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Abstract  

Model Predictive Control (MPC) is a solution towards more energy-efficient waste 

treatment without compromising on treatment quality. A key component is the 

process model describing how the inputs and outputs correlate. MPC uses this 

model to predict future outputs over a finite horizon to decide on step changes to 

make at the input. These step changes are made so that the output reaches and 

maintains at a user specified set point. For MPC to be effective, the process model 

needs to accurately describe the process behaviour. This is a difficult challenge in 

waste treatment processes due to a combination of slow response, process 

complexity, and large disturbances. 

This research project investigated two research avenues towards developing better 

modelling techniques. This would result in more accurate models or achieve a 

sufficiently accurate model with fewer experiments. The first avenue is Constrained 

Model Identification (CMI). Model identification is an optimisation problem to 

estimate the model parameters. In CMI, process knowledge from first principles and 

operator experience is translated into optimisation constraints to aid data-driven 

model identification.  

The second avenue is Sequential Optimal Experiment Design (SOED). This uses the 

concept of measuring a value representing information content of a dataset. Like 

MPC, SOED uses the model to make output predictions. The expected output 

response to a sequence of input steps form a dataset, and SOED is an optimisation 

problem to maximise the information content of that expected dataset, by changing 

the input step sequence. Once optimised, this step sequence is applied in the next 

experiment.  

The third part of this work focused on farm-fed anaerobic digestion. It is a renewable 

energy technology fuelled by agricultural waste. They rely on government 

incentives to be profitable, but these incentives have steadily been decreased. This 

project investigated methods to help farmers in the day-to day operation of the unit, 

including biogas production estimation, automated fault identification and partial 

diagnosis. 
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Executive Summary  

Wastewater treatment processes handle the safe treatment of sewage so that the 

treated water can be safely discharged to the environment. It is an energy intensive 

process, and in the UK, consumes 2,300 GWh/yr of electricity (about 1% of the total 

energy consumed). Government commitment towards the Climate Change Act has 

seen a shift in focus in wastewater treatment towards more energy efficient 

methods that do not compromise treatment quality.   

Model Predictive Control was a solution towards this goal and has demonstrated 

energy savings of up to 25%. Central to the Model Predictive Control concept is the 

process model, which is used to make future predictions. But building this process 

model is challenging in wastewater treatment due to it being a slow process, having 

large variability  in inflow, and process complexity. The culmination of these factors 

means that generally, the model would have to be built from limited data. For data-

driven modelling, this runs the risk of noise overfitting which leads to an inaccurate 

model.  

This project explored two avenues to improve modelling accuracy with limited data. 

The first avenue was constrained model identification. This made use of non-data 

process knowledge (from first principles and operation experience) and applied 

them as optimisation constraints to reduce the search space. The second avenue 

considered the way the experiments are designed, and applied an algorithm based 

on the idea of information content being a measurable quantity, and designed step 

tests based reducing the uncertainty of the model parameters  

The second aim of this project focused on a treatment technology: Anaerobic 

Digestion. It is a bacteria- driven process that breaks down organic waste to produce 

methane-rich biogas and soil fertiliser. It is used in wastewater treatment, but this 

project was focused on the farm-fed applications. Farm-fed anaerobic digesters are 

attractive due to the proximity to feed material (agricultural waste) and lands to use 

the soil fertiliser on. However, these systems typically depend on government 

subsidies to be financially profitable, and these subsidies have been steadily 

reduced. Furthermore, many of these units are owned by the farmers themselves, 

but it is not a core part of their business and they are non-experts in managing the 

process.  
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The second aim of this project explored methods to aid farmers in the day-to-day 

management of the unit and improve biogas production. There was an emphasis 

towards methods that did not require additional monitoring devices or other 

expensive investment. This project developed a biogas production model that could 

provide real-time biogas production estimation. Additionally, statistical methods 

were used to implement an automated fault detection system to help farmers detect 

and correct potential faults early before they lead to digester upset.  
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2ÅÁÄÅÒȭÓ 'ÕÉÄÅ 

This thesis is organised as follows:  

¶ Part I outlines the problem and objectives this research.  

¶ Part II covers the work on constrained model identification and sequential 

optimal experiment design. These both contribute towards building more 

accurate process models for the purposes of applying model predictive control 

in wastewater treatment processes. 

¶ Part III covers the work on modelling farm-fed anaerobic digesters. As a 

technology, anaerobic digestion is used as part of wastewater treatment, but it 

also used specifically to digest agricultural waste as standalone units. The work 

carried out modelling farm-fed anaerobic digesters was to predict biogas 

production and to assist in early fault detection, as opposed to being used for 

model predictive control. As a result, it is presented in its own separate part.  

¶ Part IV outlines the outputs and contributions of this research.  

¶ Part V is the appendix and included some additional information to supplement 

parts of this thesis.  
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Part I  

 

Problem Outline  
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1 Introduction  

Wastewater Treatment Processes (WWTP) treats sewage so that the treated water 

(effluent) can be safely discharged back to the environment. It is an energy intensive, 

consuming over 2,300 GWh/yr of electricity in the UK [1] , which make up about 1% of the 

total consumed [2] . Under the Climate Change Act [3] , the UK government has driven 

efforts towards energy reduction in most sectors, including wastewater treatment. This 

shifted the fÏÃÕÓ ÆÒÏÍ ÏÎÅ ÏÆ ȬÓÁÆÅ ×ÁÓÔÅ×ÁÔÅÒ ÔÒÅÁÔÍÅÎÔȭ ÔÏ ȬÅÎÅÒÇÙ- efficient and safe 

×ÁÓÔÅ×ÁÔÅÒ ÔÒÅÁÔÍÅÎÔȭȢ -ÏÄÅÌ 0ÒÅÄÉÃÔÉÖÅ #ÏÎÔÒÏÌ ɉ-0#Ɋȟ Á ÔÅÃÈÎÉÑÕÅ ÉÎ ÁÕÔÏÍÁÔÅÄ 

process control, is a potential solution towards reducing energy consumption without 

compromising treatment. In a case study application on a WWTP in Lancaster, MPC 

delivered up to 25% energy savings whilst ensuring safe treatment of sewage [4] . 

The process model is an essential component of MPC. The model describes how the model 

outputs (e.g. controlled variables) respond to changes in the model inputs (e.g. 

manipulated variables). MPC uses the model to make future predictions over a finite 

horizon. Building this model in WWTP is challenging for several reasons, including: large 

variability in the influent flow [5] , the complexity of the reactions taking place, the slow 

response of these systems [6] , and (in real processes) stringent consent limits on the 

effluent. The culmination of these factors results in having to build the process model with 

limited data. This is the first key challenge of this research work: developing techniques 

to improve model accuracy with limited data. 

Within the WWTP, one form of treatment involved the bacteria driven breakdown of 

organic waste to produce methane-rich biogas and fertilisers. This is called anaerobic 

digestion (AD). It is considered a renewable energy technology, and AD units have also 

been installed on farms as standalone units, using agricultural waste as the feed material. 

Currently, farm-fed AD units in the UK rely on government incentives to be profitable. But 

this incentive has been steadily decreasing in recent years. Many of these farm-fed AD 

units are owned by the farmers themselves, who are non-experts in the process (it is not 

a core part of their business). There is a need to help these farmers manage the AD process 

in the day-to-day operation and identify ways to improve biogas production. Addressing 

this need formed the 2nd key challenge of this research. 
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1.1 Research Scope 

The aims of this research are to: 

¶ Develop techniques to improve model accuracy with limited data, and  

¶ Explore techniques to help with the day-to-day operation of farm fed AD units 

To achieve the first aim, two avenues are explored. The first avenue is the use of 

constrained model identification. The procedure of estimating the model parameters 

(a.k.a. model identification) is an optimisation problem, and constraints can be applied to 

these. The idea behind this approach is to use non-data information, including first 

principles knowledge and operator experience, as optimisation constraints to reduce the 

search space for the data-driven optimisation.  

The second avenue tackles the same challenge from a different perspective. Experiments 

are carried out to collect process data from which the model parameters are estimated 

from. These experiments span over the course of several days in WWTPs (in part because 

the process responds very slowly). This avenue applies the concept of information 

content of a dataset. Between experiments, the current process model can be used to 

make output predictions given a sequence of inputs (this is how it is used in MPC). The 

idea is to design the sequence of input steps that generates the most information rich data, 

ÕÓÉÎÇ ÔÈÅ ÍÏÄÅÌȭÓ ÐÒÅÄÉÃÔÉÏÎ ÔÏ ÍÁËÅ ÔÈÅ ÅØÐÅÃÔÅÄ ÄÁÔÁÓÅÔȟ ÁÎÄ ÏÐÔÉÍÉÓÉÎÇ ÉÔ ÂÁÓÅÄ ÏÎ ÔÈÅ 

information content. This would mean that a sequence of input changes can be developed 

before the experiment began, and would in theory improve the accuracy of the model  

The second objective is an exploration on how data-driven modelling and data analysis 

can assist farmers in the day-to-day operation of the AD unit. For many farmers, the AD 

unit is not a cÏÒÅ ÐÁÒÔ ÏÆ ÔÈÅÉÒ ÂÕÓÉÎÅÓÓȟ ÁÎÄ ÔÈÅÙ ÃÁÎȭÔ ÄÅÖÏÔÅ ÔÏÏ ÍÕÃÈ ÔÉÍÅ ÔÏ ÍÁÎÇÉÎÇ 

it. Additionally , because of the capital investment of unit installation, and the dependency 

of incentives to be operationally profitable, farmers are not interested in solutions that 

require expensive devices installed. This shaped the scope to become one of exploring 

what techniques can be applied. This restricted to measurements typically accessible in 

farm-fed AD units and supplemented by knowledge form first principles or operator 

experience. 
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1.2 Contribution to Knowledge  

The contribution to knowledge of this research is based around application study. From a 

technical perspective, the techniques developed in this research project are not new. But 

the use of these techniques in WWTP and farm-fed AD units have been limited. This is 

discussed in greater detail in Chapters 2 and 6. There is also an emphasis in this research 

on practical applicability. The techniques explored in this research are purposely 

restricted to only using measurements that are typically collected in UK WWTP and AD 

processes. This is done so that the outputs of this research could be easily applied to other 

WWTPs and AD units. 

1.2.1 Academic Contributions  

The academic contribution leans more towards application study ɀ these are applications 

where these techniques are generally not used. The work on farm-fed AD units was an 

attempt to bring a perceived knowledge gap. Studies on modelling AD units appeared to 

follow two distinct directions. The first aimed at modelling the process from first-

principles, to accurately describe each mechanism taking place. The downside is that 

these models are difficult and expensive to apply and does not guarantee better process 

performance. The opposite end focused on models that can be readily applied. These 

however have a limited scope, and the use of the information in day-to-day operation is 

limited. The proposed technique can be described as an assessment of how much complex 

system behaviour can be modelled using only measurements typically found on site. 

1.2.2 Industrial Contribut ions  

Perceptive, the industrial sponsors, developed a process monitoring and data analysis 

software called WaterMV. They are interested in the use of constrained model 

identification, seeing it as a functionality that can be added to their modelling software. 

