, as suggested in Refs. [10, 14, 21].

V. CONCLUSIONS

In summary, two experiments employing the 136Xe + 208Pb multinucleon-transfer reaction and the 134Ba fusion-evaporation reaction were used to measure half-lives of high-spin isomers in 133,134Ba and to establish new high-spin states in 134Ba. The level scheme of 134Ba was extended to approx. 6 MeV. A pronounced backbending along the positive-parity yrast band was identified at around $h\omega = 0.38$ MeV. Comparisons with crossing frequencies along the even-Ba chain indicated that the backbending can be traced back to neutron alignment. In general, the new experimental results such as the backbending phenomena are reproduced by the GCN50:82 and PQM130 interactions, however SNV, SN100PN, and Realistic SM predict the $J^\pi = 8^+$ state slightly above the $J^\pi = 10^+$ isomer. A detailed inspection using truncated calculations for 134Ba reveals that the alignment above the $J^\pi = 10^+$ isomer is clearly of neutron character. Beside previous investigations in few other nuclei, like 132Ba [40], 132,134,136Ce [41] and 133,135Xe [11], these results demonstrate convincingly the applicability of modern shell-model interactions in order to describe the interplay between single-particle and collective excitation in this transitional region which arises from the specific $h_{11/2}$ intruder orbital. Backbending and alignment properties are traced back to the wavefunction and their decomposition into specific single particle contributions.

The previously evaluated half-life of 2-5 ns for the 1942-keV state in 133Ba was revised to $T_1/2 = 66.6(20)$ ns. The new half-life of this isomeric state completes the systematics of $J^\pi = 19/2^+$ isomers for the $N = 77$ isotones. Large-scale shell-model calculations using the SNV, GCN50:82 and SN100PN have been performed to explain the level structure of 133Ba and the underlying configuration of the measured $J^\pi = 19/2^+$ isomer. The calculations point out that the isomer can be interpreted as predominant 134Ba($5^-_n) \otimes \nu(0h_{11/2}^g)^{15}$ configuration. Truncated calculations using EPQQM in an enlarged valence space yields a $B(E1;19/2^+_n \rightarrow 19/2^-_n)$ value which is two orders of magnitude too high compared to the experimental value. In the future, untruncated calculations in the full gdsh valence space incorpor-
rating cross-shell configuration $\nu 1f_{1/2}$ and $\nu 2p_{1/2}$ are of highest interest to provide a more complete description of the $50 \leq Z, N \leq 82$ nuclei.

ACKNOWLEDGMENTS

We thank the IKP FN Tandem accelerator team for their support during the experiment. The research leading to these results has received funding from the Ger- man BMBF under contract No. 05P15PKFN9 TP1 and the grant PROMETEOII/2014/019 and EU under the FP7/2007-2013 under Grant Agreement No. 262010 - ENSAR, from the Spanish Ministry of Science and Innovation under contract FPA2011- 29854-C04, from the Spanish Ministerio de Economía y Competitividad under contract FPA2014-57196-C5, and from the U.K. Science and Technology Facilities Council (STFC). One of the authors (A. Gadea) has been supported by the Generalitat Valenciana, Spain, under the grant PROMETEOII/2014/019 and EU under the FEDER program.

I. Wiedenhöver, O. Vogel, H. Klein, A. Dewald, P. von Brentano, J. Theuerkauf,

26 (2012).

A. M. Stefanini, L. Corradi, G. Maron, A. Pisent, M. Romoli, M.-D. Salsac, A. Gadea, E. Farnea, J. J. Valiente-Dobón, B. Million,