They have undertaken, and continue to work on, projects with many WWTP companies 

in the UK to apply MPC and support services. The techniques developed in this research 

should be applicable to other WWTP, and if the model accuracy can be improved, or 

obtained with fewer experiments, this would result in resource savings. Their interest in 

constrained model definition goes beyond just WWTPs. In theory, these techniques can 

be applied to process outside of WWTP. This was demonstrated in the case study on a 

pharmaceutical manufacturing process. 
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The work on farm-fed AD units is intended to provide low-cost solutions that help the 

farmer manage the process in the day-to-day operation. Perceptive developed the 

software ADvisorMV with farm -fed AD units in mind. The software was designed to help 

the farmers quickly check the health of the AD unit and provided early fault detection 

through data-driven process analysis. Because the research is based on using readily 

obtainable measurement, the techniques should be applicable for other farm-fed units.  
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Part II  

 

Process Modelling for Model Predictive Control  in  

Wastewater Treatment and Pharmaceutical 

Processes 
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2 Background  for Part II  

2.1 Introduction to Model Predictive Control  

Model predictive control (MPC) is a technique used in automatic process control. 

MPC explicitly utilises a process model to design the control actions; this feature 

differentiates MPC from the traditional regulatory controllers, e.g., the proportional-

integral-derivative (PID) method. An MPC model describes how the process outputs 

respond to changes in the inputs. If a sequence of input changes over time is fed to 

the model, it can predict the corresponding output response in this time horizon. 

For process control, the model outputs are the controlled variables (CVs) of the 

process, and the model inputs are the manipulated variables (MVs) and some 

measured disturbance variables (DVs). In an operating process, a CV is given a set-

point, i.e. the desired value for the CV. The setpoint itself is often determined by the 

required operations, or more systematically by process optimisation which sits at a 

higher layer of the process control hierarchy above the control layer [7] . Therefore, 

the setpoint may change because of a change in specifications of the operation. In 

addition, the measured CV value can deviate from the setpoint due to disturbances. 

To bring the CV back to the current (or to track the changing) setpoint, MV changes 

are needed.  

For a process using MPC, the necessary MV changes are automatically calculated and 

carried out by the controller. An example of an MPC controller is shown in Figure 1.  

 

Figure 1 ɀ MPC controller on a process with a setpoint change [8]  
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The controller uses the MPC model to predict the CV along the prediction horizon 

and calculates a sequence of step changes (or control steps) to make to the MV along 

a control horizon such that the CV reaches the set point by the end of the prediction 

horizon. It should be emphasised that only the first control step is implemented, and 

when that happens the calculation is carried out again. This is to allow the controller 

to reoptimi se the MPC problem and is known as feedback control. If the control steps 

are not recalculated, then that is known as feedforward control. The way the control 

steps are calculated is an optimisation problem. A process with automatic control is 

less susceptible to disturbances than if the process was manually controlled, and so 

can keep close track of the setpoint. The operator only needs to specify the output 

setpoint. 
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2.1.1 Development of a Model Predictive Control Model  

The overall procedure for creating an MPC model is shown in Figure 2. The following 

subsections discusses the procedure involved in each part.  

 

Figure 2 ɀ Overview of the general algorithm for developing an MPC model 

2.1.1.1 Data Collection  

Data collection refers to the experiments carried out to collect process data to which 

the model would be built or updated from. Prior to the model being built, these are 

called preliminary experiments. This distinction is relevant for one of the research 

avenues (see Section 2.4 and Chapter 4). In an experiment, the input variables are 

ÁÄÊÕÓÔÅÄȟ ÁÎÄ ÔÈÅ ÏÕÔÐÕÔ ÖÁÒÉÁÂÌÅÓȭ ÒÅÓÐÏÎÓÅ ÔÏ ÔÈÏÓÅ ÃÈÁÎÇÅÓ ÁÒÅ ÒÅÃÏÒÄÅÄȢ &ÏÒ ÔÈÅ 

purposes of MPC, these usually take the form of step changes. An input is only 

changed and held at the new value for varying periods of time, before it is changed 

to another value. The choice of steps is in part because overly frequently changes to 

variables can damage physical equipment, and because it allows time to capture the 

Data collection 
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output response to that change in terms of the dynamics and steady state gain (if 

steady state exists). 

The distinction between data quantity and data quality should be made here. 

Process modelling for MPC is about capturing the output response to known input 

changes, so that the controller can use the model to automate changes to the input 

to bring the output to the setpoint. Good quality data, or information-rich data, is 

data that captures the input-output relationships. This is different from data 

quantity, which refers to the number of samples collected. In many WWTP sites, 

there is a large quantity of historical process data recorded over the span of many 

years. But it could be low-quality data for building models from, as the inputs are 

kept constant and so the data does not capture how the process reacts to input 

changes.  

In WWTP, projects that Perceptive worked to apply MPC typically allocate several 

days to collect the process data to build the MPC model. But this is actually a very 

challenging task for several reasons. First, WWTPs are very slow processes - an 

input change may take over an hour before the output even begins to respond to it . 

Second, domestic sewage entering the treatment plant is subject to a diurnal pattern 

(see Section 2.5) due to human activity operating to a 9-to-5 schedule. This limits 

the window from which experiments can be carried out to get useful data. Third is 

that the treated effluent leaving the WWTP must conform to stringent limits to 

protect the environment. Experiments must be carried out whilst keeping to those 

output restrictions.  

2.1.1.2 Data Pre-treatment  

Real processes are subject to system noise, missing data samples and bad data 

sample. These reduce the quality of the data, and in turn the accuracy of the model. 

Data pre-treatment reduces the effects of bad samples, background noise and other 

disturbances that may adversely affect the accuracy of the model being built. 

Techniques used in data pre-treatment are generally standardised. This research 

project is not focused in developing these techniques, but made use of common data 

pre-treatment techniques, summarised in Table 1. For a more general background 

on data pre-treatment, the following references can be sought: [9] . 

  



30 | P a g e 
 

Table 1 ɀ Overview of common types of data pre-treatment techniques 

Technique  Description  

Sample removal Identified outlying samples are removed from the dataset 

and subsequent analysis. Statistical model identification 

produces the best fit to that dataset, and these outliers would 

detrimentally affect the model accuracy. 

Data filtering Data filtering attempts to smooth the data trends and reduce 

the noise fluctuations within each sample. These take the 

form of averages applied to samples within a single variable. 

Different averages can be used, but commonly these would 

be either a moving average or an exponentially weighted 

moving average. 

Sampling interval 

reduction 

Used in processes where the sampling frequency is very high 

compared to the process response, which can cause a model 

to be much more susceptible to background noise. This can 

simply be only retaining the n-th sample or combined with 

data filtering techniques. 

Dimension 

reduction 

Used to deal with the problem of multicollinearity, where 

model inputs exhibit correlation among themselves. The 

relative contribution of each input to the output become 

harder to identify [10] , and the model is more sensitive to 

certain noises and perturbations [11] . 

Auto-scaling Auto-scaling transforms a signal to have zero mean and unit 

variance. This is used to prevent the sensitivity bias that 

occurs when modelling with signals of numerically different 

magnitude scales 

 

2.1.1.3 Model Identification  

Model identification is the procedure of estimating the model parameter values 

using the collected (and pre-treated) experiment dataset. The dataset used to build 

the model is called the training dataset. How the model parameters interact with the 

inputs to determine the outputs is dependent on the model structure. Model 

structures are discussed in Section 2.3. When the model parameters are estimated, 
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it is validated using a separate dataset, called the validation dataset. Common model 

validation techniques can be found in [12] . 

2.1.1.4 Experiment Design  

Projects to install an MPC controller will allot time and resources to carry out 

multiple experiments to collect the data. A good model needs information-rich 

training  data, ideally in large quantities (by carrying out many experiments). But 

there are financial incentives to not carry out more experiments than what is 

necessary. Experiment design is about balancing these two demands ɀ to design 

better step tests that obtain more information-rich data.  

Optimal experiment design (OED) is based around the theory of estimating an 

information content value (based on the Fisher Information Matrix) for a given 

dataset. As described above, a MPC model predicts how the process output responds 

to changes in the input. When given an input sequence, such as a step test, the 

expected output response is calculated from the model. The information content 

value is then estimated from the model predictions. In other words, if the current 

model is reasonably accurate, a step test can be designed to obtain the most 

information -rich data before the experiment is even carried out. If OED is applied to 

a series of experiments, this becomes a methodology to systemically obtain the most 

information rich data with fewer experiments, i.e. sequential OED (SOED). SOED is 

an optimisation problem and is discussed in Section 2.4. 
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2.2 Mathematical Optimisation  

Mathematical optimisation forms a central part to this research. From the overall 

framework in Figure 2, three different optimisation problems are present:  

¶ the optimisation to estimate the model parameters (model identification); 

¶ the optimisation to design the step tests for the next experiment (sequential 

optimal experiment design), and  

¶ the optimisation carried out by the MPC controller to determine the input 

sequence that would bring the output to the setpoint.  

2.2.1 Characteristic Components in Optimisation  

A common way to frame an optimisation problem is by describing it in terms of three 

characteristic components:  

¶ The objective function : the scalar criteria value that determine the optimality 

of a possible set of decision variable values, 

¶ The decision variables : the set of parameter values to be determined, and  

¶ The constraints : optional conditions that limit the range of feasible decision 

variable sets. 

In equation form, this can be generalised as shown in Eqn. 2.1: 

ÍÉÎ
Ᵽ
ὪⱣ Eqn. 2.1 

ÓÕÂÊÅÃÔ ÔÏ 
▌Ᵽ π

▐Ᵽ π
 

 

where: 

ὪⱣ = Objective function 

Ᵽ = Decision variables 

▌Ᵽ  Inequality constraints 

▐Ᵽ  Equality constraints 

 

In terms of execution, many software programs such as Matlab provide a selection 

of standard algorithms to automate the optimisation. They handle iterative 

calculations much faster than calculated by hand, and improvements to computing 

hardware have allowed most modern computers to run these solvers. How quickly 
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an optimisation problem is solved depends on the complexity of the problem, the 

choice of algorithm, and computation speed of the hardware.  

 

Optimisation Components for  Model Predictive Control  

As explained in Section 2.1 (it may be helpful to refer to Figure 1 in Section 2.1), the 

MPC controller determines the input steps across the control horizon to be carried 

out to bring the output to a specified setpoint by the end of the prediction horizon. 

The optimisation components are: 

Objective function: A weighted cost function balancing between reaching the 

set-point quicker and penalising large steps 

Decision variables: The values of the input steps along the control horizon 

Constraints: Step size, minimum/maximum model input values 

 

A common objective function used in MPC, as noted in [13] , is shown in Eqn. 2.2 

ÍÉÎ◐ ◐ ╦ ◐ ◐ Ў◊ ╦ Ў◊ Eqn. 2.2 

◐ ÙȟȣȟÙ ; ◐ ÙȟȣȟÙ  

Ў◊ ЎÕȟȣȟЎÕ ; ЎÕ Õ Õ  
 

where: 

Ù = Estimated value of the controlled variable at sample i 

Ù = Set-point of variable y at sample i 

ЎÕ  Incremental manipulated variable at sample i 

Î = Number of samples across prediction horizon 

Î = Number of samples across control horizon 

 ╦  and  ╦  = Weighting coefficients  

 

The estimated value of the output, ◐, is calculated from the MPC model, as in a 

function of the model input ◊ and the model parameters ʃ. The way in which these two 

interact is described by the model structure, and this is covered in Section 2.3. In Eqn. 2.2, 

the vector ◊ represent the decision variables the optimisation aims to solve. The left term 

pushes the optimiser to quickly bring the output towards the set-point, whilst the right term 

penalises large and too frequent control steps. Steps that are too large, or made to 

frequently, can damage process equipment.  
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It is worth reemphasising that although the optimisation problem solves for several 

control steps (governed by the control horizon), only one control step is carried out. 

After the control step, the optimisation problem is repeated using more updated 

data and output predictions for the next set of control steps, of which only the first 

is carried out. The frequency at which the control steps need to be calculated 

requires an optimisation problem that can be solved quickly.  

Optimisation Components for  Model Identification  

Model identification refers to the procedure of estimating the model parameter 

values based on collected process data. The optimisation components are: 

Objective function: Model prediction accuracy against the training dataset  

Decision variables: The model parameter values 

Constraints: Process gain, output response trend, response delays 

 

Because the model is to be used by an MPC controller, there is a critical, but implicit , 

need for the optimisation to correctly identify the sign of the process gain (positive 

or negative gain). This relationship is critical to an MPC controller; an incorrect sign 

of the gain would turn a negative feedback control (which is necessary for automatic 

control) to a positive feedback (which amplifies, instead of reduces, the error 

between output the setpoint).  

For example, consider a process with one input and one output with a positive gain; 

however, the model incorrectly identified the gain as negative. If the current output 

is below the setpoint, the correct controller  action would be to increase the input (to 

increase the output). But with the incorrect model gain direction, the controller 

would instead decrease the input. Doing so would decrease the actual output, bring 

it further away from the setpoint. The controller would then pick up this deviation, 

and decrease the input even more (because the model gain direction is wrong), and 

the output would deviate even more 
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Optimisation  Components for  Sequential Optimal Experiment Design  

SOED designs the input steps to be carried out in the subsequent experiment. The 

optimisation components are: 

Objective function: Information -richness of the speculated dataset  

Decision variables: The input sequence 

Constraints Step size, minimum/maximum input values 

 

The SOED optimisation needs to be calculated between the model being identified 

from one experiment and the starting of the next experiment. Based on project 

experience, Perceptive engineers allot several days to carry out experiments, with 

each experiment during the visiting hours of the process site (they are external 

visitors). Practically, the optimisation problem needs to be solved as fast as possible, 

but in the worst case no more than several hours. 

2.2.2 Optimisation Methods  

Optimisation methods refer to the approaches used to determine the values of the 

decision variables, based on the criteria of the objective function. Nowadays, 

numerical optimisation is carried out by computers, and widely available 

commercial software such as Matlab provide functions to automate commonly used 

methods. This research project is not focused on the development of new 

optimisation methods, but the optimisation method does play a role in the choice of 

MPC model structure. This section briefly discusses common types of optimisation 

methods. For additional information, the reader may wish to consul references on 

mathematical optimisation methods, such as from [14]  and [15] . 

2.2.2.1 Classical Optimisation Methods  

Classical Optimisation Methods uses analytical methods to determine the optimum 

(the maximum or minimum of the objective function). They are ideal for objective 

functions which are continuous and differential [16] . Two general classifications for 

these methods are gradient and non-gradient based optimisation.  

Gradient based optimisation assumes that the correlation between a decision 

variable and the objective function value is a convex or concave function. The 

general theory can be summarised as follows: given a set of decision variables, the 
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scalar objective function value can be calculated. If a small shift is applied to a 

decision variable, this would shift the objective function value towards or away from 

the optimum (the maximum or minimum). If the shift moves the objective function 

value towards the optimum, then another shift towards that direction is made, and 

the procedure repeated. If it moves away from the optimum, then that shift direction 

is not pursued further. Gradient based methods can use first or second derivative, 

and examples of these methods include: Steepest descent, .Å×ÔÏÎȭÓ ÍÅÔÈÏÄ and 

Conjugate gradient method [14]  [17]  [18] . 

Non-gradient based methods do not use information about the gradient of the 

objective function. They still explore how the objective function changes with 

different sets of decision variable values, but the change in decision variable values 

are not carried out as shifts. Non-gradient methods include: Random Search, Grid 

Search, and Simplex Search [14]  [17]  [18] . 

2.2.2.2 Global Optimisation Methods  

In some processes, the objective function may be more complicated than quadratic, 

and some may not even be continuous. These functions may exhibit local minima 

and maxima. These are minimum or maximum within a localised region of the 

ÏÂÊÅÃÔÉÖÅ ÆÕÎÃÔÉÏÎȢ "ÕÔ ÔÈÅÙ ÁÒÅÎȭÔ ÎÅÃÅÓÓÁÒÉÌÙ the global optimum. Classical 

optimisation methods are not designed to distinguish local and global optimums, 

and so global optimisation methods were developed. But many global optimisation 

methods are extensions of classical optimisation methods. Global optimisation 

methods can be classified into 3 types. 

Exact methods find global solutions within a finite number of steps, and this is 

typically achieved by dividing a large search space into smaller ones (search and 

bound) [19]  and finding the local minima [14] , or by using multiple starting points, 

finding the local minima, and determining the best overall minima. Heuristic search 

methods begin from given point with a real solution. The procedure then explores 

real solutions from nearby possible points to find a better point. If a better point is 

identified, it becomes the given point and the procedure is repeated [20] [21] . Meta-

model methods utilise meta models to determine which search point is selected [14]  

[22] . 
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2.2.3 Optimisation methods in MPC Control  

Optimisation methods in MPC control are based on the structure of the MPC model 

itself. The model structure describes how the model parameters interact with the 

model inputs to estimate the model outputs. The common classification is between 

linear and non-linear MPC models. In a linear model, the output is estimated from a 

linear combination (or summed product) of the inputs and model parameters. This 

is shown in Eqn. 2.3 (for a single output value) and Eqn. 2.4 (for a set of output 

values). Otherwise they are non-linear models.  

ÙÔ  ⱴÔⱣᴂ Eqn. 2.3 

ⱴÔ ʒ Ôȣʒ Ô ; Ᵽᴂ

ʃ
ể
ʃ

  

◐  ♠Ᵽᴂ Eqn. 2.4 

◐
Ùρ
ể

ÙÎ
; ♠

ⱴρ
ể

ⱴÎ

ʒ ρ Ễ ʒ ρ

ể Ệ ể
ʒ Î Ễ ʒ Î

; Ᵽᴂ

ʃ
ể
ʃ

;  

 

where: 

ʒ Ô = Data sample associated with the i-th model parameter and 

predicted output at sample t 

Î = Total number of model parameters 

ʃ = The i-th model parameter  

 

For linear MPC models, the objective function for MPC control (Eqn. 2.2) can be 

expressed as a quadratic function [23]  [24] . The generalised form for a (convex) 

quadratic function is shown in Eqn. 2.5. A concave quadratic function can be 

expressed in this form also by adding a negative sign, and for notation convenience, 

only the convex form is referred to in the rest of this thesis.  

ÍÉÎ
Ᵽ

ρ

ς
Ᵽ╗Ᵽ █ᴂⱣ   Eqn. 2.5 

ÓÕÂÊÅÃÔ ÔÏ ╒═Ᵽ ╬╫ Eqn. 2.6 

where: 

╗ = A real symmetric matrix (dimensions: Î ÂÙ Î) 

█ = A real vector (dimensions: ρ ÂÙ Î) 
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╒═ = Constraint matrix (dimensions: Î ÂÙ Î) 

╬╫ = Constraint vector (dimensions: Î ÂÙ ρ) 

Ᵽ = Decision variables  

 

Quadratic functions can be solved by a special type of gradient-based optimisation 

method called quadratic programming. For non-linear MPC models, if they conform 

to certain structures, can be solved using sequential quadratic programming or non-

linear interior point methods [24] . Quadratic programming are specialised gradient 

based methods that can be calculated much faster than generic optimisers [25]  (up 

to 100 times faster according to [26] ).  

This project is interested in the use of quadratic programming to handle the 

optimisation of MPC controller. Assuming a linear model can accurately describe the 

process dynamics, the faster computation speed is an attractive feature for MPC 

controllers ɀ because the optimisation is carried out at every control step. But this 

assumption must be considered further. Most real processes are non-linear, 

meaning that a linear model would not accurately describe the process dynamics. 

But for a finite prediction horizon, a non-linear could reasonably be described with 

a linear model. MPC control is based on predicting across a finite horizon, and so the 

use of a linear model may be justifiable. This is called process linearisation, and if 

can be applied, then the computationally faster quadratic programming can be used 

to handle the MPC control optimisation.  

Given that the waste treatment process of interest is slow, and a control time 

interval around 30 minutes (based on engineering experience). The use of a non-

linear MPC model should be plausible so long as the computation completes before 

the control interval. But in practice there are two main challenges to overcome. The 

first is the issue of stability - there are no hard guarantees that non-linear model 

would produce a sufficiently good solution.  

The input trajectory determined from the MPC model is used in a close loop control 

system, and if the trajectory is not sufficiently good, the system may become 

unstable [27] . Linear models by contrast are much easier to conceptualise, and 

safeguards implemented to ensure the control system is stable [28] . The second 

reason relates to industrial uptake. Operators on site favour models that provides 
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an answer quickly, even if the slower computation is completed within the control 

interval. Combined with the concerns over the system stability, there is a significant 

barrier towards the application of nonlinear MPC in waste treatment processes. 

With the intention of improving the accuracy of existing MPC models, the focus on 

linear models allow for quicker uptake in industry, provided that the process can be 

linearised.  
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2.3 Model Identification for Linear Model s 

Section 2.2 concluded with this project being focused on the use of linear MPC 

model, provided it can accurately describe the process dynamics across a finite 

prediction horizon. The choice of a linear model structure has a knock-on effect on 

the optimisation for model identification and sequential optimisation experiment 

design (the latter is discussed in Section 2.4). This section outlines the variations of 

linear model structures and discusses the optimisation to estimate the model 

parameters. As previously mentioned, the output is predicted from a linear 

combination (or summed product) of measured data samples and model 

parameters. For each sample, the general equation form is shown in Eqn. 2.7. 

ÙÔ  ʒ Ô ʃ Ễ ʒ Ô ʃ  Eqn. 2.7 

where: 

ʒ Ô = Data sample associated with the i-th model parameter and 

predicted output at sample t 

Î = Total number of model parameters 

ʃ = The i-th model parameter  

 

For convenience, matrix representation is used to represent a linear model. In 

matrix notation, the prediction of a single output sample is shown in Eqn. 2.3. For a 

series of output sample predictions Ùρ ÔÏ ÙÎ , it is shown in Eqn. 2.4.  

ÙÔ  ⱴÔⱣᴂ Eqn. 2.3 

ⱴÔ ʒ Ôȣʒ Ô ; Ᵽᴂ

ʃ
ể
ʃ

  

◐  ♠Ᵽᴂ Eqn. 2.4 

◐
Ùρ
ể

ÙÎ
; ♠

ⱴρ
ể

ⱴÎ

ʒ ρ Ễ ʒ ρ

ể Ệ ể
ʒ Î Ễ ʒ Î

; Ᵽᴂ

ʃ
ể
ʃ

;  

 

 

Number of Inputs and  Outputs  

One of the first classifications for process models, linear or not, relate to the number 

of model inputs and outputs. Models with a single-input and single-output are called 

SISO models. Some models may have multiple-inputs and/or multiple outputs, 
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resulting in similar abbreviations of MISO, SIMO and MIMO models. Most real 

processes are modelled using MIMO models. For MIMO models, the issue of causality 

is important. If there is causality between an input and an output, the sample values 

of that input affect the sample values of the output. But not every model input 

contributes towards one or more of the output, and an output may be affected by 

the value of other outputs.  

In the case there is no causality between the outputs, a MIMO model can be 

expressed as a series of MISO models (one model for each output). This means that 

algorithms designed for MISO models can be readily applied for such MIMO 

applications. But where causality exist between outputs, other techniques would 

need to be used for those MIMO models (both in model identification and output 

prediction). In the scope of this project, the case where causality exist between 

outputs was not explored due to time constraints. For notational convenience, the 

equations in this section takes the MISO form.  

2.3.1 Types of Linear Models relevant for this Research  

This project has focused on three generalised model structures: finite impulse 

response (FIR) models, autoregressive exogeneous (ARX) models and output error 

(OE) models. All three, to an extent, can be described using Eqn. 2.4. 

2.3.1.1 Finite Impulse Response Model Structures  

Finite Impulse Response (FIR) models are also known as a linear time-invariant 

model. The time-invariant means that the model output is not a direct function of 

time; the same output response will be predicted given the same input trajectory, 

regardless of when that trajectory occurs. The estimated output value at a given 

sample is expressed as shown in Eqn. 2.8. 

ÙÔ ÕÔ Ä Â Ễ ÕÔ Ä Î ρ Â  Eqn. 2.8 

where: 

ÙÔ = Estimated output value at sample t 

ÕÔ = Measured input value at sample t 

d = Dead time 

Â = i-th FIR coefficient (modelling parameter) 

Î = Total number of FIR coefficients 
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This can be simplified with matrix representation to give Eqn. 2.9, which is of the 

same structure as the linear regression model structure (Eqn. 2.3): 

ÙÔ ◊ᶻÔ╫ᴂ Eqn. 2.9 

◊ᶻÔ ÕÔ ÄȣÕÔ Ä Î ρ ; ╫ᴂ

Â
ể
Â

  

◐ ╤ᶻ╫ᴂ Eqn. 2.10 

╤ᶻ ◊ᶻρȣ◊ᶻÎ ᴂ;  

 

In the case of MISO and MIMO processes, the output is still a linear combination of 

input sample values and model parameters. The number of elements that form the 

vectors ◊ᶻÔ and ╫ would expand to accommodate the additional pairings. The 

same FIR structure with Î  inputs is shown in Eqn. 2.11 and Eqn. 2.12. 

ÙÔ ◊ᶻÔ╫ᴂ Eqn. 2.11 

◊ᶻÔ
ÕÔ Ä ȣÕÔ Ä Îȟ ρȣ

ÕÔ Ä ȣÕÔ Ä Îȟ ρ
; 

╫ ÂȟȣÂȟ ȣÂ ȟȣÂ ȟ  

 

◐ ╤ᶻ╫ᴂ Eqn. 2.12 

╤ᶻ ◊ᶻρȣ◊ᶻÎ ᴂ;  

where: 

Ä = Dead time associated with the input j 

Îȟ = Number of FIR coefficients associated with input j 

Âȟ = i-th FIR coefficient for input j 

 

Eqn. 2.12 relates back to the general linear model structure Eqn. 2.4 by equating the 

terms as shown in Eqn. 2.13. 

◐  ♠Ᵽᴂ Eqn. 2.4 

♠ ╤ᶻ; Ᵽᴂ ╫ᴂ Eqn. 2.13 
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2.3.1.2 Autoregressive Exogeneous Model Structures  

Many processes are time-varying, meaning that the process might react differently 

from the same input sequence at different times. This is a characteristic that the FIR 

model structure cannot handle. An extension to the FIR model is the autoregressive 

exogenous (ARX) model structure. An autoregressive component (a weighted sum 

of past output values) added to the FIR model structure. This is represented in Eqn. 

2.14 and it can be observed that the right-hand side of the equation is the same as 

the FIR structure (Eqn. 2.14).  

ÙÔ Î  Á Ễ ÙÔ ◊ᶻÔ ╫ᴂ Eqn. 2.14 

where: 

ÙÔ = Measured value of the output at time t 

Á = k-th autoregressive coefficient 

Î  = Number of autoregressive coefficient 

 

A matrix representation on the left-hand side can simplify the notation. With the 

interest is estimating the value of the output, ÙÔȟ Eqn. 2.14 can be expressed as 

shown in Eqn. 2.15. Note that this too is a linear model, as the output can be 

estimated from a linear combination of the measured data and model parameters. 

ÙÔ ◊ᶻÔ ╫ ◐ᶻÔ ╪ Eqn. 2.15 

◐ᶻÔ ÙÔ ρȣÙÔ Î   

╪ ÁȣÁ   

 

This too can be simplified as a single linear combination (Eqn. 2.16), which 

corresponds to the general form of Eqn. 2.3. In turn, for the whole dataset, this can 

be expressed by the more generalised form of Eqn. 2.4. 

ÙÔ  ⱴÔⱣᴂ Eqn. 2.3 

ⱴÔ ⱴ Ôȣⱴ Ô ◐ᶻÔ ; Ᵽᴂ

╫
ể
╫

╪

 Eqn. 2.16 

◐  ♠Ᵽᴂ Eqn. 2.4 
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2.3.1.3 Output -Error Models  

The output error (OE) model is very similar in structure to the ARX model. It too is 

an extension from FIR model to account for auto-regression. The MISO OE model 

structure is shown in Eqn. 2.17. Although it shares a strong resemblance to the ARX 

model structure (Eqn. 2.15), the key difference between an OE model and ARX is 

which past output values are used. An OE model uses the predicted output, whilst 

an ARX model uses the measured output. This has a notable impact for the model 

identification and model prediction.  

ÙÔ ◊ᶻÔ ╫ ◐ᶻÔ ╪ Eqn. 2.17 

◐ᶻÔ ÙÔ ρȣÙÔ Î   

╪ ÁȣÁ   

 

There are two key implications that arise from the difference between the OE and 

ARX structures. For model identification, where the data is already measured and 

recorded, and ARX model behaves as a linear model structure. An OE model 

structure however, is not linear ɀ each estimated output value can be expressed as 

a function of past output values. This is illustrated from Eqn. 2.18 to Eqn. 2.20, using 

a 2 parameter (a and b) SISO OE model. 

ÙÔ ÕÔ Â ÙÔ ρ  Á Eqn. 2.18 

ÙÔ ρ ÕÔ ρ Â ÙÔ ς Á Eqn. 2.19 

ḈÙÔ ÕÔ Â ÕÔ ρ Â ÙÔ ς Á Á 

ÙÔ ÕÔ Â ÕÔ ρ ÁÂÙÔ ς Á 

Eqn. 2.20 

 

The interest in OE models instead is in model prediction (to make predictions across 

a future horizon). Strictly speaking, and ARX model cannot predict beyond the next 

step (because it does not have measured output data to predict beyond that). An OE 

model, on the other hand, can extend the prediction indefinitely, as it can use the 

predicted output to carry on making future predictions. In order words, an ARX 

model is a one step ahead predictor, whereas an OE model is an infinite step ahead 

predictor. While an infinite step ahead predictor is practically infeasible (it would 

not be accurate anyway), it is useful for a MPC controller to be able to predict a 
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certain number of steps ahead of time, to reduce how abruptly it makes input 

changes to bring the outputs to their setpoints. 

2.3.2 Optimisation for Model Identification  

The objective function for model identification is typically a model fit to the dataset. 

Typically, this is a separate dataset that was not used for building the model in the 

first place ɀ this reduces the chance of noise overfitting.  

One common approach is to use the sum of squared error, as shown in Eqn. 2.21. 

The smaller the error, the better fit the model is to the data. So, the objective function 

for model identification is the minimisation of Eqn. 2.21.  

‐ ◐  ◐ᴂ◐  ◐ Eqn. 2.21 

◐ ♠Ᵽ Eqn. 2.4 

where: 

‐  = Sum of squared error 

 

If there are no optimisation constraints, substituting Eqn. 2.4 into Eqn. 2.21, carrying 

out the derivations shown in Eqn. 2.22 

‐ ◐ ◐ ◐ ◐

╢╢╔ ◐ ♠Ᵽ ◐ ♠Ᵽ

╢╢╔ ◐◐ ◐♠Ᵽ Ᵽ♠◐ Ᵽ♠♠Ᵽ

╢╢╔ Ᵽ ♠♠Ᵽ ◐♠Ᵽ ◐◐

 

Eqn. 2.22 

ἵἱἶ
Ᵽ
Ᵽ ♠♠Ᵽ ◐♠Ᵽ ◐◐ Eqn. 2.23 

This form is also known as the least squares solution. Given the assumption of a 

convex function, the value of the parameters can be explicitly calculated by taking 

the first (to identify stationary points) and second derivative (to determine if the 

stationary point is a minimum or maximum), or as shown in Eqn. 2.24 

Ᵽ ♠♠ ♠◐ Eqn. 2.24 

 

In the case that constraints are added, and this is an essential part of this research, 

this special case solution is unlikely to work.  
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2.3.3 Model identifiability  

A model is identifiable if the ȰÐÁÒÁÍÅÔÅÒ ÖÁÌÕÅÓ ÕÎÉÑÕÅÌÙ ÄÅÔÅÒÍÉÎÅ ÔÈÅ ÐÒÏÂÁÂÉÌÉÔÙ 

distributioÎ ÏÆ ÔÈÅ ÄÁÔÁȱ and vice versa [29] . In other words, the model parameters 

can be learned if an infinite number of samples are taken. The true model structure 

for a real process may not be known due to the complexity of the process and a priori 

knowledge available.  

This project used linear regression model structures. While flexible in the 

parameter-input interaction, provides no hard guarantees that it will fit the 

underlying structure of the process. Model prediction accuracy against a validation 

dataset as a weaker justification to say that the model structure is a reasonable fit to 

for the process. If it can be assumed that the model structure is a good fit for the 

process, then the conditions for a model to be identifiable can be determined. From 

Eqn. 2.23, it can be shown that for a linear regression model, the objective function 

is a quadratic problem with respect to the model parameters Ᵽ, and quadratic 

problems have a single global minimum. Assuming the data is noise-free, the model 

is identifiable if the matrix ♠♠ is invertible [30] , or in other there are no linear 

dependency between the manipulated variables of the dataset. 

In practice, real processes are noisy, there may be correlation between the 

manipulated variables, and the number of observations is finite. The first two points 

can be addressed to an extent by data pre-treatment techniques. The quadratic 

problem should provide a single minimum or solution to that finite training dataset. 

But this may not be the same as the true parameter values of the system.  

Constraints based on a priori knowledge can be used to improve model 

identifiability, and this project implemented this by translating common/easy to 

obtain a priori knowledge into optimisation constraints (Section 3.2). But given the 

limited knowledge about the process beyond qualitative descriptions, this would 

not guarantee a unique model (e.g. a parameter value can be restricted to 0~10 as a 

constraint, but 4 and 7 are both valid answers within those constraints). 

For nonlinear model structures, local minimums may exist, which complicates the 

issue of model identifiability. One way to address this problem experimentally, is to 

use multiple initial values to identify local minimums. [29]  
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2.3.3.1 Quadratic  Programming for Linear Regression Model  

The general form for the objective function of a quadratic function is shown in Eqn. 

2.25. The optimisation constraints are linear and represented by Eqn. 2.26. 

ÍÉÎ
Ᵽ

ρ

ς
Ᵽ╗Ᵽ █ᴂⱣ   Eqn. 2.25 

ÓÕÂÊÅÃÔ ÔÏ ╒═Ᵽ ╬╫ Eqn. 2.26 

where: 

╗ = A real symmetric matrix (dimensions: Î ÂÙ Î) 

█ = A real vector (dimensions: ρ ÂÙ Î) 

╒═ = Constraint matrix (dimensions: Î ÂÙ Î) 

╬╫ = Constraint vector (dimensions: Î ÂÙ ρ) 

Î = Number of constraints 

Î = Number of model parameters 

In model identification, the objective function is the accuracy of predicted model fit 

to the training dataset. For a linear model structure, the matrix ╗ and vector █ can 

be derived as shown in Eqn. 2.27. In this way, quadratic programming can be used 

for carrying out the model identification of a linear model. 

╗ ς♠ᴂ♠ 

█ ς◐ᴂ♠ ς♠ᴂ◐ 
Eqn. 2.27 

 

2.3.4 First Principles Modelling, Data-Driven Modelling  and Constrained 

Model Identification  

About model identification, the categories of first-principles modelling, data-driven 

modelling and grey-box modelling should be discussed.  

First principles modelling derives mainly from mass, energy and momentum 

balances coupled with constitutive equations (thermodynamics, mass transfer, heat 

transfer, reaction kinetics, equipment workings, etc.). A process is regarded as a 

combination of mechanisms taking place, and the model structure is built to 

describe the relevant mechanisms. A first principles model may, in some cases, 

produce a clear structure that can give an estimate of how the model output would 

respond to an input change even before any data is handled. Model identification is 

a way of fine-tuning that response. The procedure can be summarised as: 
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1. Identify the key mechanisms taking place in the process relevant to what the 

user needs to model (i.e. rate determining step in a reaction series), then 

2. Develop, from using established laws, a model to describe that mechanic, then 

3. Estimate the parameter values (model identification) with process data, then 

4. Validate the model 

These procedures are like the outline shown in Figure 2. A key point to note is that 

by the time any data is handled, the model structure, particularly how the system is 

likely to respond to changes, is largely defined already (derived from established 

theory). The data handling that occur in model identification is to estimate the value 

of the model parameters to fine tune that response. First principles modelling is also 

known as white-box modelling. For an example of how this is applied, refer to 

Section 2.5.1. 

Data-driven modelling refers to the approach used to build the model. The 

modelling discussed so far in Section 2.3 is data-driven modelling. Generalised 

model structures (including FIR, ARX, OE), which can describe many correlations, 

are used. Collected process data is used to statistically describe the relationship 

between the inputs and outputs. This is also known as black-box modelling.  

A key advantage of data-driven approach in practice relates to the ease of 

implementation, especially for a complex process (where the information needed to 

build). It is this advantage which makes data-driven models favoured in industry for 

process control over first-principles models. Practically speaking, process control 

(and in turn the purpose of the process model) is to establish the connection 

between the manipulated variables and the controlled variables, and the ability of 

the model to be used to make future predictions. The accurate representation of 

every mechanism taking place in the process is often difficult to achieve and 

unnecessary for process control.  

However, data-driven modelling has a major disadvantage in noise overfitting. Data-

driven models identify the correlation between MV and CV by statistical analysis of 

the data alone. Real processes exhibit background noise, and this distorts the clarity 

of the correlation between MVs and CVs in measured data. For data-driven 

modelling, this can lead to the algorithm falsely identify the noise as correlations 

between an MV and CV. This is called noise overfitting, and it reduces the prediction 
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accuracy of a model. This is particularly problematic for noisy processes, where the 

training dataset is small and information-poor.  

The third category is a combination of first principles modelling and data-driven 

modelling. This is called grey-box modelling. There are various ways that the two 

techniques are combined [31] . For this research, the way that two interact is that 

first principles knowledge and operator experience are added as constraints. This is 

referred to as constrained model identification (CMI). The intention is to include 

these constraints (representing non-data process information) and allow a more 

accurate model to be identified from the dataset (because additional process 

information is provided). Grey-box modelling is also referred to as hybrid modelling 

in some literature, but hybrid modelling is quite broad in definition. 

CMI is also referred to as grey-box modelling and hybrid modelling, but those terms 

are broader in meaning and can refer to other things. Grey-box modelling refers to 

combining white-box and black-box modelling together, but there are several ways 

that they can be combined ɀ CMI is one such combination. [31]  
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2.4 Sequential Optimal Experiment Design  

Information -rich process data is needed to build accurate MPC models. Experiments 

in the form of step tests are carried out to obtain this data. Optimal Experiment 

Design, OED, aims at determining best set of steps to obtain the most information 

rich-data. This is achieved by using the current MPC model to predict the output 

response of a possible step test and assign an information content value for that 

possible dataset. Optimisation is carried out to determine the input steps that give 

the best information content index.  

Sequential Optimal Experiment Design, or SOED, refers to iterative use of OED is a 

series of experiments. This follows the algorithm flow shown in Figure 2. When a 

step test is designed, and carried out, the model is updated with this new data to 

improve the model accuracy. The updated model is then used in OED to design the 

next set of step tests, until no more experiments are to be carried out. The number 

of experiments to be carried out is limited by resource limitations. Typically, 

resources are allocated to support a specified number of experiments to build an 

MPC model.  

But using the same information content index could be used to determine when 

further experiment would not significantly improve the model accuracy and can be 

stopped. If the information content index for a dataset can be determined, then the 

information gained from the next experiment can be estimated using that same 

index. If the estimated information gained from the next experiment is below a 

threshold, it would mean that even the theoretically optimal experiment would not 

improve the information richness of the data. 

2.4.1 Infor mation Content of a Dataset  

The Fisher Information Matrix (FIM) is used to describe the information content of 

a dataset. The FIM concept share some similarities with the likelihood function. A 

likelihood function tells the user the probability of observing the variable at a value 

given a specified parameter value. From that set of observed variables, FIM 

describes how likely the specified parameter values (from previous experiments) 

are, given those observations. Those observations are hypothetical at that time ɀ 

ÅØÐÅÒÉÍÅÎÔ ÈÁÓ ÎÏÔ ÂÅÅÎ ÃÁÒÒÉÅÄ ÏÕÔ ÁÆÔÅÒ ÁÌÌȢ 4ÈÅÙ ÁÒÅ ÉÎÓÔÅÁÄ ȰÏÂÓÅÒÖÅÄȱ ÆÒÏÍ Á 

designed input sequence and the model estimated output from that sequence. OED 
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ÄÅÓÉÇÎÓ ÔÈÅ ÉÎÐÕÔ ÓÅÑÕÅÎÃÅ ÔÈÁÔ ÇÉÖÅÓ ÔÈÅ ÂÅÓÔ &)-ȟ ÏÒ ÓÕÃÈ ÔÈÁÔ ÔÈÅ ȰÏÂÓÅÒÖÅÄȱ 

variables carry the most information for the most up to date (and presumably most 

accurate) model parameters. 

The FIM can be expressed as shown in Eqn. 2.28 [32] . A sensitivity matrix is used to 

represent the relation between the model parameters and observed variable.  

╕╘╜ ╖ ╠ ╖ Eqn. 2.28 

╖
╨

Ᵽ
 Eqn. 2.29 

where: 

╕╘╜ = Fisher Information Matrix for experiment É 

╖ = Sensitivity Matrix 

╠ = Weighting Matrix  

╨ = Estimated Process Response to a sequence of input steps 

Ᵽ  = Estimated model parameters from experiment É ρ 

 

In terms of implementation, the sensitivity matrix ╖ is calculated using a finite 

difference method. This is shown in Eqn. 2.30 and Eqn. 2.31. 

ⱣᶻÉ

ⱣÉ ȟÉÆ É Ê

ⱣÉ  ρȢππρ ȟÉÆ É Ê ÁÎÄ ⱣÉ ρὩ υ

ρὩ υ ȟÉÆ É Ê
 

ÁÎÄ ⱣÉ ρὩ υ

 Eqn. 2.30 

╖É╨ȟÉⱣ
ώ
╨
◊ȟⱣ

Ᵽ

ᶻ ώ
╨
◊ȟⱣ

Ᵽ
Ᵽ

ᶻ ÉⱣ ⱣÉⱣ
 Eqn. 2.31 

where: 

Ᵽ = Model parameter vector  

Ᵽᶻ = Modified parameter vector for the purposes for sensitivity 

analysis; a small increment is applied to the Ê ÔÈ element 

ώ
╨
◊ȟⱣ = The É╨ ÔÈ ÏÕÔÐÕÔ generated from inputs ◊ and model parameters Ᵽ 

 

The FIM is a matrix, but for the purposes of optimisation, the information content 

index needs to be a scalar value. Scalar transformations for the FIM have been 

developed, called criterions. For convenience the scalar index is referred to as Fisher 

Information Value, or FIV, in this report. Most commonly used FIVs [33]  include: 
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A criterion: &)6ÍÉÎὝὶ╕╘╜  Eqn. 2.32 

D-criterion:  &)6ÍÁØὨὩὸ╕╘╜ or ÍÉÎὨὩὸ╕╘╜ Eqn. 2.33 

E-criterion:  &)6ÍÁØ‗ ╕╘╜ or ÍÉÎ‗ ╕╘╜ Eqn. 2.34 

ME-criterion:  &)6 ÍÉÎ
‗ ╕╘╜

‗ ╕╘╜
 Eqn. 2.35 

 

2.4.2 Step Test Design in Industry  

Based on engineering experience, the engineers at Perceptive have noted the 

following rules of thumb when carrying out step tests.  

¶ Always alternate between a step up and step down, do not have 2 step ups and 

two step downs in sequence. This reduces some noise overfitting, 

¶ Explore the full range of input values, the system may not be continuous 

¶ Make larger steps over smaller ones so that the output response is easier to 

distinguish from background noise, and  

¶ Vary the step lengths. This reduces some noise overfitting. 

2.4.2.1 Pseudo Random Binary Sequence 

Pseudo Random Binary Sequence (PRBS) is a common technique for step testing to 

generate steps of a random lengths. As the name suggest, the technique generates a 

binary sequence (0s and 1s) that can be translated into action (e.g. 0 = no step 

change; 1 = step change). The pseudo-random refers to the deterministic nature of 

this sequence whilst exhibiting characteristics like that of a random sequence. In 

terms of application, a PRBS sequence is determined by a seed, which forms as an 

identifier for that sequence. If the same generator is given the same seed, the 

resulting sequence is identical. The generated sequence is finite and will at some 

point repeat itself in a loop. But the loop is sufficiently long so when a short sequence 

is taken, that sequence would appear as though it was a randomly generated. 

2.4.2.2 Optimal Experiment Design  in Wastewater Treatment  

4Ï ÔÈÅ ÁÕÔÈÏÒȭÓ knowledge, OED has not been applied to the design of MPC models 

in wastewater treatment. SOED has however been used in wastewater treatment 

applications, but for a different type of model [34]  [35] .   
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2.5 Municipal Wastewater Treatment  

This project focused on the application of MPC on municipal wastewater treatment 

process (WWTPs). This section briefly outlines the processes that make up this 

treatment, the interest in the use of MPC, and how this work contributes toward 

improving the use of MPC in WWTPs.  

The WWTP removes pollutants in sewage so that the treated water can be safely 

discharged to the environment. The pollutants include biodegradable organic 

material, pathogens, nitrates and phosphates. The WWTP consists of a series of 

treatment processes, which are broadly classified into five treatment stages:  

¶ Screening: Incoming sewage is screened to remove large, non-

biodegradable solids from the sewage;  

¶ Primary 

Treatment: 

After screening, the sewage is then allowed to settle in large 

tanks to physically separate (and remove) the heavy 

biodegradable solids and floating solids. 

¶ Secondary 

Treatment: 

After primary treatment, the sewage then undergoes 

biological treatment to remove pollutants in the liquid. The 

effluent is then discharged or undergoes further treatment 

¶ Tertiary 

Treatment: 

Tertiary treatment is used for sites where the environment 

the treated effluent to be discharged to is particularly 

sensitive. A combination of chemical and biological 

treatments takes place. 

¶ Sludge 

Treatment: 

Sludge Treatment removes pathogens in the sludge 

accumulated in the upstream treatment stages and reduces 

the waste volume. Anaerobic digestion is a treatment 

method used here. 

Within the WWTP, Anaerobic Digestion (AD) is used for the treatment of sludge - 

toxic by-product of wastewater treatment. The AD technology is used outside of the 

WWTPs, including in farms to treat agriculture waste. Farm-fed AD technology is an 

interest of this research. The work on farm-fed AD was quite separate from the work 

carried out in Part II, and so the overview of farm-fed AD is discussed in Part III. 
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The treatment stages for WWTP is illustrated in Figure 3. 

 

Figure 3 ɀ Overview of a WWTP 

Municipal sewage has a characteristic diurnal (daily) pattern. This is summarised by 

greater flow during the daytime than night-time, and two peaks corresponding to 

human activities around the 9-to-5 work schedule. The diurnal pattern profile for 

municipal sewage is illustrated in Figure 4. 

 

Figure 4 ɀThe diurnal pattern of municipal sewage inflow; data from [5]  

Although the primary treatment stage is essentially a set of holding tanks, these are 

typically filled to full capacity and provide very limited buffering. This means that 

the influent flow for the ASP unit, a process downstream of the primary treatment, 

exhibits largely the same diurnal pattern. The key point is that even when 

considering a single WWTP, there is a lot of variability in the influent. This influent 

cannot be controlled (municipal WWTP would have to treat all the sewage that 

enters the process). In terms of modelling, the influent load is essentially a large 

disturbance [4] . 
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2.5.1 Activated Sludge Process 

The ASP is a biologically-driven process that breaks down biodegradable material 

and other contaminates found in sewage. The sewage is aerated (by oxygen or air 

injection) to form a biological floc; a soup where bacteria then breaks down the 

sewage and pollutants. The floc is then allowed to settle at a clarifier to form three 

layers: a crust of dead bacteria at the surface, clear liquid in the middle and activated 

sludge (containing live bacteria) at the bottom. The clear liquid goes downstream to 

undergo further treatment or is discharged to the environment if there is no tertiary 

treatment. The activated sludge is recycled upstream with the influent sewage. An 

illustration of the unit, based one operating in Lancaster, is shown in Figure 5. 

Mixer Surface Aerated Pockets
Settling tank 
with scraper

Effluent

Returning 
Activated Sludge

Surplus 
Activated Sludge

Influent 
(after screening)

ClarifierActivated Sludge Process
Primary 

Treatment

 

Figure 5 ɀ Illustration of an ASP in a WWTP in Lancaster [4]  

2.5.1.1 First principles modelling in ASP  

In Section 2.3.4, first principles modelling was briefly described. The use of first-

principle modelling can be explained using the ASP as an example. The key 

mechanism of interest is the bacteria driven breakdown of pollutant compounds 

and conversion to product. One of the most common starting point is the Michaelis-

Menten kinetics model. It considered a generic set of enzyme reactions shown in 

Eqn. 2.36: where an enzyme [E] binds onto a substrate [S] and forms a complex [ES], 

which transforms into a product complex [EP], which then releases a product [P] 

and regenerates the enzyme [E].  

% 3ᵮ %3O %0O % 0 Eqn. 2.36 

 

Eqn. 2.36 represents 4 simultaneous reactions (represented by each arrow). From 

reaction mechanics, the Michaelis-Menten kinetics model of that reaction series can 

be derived to the form shown in Eqn. 2.37. Some models reported in literature 
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reference the Monod model for bacteria growth, which is an empirical model with 

the same structure as the Michaelis-Menten kinetics model.  

Ä0

ÄÔ

+ 3

+ 3
 Eqn. 2.37 

where: 

Ä0

ÄÔ
 

= Rate of product production; the model output 

+  = Constant representing the maximum rate 

3 = Limiting substrate concentration (concentration of the limiting 

pollutant compound consumed by bacteria); the model input 

+  = Constant representing [S] when + πȢυ+  

 

The constants + ÁÎÄ +  are estimated from process data using model identification. 

Based on the theory, it is known that the constants are positive. This already dictates 

some characteristics to how the output would behave. This is illustrated in Figure 6. 

In terms of measurement, the model would require measurements of the limiting 

substrate concentration, the product compound concentration and time.  

 

Figure 6 ɀ Possible system responses for Michaelis-Menton kinetic model 

This example illustrates the approach used in first principles modelling: first 

identify the mechanisms taking place (bacteria-driven breakdown), then deriving a 

model structure from established theory, then using model identification to 

determine the parameter values. Preliminary estimates for the model parameters 

may be obtainable from published literature. 
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2.5.2 Model Predictive Control in Wastewater Treatment  

There are two main reasons for the use of automated process control in wastewater 

treatment: for better effluent quality control, and to reduced energy consumption. 

WWTPs are primarily to ensure safe treatment of sewage so that the treated water 

(effluent) can be safely discharged to the environment. But this is an energy 

intensive process. In the UK, the WWTP consumes over 2,300 GWh/yr of electricity 

[1] , making up about 1% of the total consumed [2] . But this is expected to increase 

to 3.4% by 2023, due to reductions in energy consumption in other sectors and 

increases to sewage volumes [1] . Under the Climate Change Act [3] , the UK 

government has driven efforts towards energy reduction in most sectors, including 

×ÁÓÔÅ×ÁÔÅÒ ÔÒÅÁÔÍÅÎÔȢ 4ÈÉÓ ÓÈÉÆÔÅÄ ÔÈÅ ÆÏÃÕÓ ÆÒÏÍ ÏÎÅ ÏÆ ȬÓÁÆÅ ×ÁÓÔÅ×ÁÔÅÒ 

ÔÒÅÁÔÍÅÎÔȭ ÔÏ ȬÅÎÅÒÇÙ- ÅÆÆÉÃÉÅÎÔ ÁÎÄ ÓÁÆÅ ×ÁÓÔÅ×ÁÔÅÒ ÔÒÅÁÔÍÅÎÔȭȢ  

The use of MPC in WWTP came as a progression from the use of proportional-

integral (PI) controllers [36]  [37] . PI controllers were easy to implement, but their 

ability to handle constraints were limited, and this shifted the focus towards the use 

of MPC. The application of MPC in WWTP included both works to improve effluent 

quality control [38]  and more reducing energy consumption without compromising 

treatment [4]  [39]  [40] . In [4] , which was applied to an operating WWTP in 

Lancaster, it was observed that the use of MPC could deliver up to 25% energy 

savings whilst ensuring safe treatment of sewage. While the use of linear MPC is 

popular [41]  [42] , non-linear MPC [43]  is used for some applications, including in 

the ASP unit [39] . The main drawback of non-linear MPC is that it is computationally 

slower than linear MPC, but for slower processes, the slower computation may still 

be useable. This project focused on the use of linear MPC, but it is recognised that 

due to hardware improvements and the development of better algorithms, non-

linear MPC optimisation might be computed quickly enough to reconsider the 

applications it is used on. Reference [44]  in particular, proposed a non-linear MPC 

algorithm that claimed to be of a comparable computation speed to linear MPC.  

Modelling the WWTP is difficult for many reasons, including the variability in the 

influent flow [5] , the complexity of the reactions taking place, the slow response of 

these systems [6] , and (in real processes) stringent consent limits on the effluent. 
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Step testing (to obtain more information rich data) carries a running cost for the 

duration of the experiment, and the trade-off between model accuracy and 

resources spent is one with diminishing returns. There is a potential gap for the 

development of ways to determine when a model is good enough (where additional 

experiment does not improve the model accuracy enough to justify the cost), or 

better ways to build accurate models with fewer experiments.  

Applying MPC control on real processes can be difficult due to the stringent consent 

limits of the effluent and the inherent risk of breaking those limits when applying 

the controller. Many research on the subject have utilised process simulations to test 

the MPC controller [39]  [45]  [38] . The most commonly used simulations include the 

benchmark simulation model 1 and 2 (BSM1 and BSM2). BSM 1 simulated a 5-stage 

active sludge process (one of the secondary treatment stages) with a clarifier, and 

BSM 2 was extend the scope represent a general WWTP [6] .  

The focus on ASP likely came even before the motivation for modelling the WWTP 

shifted towards more energy efficient treatment. But hotspot analysis of energy 

used in a WWTP noted that 30~60% of electricity [46]  [40]  [47]  [48]  is consumed 

within by the ASP unit. So even with the intent to reduce energy consumption, 

improving ASP energy efficiency is likely a priority.  

2.5.3 Pharmaceutical Manufacturing Case Study  

The work on constrained model identification was also demonstrated on a 

continuous direct compression process used in pharmaceutical manufacturing. This 

contributed to a project Perceptive was involved in. For this research, it was an 

opportunity  to explore the potential of this modelling approach in other 

applications. The process in question is discussed in greater detail in Section 3.5. 
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2.6 Background Summary  

2.6.1 Research Problem  

Case studies have demonstrated the use of MPC reducing the energy consumption 

in WWTP without compromising the treatment. But building such an MPC model is 

time consuming, resource intensive, and difficult (due to stringent effluent consent 

limits, process complexity, system noise, slow process).  

In most cases, new experiments would need to be carried out to build a good MPC 

model. But WWTP are slow to respond and subject to large disturbances (including 

the influent loading). Even the sign of the gain direction many be incorrectly 

identified due to noise overfitting, and this would have significant ramifications to 

the stability of the MPC controller. 

2.6.2 Research Avenues 

The first research avenue investigates the addition of optimisation constraints that 

are based on first principles or operator experience. In this way, the optimisation 

scope (or combinations to calculate though) is reduced, and in theory allowing for 

more accurate models to be developed without necessitating additional 

experiments. The second research avenue is about designing experiments to obtain 

as much information rich data within each experiment, so that fewer experiments 

are needed to produce a good enough model. This is achieved using a scalar value 

representing the information content of a dataset and using the process model to 

make estimations of the process response to a speculative input sequence.  

Both avenues revolve around building more accurate models with smaller 

quantities of data, whether by adding non-data information to the model 

identification, or design step test that produce more information rich data samples.  

2.6.3 Justification for using Linear Model  

Many processes exhibit non-linearity, and when modelled, requires the use of non-

linear models to accurately describe. But optimisation calculation for a non-linear 

model is much slower. In an MPC controller, where the optimisation calculation 

must be carried out and completed at every decision interval, non-linear models are 

not feasible. Using a linear model does not accurately describe the process 

behaviour, but across a small prediction horizon, a linear model can reasonably 
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describe the process behaviour. This research project develops modelling 

techniques with the intent of the model being used by an MPC controller. The 

computation speed needed for MPC restricts the scope of this research to linear 

models. If in future, non-linear optimisation be calculated quickly enough to be used 

in industrial MPC controllers (through improvements in computer hardware 

accessibility, optimisation algorithm efficiency etc.), the use of non-linear models 

can be considered.  
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3 Constrained Model Id entification  

CMI revolves around the idea of translating process knowledge (from first principles 

knowledge or operator experience) in the form of optimisation constraints. These 

constraints are applied to data-driven modelling techniques to estimate a linear 

MPC model for the process. The intent is that this non-data information can help 

identify more accurate models in applications such as the WWTP, where access to 

information -rich data is limited due to the process being slow, complex and noisy. 

Better modelling accuracy can allow for better output predictions, which can allow 

a setpoint to be safely brought closer to the process boundaries (or consent limits). 

This in turn allows for safe treatment with less energy consumed. A soft benefit of 

including operator experience as constraints is that it allows greater acceptance of 

the model on site. 

The work carried here is divided as such: Section 3.2 outlined a common set of 

constraints made. These are based on non-data information that should be relatively 

easy to obtain from most processes, and how these would translate into constraints. 

This was then applied to numerical examples to assess their impact on improving 

model accuracy. This is detailed in Section 3.3. This was then applied to an ASP 

simulation developed within Perceptive as a case study. This is discussed in Section 

3.4. A case study was carried out on a continuous direct compression process used 

in pharmaceutical manufacturing. This is detailed in Section 3.5. 
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3.1 Overview of the Constraint Matrix  

Before explaining how process knowledge can be translated into constraints, it is 

important to  first  explain how the constraints are structured in relation to the 

parameters. As previously discussed in Section 2.3, the model parameters as a 

vector Ᵽ. Constraints are applied to this vector, and these take the form of: 

╒═Ᵽ ╬╫ Eqn. 3.1 

where: 

╒═ = Constraint matrix 

╬╫ = Constraint vector 

Each condition is represented by a row in ╒═ and an element in ╬╫. The number of 

columns in ╒═ is equal to the number of parameters (or the length of Ᵽ. Using a 3-

parameter vector as an example, the constraint matrix and vector would look like: 

 

As an example, let ╒═ ρ ς π and ╬╫ ρπ. Referring to the form shown in 

Eqn. 2.3, this translates to a condition of ρ ʃ ς ʃ π ʃ ρπ. Note that if 

a parameter is not involved in one or more condition, the corresponding value in 

that row is zero.  

From Section 2.3, the parameter vector can contain different groups of parameters. 

One parameter group may not directly interact with another group, and may have 

separate constraints, but they must be solved simultaneously in the optimisation. 

Since ╒═ contains a column corresponding to each parameter in Ᵽ, and the 

interaction is a linear combination, parameters not related to a condition can simply 

have the corresponding element in ╒═ set as zero.  

As an example, suppose the parameter vector is a composite of two different 

parameter groups (a and b), with each group having 2 parameters. Suppose then 

there are three conditions to be used as constraints: 

Condition 1 

Condition 2 

Condition 3 

1̒ 2̒ 3̒ 

CA Cb 

Con. 1 

Con. 2 

Con. 3 



63 | P a g e 
 

Parameter vector Constraints 

Ᵽ

Á
Á
Â
Â

 

Á υ Á τ 

σ Á ς Á ψ 

Â σ Â ς 

If an individual parameter is not involved in a condition, the corresponding value in 

that row is zero. For the given example, the constraint matrix and vector become: 

╒═

π π
π π

π π
 and ╬╫  

There were four parameters, and so the constraint matrix has four columns. There 

were three conditions, corresponding to three rows in the matrix and vector. If 

additional conditions are needed on top of the existing conditions, these are added 

as additional rows. 

3.2 Common Constraints  

Common constraints relate to non-data information about that process that should 

be relatively easy to obtain in most processes. Namely, these are the direction of the 

process gain, the gain magnitude range, minimum phase and dead time. This 

information should be relatively easy to obtain, and the algorithms can be written 

to automatically translate this information into constraints for convenience. This 

automated translation is an innovation of this project and to be incorporated into 

the in-house software developed by Perceptive as an additional functionality. This 

would then be used by the engineers to build MPC models for real processes. The 

translation procedure is written as Matlab function scripts. This section will cover 

how each of the constraints can be visualised (by unit step response), and how it is 

written as constraints. 

This project focused on the use of ARX and FIR models. an ARX model takes the form 

shown previously in Eqn. 2.3. 

ÙÔ ⱴÔⱣᴂ Eqn. 2.3 

ⱴÔ ⱴ Ôȣⱴ Ô ◐ᶻÔ ; Ᵽᴂ

╫
ể
╫

╪

  

where: 
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ÙÔ = Estimated output value at time t 

ⱴÔ = Data matrix associated to predicting the output at time t 

Ᵽᴂ = Vector of model parameters (optimisation decision variables) 

╫ = Vector of FIR coefficients 

╪ = Vector of autoregressive coefficients  

 

This project deals with MISO model structure (and treats MIMO problems as 

multiple MISO problems). If there are Î  number of inputs, then there are Î ρ 

groups of parameters. Constraints described here typically apply to individual 

groups. Section 3.1 explained how this is translated in terms of the constraint matrix 

(coefficients corresponding to parameters unrelated to a condition is set to zero). 

Each constraint is represented by one or more rows in ╒═ and ╬╫. To help visualise 

the constraints, this section uses two components: 

¶ A step/impulse response to visualise the constraint in a measurable way 

¶ An example to show how the conditions translate in terms of the constraint 

matrix and vector for an example model (see below). 

Example model: 

The example model is a 2-input 1-output model of an ARX structure. It has 2 

parameters per input, and 1 parameter for the output autoregression. In equation 

form, this takes the form shown: 

ÙÔ ὦȟόὸ ὦȟόὸ ρ ὦȟόὸ ὦȟόὸ ρ ὥ ÙÔ ρ 

Model parameters Ᵽᴂ

ụ
Ụ
Ụ
Ụ
ợ
ὦȟ
ὦȟ
ὦȟ
ὦȟ
ὥỨ
ủ
ủ
ủ
Ủ

  

constraints ╒═Ᵽ ╬╫ 

3.2.1 Sign of autoregression coefficients  

The first condition set is one of convenience: all the autoregressive coefficients 

(every element that make up ╪) are negative ( ╪ should be positive).  

As previously noted, the structure of a FIR and ARX model are similar in terms of the 

╫ coefficients (which relate the inputs to the outputs). The main difference is the 

addition of the ╪ coefficients (relating past values of the output to the present 
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output). A model with positive ╪ values can be written as having negative ╪ values 

ɀ the values of ╫ would be different. But setting ╪ as negative allows the two forms 

to be more directly comparable (the values of ╫ are more visually intuitive). 

Example model constraints: 

Description Constraint condition 

All values of ╪ are negative ╒═ π π π π ρ ; ╬╫ π 

 

3.2.2 Sign of the Process Gain 

4ÈÅ ÓÉÇÎ ÏÆ ÔÈÅ ÐÒÏÃÅÓÓ ÇÁÉÎ ÅÓÓÅÎÔÉÁÌÌÙ ÁÓËÓ ȰÉÆ ÔÈÉÓ ÉÎÐÕÔ ÉÎÃÒÅÁÓÅÓȟ ÄÏÅÓ ÔÈÅ ÏÕÔÐÕÔ 

response increase or decrease at the steady stateȩȱȢ !ÃÃÕÒÁÔÅ ÅÓÔÉÍÁÔÉÏÎ ÏÆ ÔÈÉÓ ÓÉÇÎ 

in the MPC model is essential if the MPC controller is to maintain stable process 

operation. In practice, this is achieved by specifying the sign of the summation of a 

set of FIR coefficients (a set being the coefficients correlating one input to an 

output). Figure 7 is an illustration of what is referred to as the sign of the process 

gain in terms of an output step response. Five example signals are shown, of which 

models 1, 3 and 4 have a positive process gain, while 2 and 5 have a negative process 

gain. The long-term part should be emphasised, because the path taken by the 

output to reach the new steady state is not important for this constraint. 

 

Figure 7 ɀ Steady-state gain from the 5 example models 

For a FIR model, where Ᵽ is made up of sets of ╫ (in a MISO model, there is one set 

of ╫ for each input which together make up Ᵽ as shown in Eqn. 2.3). Each set of ╫ 
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would be summed, and a constraint assigned to that summed value. If the gain is 

positive, that summed value must be greater than 0; and if negative, that summed 

value must be less than 0. Each input would have a single constraint, so if there are 

n inputs, up to n constraints would be set.  

For an ARX model, if all the elements in ╪ is negative, the set up used to constrain ╫ 

in a FIR model would still apply ɀ there would only be an extra line to constrain ╪ 

(since it too is a decision variable of the optimisation). This applies no matter how 

many elements there are in ╪. But if ╪ contains one or more positive elements, the 

constraints for ╫ becomes more complicated, due to the more complex interaction 

it would have on the output response. The constraints for ╪ should be self-

explanatory, but each variation of ╪ would result in a unique set of constraints for b. 

Example model constraints: 

Description Constraint condition 

Process gain for input 1 is positive ╒═ ρ ρ π π π ; ╬╫ π 

Process gain for input 2 is negative ╒═ π π ρ ρ π ; ╬╫ π 

Process gain for input 1 is positive AND 

Process gain for input 2 is negative 

╒═
ρ ρ π π π
π π ρ ρ π

Ƞ ╬╫
π
π

 

 

 

3.2.3 Gain Magnitude  Range 

For stable models, an additional constraint can be set up on the magnitude of the 

gain. The models shown in Figure 7 are all stable, and their unit step responses are 

bounded to the value marked by the dotted line. As shown previously, if the sign of 

the process gain is specified as positive, models 2 and 5 would be rejected. Suppose 

the gain magnitude was specified by be between 2 and 4, this would mean that of 

those 5 models, only model 3 would meet those constraints, as shown in Figure 8. 
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Figure 8 ɀ Ȱ'ÁÉÎ ÍÁÇÎÉÔÕÄÅ ÂÅÔ×ÅÅÎ ς ÁÎÄ τȱ ÃÏÎÓÔÒÁÉÎÔ ÆÏÒ ÔÈÅ υ ÅØÁÍÐÌÅ ÍÏÄÅls 

It is implicitly assumed that if the process gain magnitude as a range, it is a stable 

system (i.e. the output response to a bounded input is bounded). If that is not the 

case, this constraint cannot be set. The way the constraints are set up for a FIR model 

is like that for process gain direction, but there would be up to two constraints for 

each set of ╫░ (one for the minimum, one for the maximum). Setting these constraints 

mean that the constraint for process gain direction is redundant. For an ARX model, 

the constraint would instead be a weighted sum of ╫░.The weighting is subject to the 

value(s) of ╪.  

Example model constraints: 

Description Constraint condition 

The gain magnitude for input 1 is 

between 2 and 5 

╒═
ρ ρ π π π
ρ ρ π π π

 ; ╬╫
υ
ς

 

 

3.2.4 Minimum -Phase 

A minimum phase system is one where the system is causal and stable. In a causal 

system, the output is determined from past and present input values, not future 

inputs. In terms of real systems, one observable characteristic for non-minimum 

phases is the inverse response - an undershoot (or sign reversal) in the step 

response. The detection of this sign reversal is used for the constraint.  
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In terms of implementation, this constraint requires the sign of the process gain to 

be known. But rather than specifying the sign of a sum of FIR coefficients, a sign 

constraint would be applied to every FIR coefficient. Visually, this can be shown 

using the output response to an impulse function, or the output increments in 

response to a unit step change. Figure 9 shows the latter (for consistency with 

previous figures) across the five example models: 

 

Figure 9 ɀ incremental step response of the 5 example models 

Suppose the constraint was that the gain direction is positive, and the system is 

minimum phase, then the constraint would mark out an area where the incremental 

output response cannot occupy, as shown in Figure 10. In terms of the actual output 

response, the constraint would look for sign reversals or undershooting, as shown 

in Figure 11. For the 5 example models, only Model 1 would satisfy the constraint. 

Note that model 2 is minimum phase, but of the wrong gain direction to that 

specified by the constraint.  
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Figure 10 ɀ Ȱ0ÏÓÉÔÉÖÅ ÇÁÉÎ ÄÉÒÅÃÔÉÏÎ ÁÎÄ ÍÉÎÉÍÕÍ ÐÈÁÓÅȱ ÃÏÎÓÔÒÁÉÎÔ ÆÏÒ ÔÈÅ υ 

example models 

 

Figure 11 ɀ Ȱ0ÏÓÉÔÉÖÅ ÇÁÉÎ ÄÉÒÅÃÔÉÏÎ ÁÎÄ ÍÉÎÉÍÕÍ ÐÈÁÓÅȱ ÃÏÎÓÔÒÁÉÎÔ ÆÏÒ ÔÈÅ υ 

example models  

Based on information accessibility, it is assumed that the sign of the process gain is 

already known. As discussed in Section 3.2.2, the sign of the process gain is 

constrained by setting a constraint on the sum of the coefficients that make up each 

╫░. In the case of minimum phase however, a constraint is applied to each element. 

So, for positive process gain and minimum phase, each element of ╫░ would need to 

be greater than 0 (or less than 0 if the sign of the process gain is negative). 

Detected sign reversal that 
violated the constraint  
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In hindsight, based on the numerical examples analysed in Section 3.3.2, it may be 

beneficial to only apply the constraint to the first few elements that make up ╫░ (i.e. 

the coefficients that cover the early response). The reason for this is because this 

constraint has the disadvantage of forcing any model overfit to go one way, and 

while this may be useful for systems with a large dead time (to avoid noise 

overfitting in the short-term response), this can be detrimental in terms of the long-

term response estimation.  

Description Constraint condition 

Input 2 has negative process gain, 

and is minimum phase 

╒═
π π ρ π π
π π π ρ π

 ; ╬╫
π
π

 

 

3.2.5 Dead Time  

Dead time refers to the delay between an input change and the output responding 

to that change. This is not actually constrained in the form of optimisation 

constraints. What is changed instead is the training dataset used for model 

identification. A shift is applied to the input samples that make up the data matrix 

♠. To illustrate, the training dataset for a SISO process modelled by a FIR model with 

3 coefficients. The top row shows the case there is no dead time, the middle a dead 

time of 5 samples, and bottom a dead time of 10 samples. MISO systems would be 

constrained in the same way, but with a different shift for each input.  

Training data with no 

dead time 

Õρ Õς Õσ Ùσ
ể ể ể ể

ÕÎ ς ÕÎ ρ ÕÎ ÙÎ
 

Training data with dead 

time of 5 samples 

Õρ Õς Õσ Ùψ
ể ể ể ể

ÕÎ χ ÕÎ φ ÕÎ υ ÙÎ
 

Training data with dead 

time of 10 samples 

Õρ Õς Õσ Ùρσ
ể ể ể ể

ÕÎ ρς ÕÎ ρρ ÕÎ ρπ ÙÎ
 

Table 2 ɀ Training dataset for a SISO, 3-coefficient FIR model with different dead 

times 

ARX systems would follow this same approach ɀ autoregressive coefficients do not 

have a dead time. If it did, an additional set of shifts would be applied to the data 

matrix. Model identification is therefore used to estimate the values of the non-dead 
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time coefficients. Dead time can be constrained using explicit optimisation 

constraints. But this is a lot less efficient in execution (as more decision variables 

need to be optimised this way) and results in a slower optimisation.  

3.3 Analysis on Numerical Exam ples 

Numerical examples are created using a pre-specified model to represent a process. 

4ÈÉÓ ȰÔÒÕÅȱ ÍÏÄÅÌ ÉÓ ÏÆ ÔÈÅ ÓÁÍÅ ÓÔÒÕÃÔÕÒÅ ÁÓ the model to be identified, but the actual 

parameters are not supplied, and must be identified from the collected process data. 

The same structure is used because it allowed for a direct comparison in terms of 

model identification accuracy for different approaches. The process data (output 

response to input steps) is subject to background noise to simulate the situation 

with real processes.  

Several simulation experiments were carried out over the course of this project. 

These can be categorised into two types: Monte Carlo style experiments which 

carried out experiments on the same process many times, to assess the consistency 

of added constraints to model identification; and smaller scale experiments to 

assess how particular characteristics affect model identification, and how the 

constraints affect those.  

3.3.1 Monte Carlo Experiments  

The Monte-Carlo style experiments carried out 100 examples using the same true 

model for every experiment. What is changed between experiments is the input 

steps and background noises added to the measured values. This assessed and 

compared the robustness of the model identification when constraints are added.  

3.3.1.1 The true model and experiments  

4ÈÅ ȰÔÒÕÅȱ ÍÏÄÅÌ ɉÏÒ ÐÒÏÃÅÓÓɊ ×ÁÓ Á σ-input 1-ouput model. The details of the 

process are: 

Dead times / Pure Delay: 20; [3 7 10]; Number of FIR coefficients: 24; 

Number of AR coefficients: 1; [1]; Noise added to output at SNR = 10 

ÙÔ  ◊Ô╫ ÙÔ ρÁ 

◊Ô
Õ Ô Ä ρȣÕ Ô Ä χȟÕ Ô Ä ρȣÕ Ô Ä χȟ

Õ Ô Ä ρȣÕ Ô Ä χ
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╫ ╫ ╫ ╫  

║

╫
╫
╫

ρȢωπ ρȢχς ρȢυυ ρȢτρ ρȢςψ ρȢρυ ρȢπτ πȢωυ
πȢςτ πȢςσ πȢςς πȢςρ πȢςπ πȢρω πȢρψ πȢρχ
πȢσς πȢσς πȢσρ πȢσπ πȢςω πȢςψ πȢςχ πȢςφ

 

In total, 45 coefficients would be estimated across 100 experiments. The training 

data consist of 300 samples, partitions such that 100 samples are allocated for step 

tests for each input separately. Since the output responds to changes to all three 

inputs, this makes the output response to an input much clearer, and in turn should 

improve the accuracy of the identified model. Step were carried out using a PRBS to 

determine when steps are to be made, and the magnitude is restricted to a 

prespecified minimum and maximum input value range (0~10).  

Model identification is the linear model was shown in Eqn. 2.25, subject to 

constraints in the form of Eqn. 2.26. In this Monte Carlo experiment, the constraint 

conditions are shown below: 

ÍÉÎ
Ᵽ

ρ

ς
Ᵽ╗Ᵽ █Ᵽ ÓÕÂÊÅÃÔ ÔÏ ╒═Ᵽ ╬╫ 

Ᵽ ╫ ╫ ╫ ╪ᴂ 

╒═

ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
ợ
ρ Ễ π π Ễ π π Ễ π π
ể Ệ ể ể Ệ ể ể Ệ ể ể
π Ễ ρ π Ễ π π Ễ π π
π Ễ π ρ Ễ π π Ễ π π
ể Ệ ể ể Ệ ể ể Ệ ể ể
π Ễ π π Ễ ρ π Ễ π π
π Ễ π π Ễ π ρ Ễ π π
ể Ệ ể ể Ệ ể ể Ệ ể ể
π Ễ π π Ễ π π Ễ ρ π
π Ễ π π Ễ π π Ễ π ρỨ

ủ
ủ
ủ
ủ
ủ
ủ
ủ
ủ
Ủ

; size [Î by Î] 

╬╫

π
ể
π

 ; vector of size [Î by 1] 

/ÎÅ ÅØÐÅÒÉÍÅÎÔȭÓ ÉÎÐÕÔ ÁÎÄ ÏÕÔÐÕÔÓ ÁÒÅ ÓÈÏ×Î ÉÎ Figure 12 and Figure 13. The 

output is filtered and auto scaled before model identification is carried out. Model 

identification is carried out twice, once using unconstrained model identification for 

and ARX model, and another with constraints added (the sign of the process gains 

and minimum phase). 
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Figure 12 ɀ Training Input for the Monte-Carlo Experiments 

 

Figure 13 - Training Output for the Monte-Carlo Experiments 

  














































































































































































































































































































































