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Abstract

Model Predictive Control (MPC)s a solution towards more energyefficient waste
treatment without compromising on treatment quality. A key component is the
process model describing how the inputs and outputs correlate. MPC uses this
model to predict future outputs over a finite horizon to decide on step changes to
make at the input. These step changes are made so that the output reaches and
maintains at a user specified set point-or MPC to be effective, the process model
needs to accurately destbe the process behaviour. This is a difficult challenge in
waste treatment proces®s due to a combination of slow response, process

complexity, and large disturbances.

This research projectinvestigated two research avenuesowards developing better
modelling techniques. This would result in more accuratemodels or achieve a
sufficiently accurate model with fewer experimentsThe first avenueis Constrained
Model Identification (CMI). Model identification is an optimisation problem to
estimate the model @rameters. In CMI, process knowledge from first principles and
operator experience is translated into optimisation constraints to aid datadriven

model identification.

The second avenue is Sequential Optimal Experiment Design (SOED). This uses the
concept of measuring a value representing information content of a dataset. Like
MPC, SOED uses the model to make output predictions. The expected output
response to a sequence of input steps form a dataset, and SOED is an optimisation
problem to maximise the inbrmation content of that expected dataset, by changing
the input step sequence. Once optimised, this step sequence is applied in text

experiment.

The third part of this work focused on farmfed anaerobic digestionlt is arenewable
energy technology fuelled by agricultural waste. They rely on government
incentives to be profitable, but these incentives have steadily been decreasddhis
project investigated methods to help farmers in the dayo day operation of the unit,
including biogas production esimation, automated fault identification and partial

diagnosis.
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Executive Summary

Wastewater treatment proces®s handle the safe treatment of sewage so that the
treated water can be safely discharged to the environment. It is an energy intensive
process, and in the UK, consumes 2,300 GWh/yr of electricity (about 1% of the total
energy consumed) Government commitmen towards the Climate Change Act has
seen a shift in focus in wastewater treatment towards more energy efficient

methods that do not compromise treatment quality.

Model Predictive Control was a solution towards this goal and has demonstrated
energy savirgs of up to 25%. Central to the Model Predictive Control concept is the
process model, which is used to make future predictions. But building this process
model is challenging in wastewater treatment due to it being a slow process, having
large variability in inflow, and process complexity. The culmination of these factors
means that generally, the model would have to be built from limited data. For data
driven modelling, this runs the risk of noise overfitting which leads to an inaccurate

model.

This project exploredtwo avenues to improve modelling accuracy with limited data.
The first avenue was constrained model identification. This made use of natata
process knowledge (from first principles and operation experience) and applied
them as optimisation ®nstraints to reduce the search space. The second avenue
considered the way the experiments are designed, and applied an algorithm based
on the idea of information content being a measurable quantity, and designed step

tests based reducing the uncertaintyf the model parameters

The second aim of this project focused on a treatment technology: Anaerobic
Digestion. It is a bacteriadriven process that breaks down organic waste to produce
methane-rich biogas and solil fertiliser. It is used in wastewater tratment, but this
project was focused on the farnfed applications. Farmfed anaerobic digesters are
attractive due to the proximity to feed material (agricultural waste) and lands to use
the soil fertiliser on. However, these systems typically depend on gernment
subsidies to be financially profitable, and these subsidies have been steadily
reduced. Furthermore, many of these units are owned by the farmers themselves,
but it is not a core part of their business and they are neexperts in managing the
process.
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The second aim of this project explored methods to aid farmers in the dag-day
management of the unit and improve biogas production. There was an emphasis
towards methods that did not require additional monitoring devices or other
expensive investrrent. This project developed a biogas production model that could
provide real-time biogas production estimation. Additionally, statistical methods
were used to implement an automated fault detection system to help farmers detect

and correct potential faults early before they lead to digester upset.
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This thesis is organised as follows:

T
T

Part I outlines the problem and objectives this research.

Part Il covers the work on consrained model identification and sequential
optimal experiment design. These both contribute towards building more
accurate process models for the purposes of applying model predictive control
in wastewater treatment processes.

Part Il covers the work on modelling farm-fed anaerobic digesters. As a
technology, anaerobic digestion is used as part of wastewater treatment, but it
also used specifically to digest agricultural waste as standalone units. The work
carried out modelling farm-fed anaerobic digestes was to predict biogas
production and to assist in early fault detection, as opposed to being used for
model predictive control. As a result, it is presented in its own separate part.
Part IV outlines the outputs and contributions of this research.

Part Vis the appendix and included some additional information to supplement

parts of this thesis.
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1 Introduction

Wastewater Treatment Processes (WWTP) treats sewage so that the treated water
(effluent) can be safely discharged back to the environment. It is an energy intensive,
consuming over 2,300 GWh/yr of electricity in the UK1], which make up albut 1% of the

total consumed[2]. Under the Climate Change A¢8], the UK government has driven

efforts towards energy reduction in most sectors, including wastewater treatment. This

shited theif AOO £OT 1T TTA T £ OOAEA x AdiiGehxaAdsdi® OOA
x AOOAxAOAO OOAAOI A1 G668 -1 AAT O0OAAEAOEOA #I]
process control, is a potential solution towards reducing energy consumption without
compromising treatment. In a case study application on a WWTP in Lancaster, MPC

delivered up to 25% energy savings whilst ensuring safe treatment of sewa@# .

The process model is an essential component of MPC. The model describes how thdeh
outputs (e.g. controled variables) respond to changes in the model inputs (e.g.
manipulated variables). MPC uses the model to make future predictions over a finite
horizon. Building this model in WWTP is challenging for several reasons, includingrdg
variability in the influent flow [5], the complexity of the reactions taking place, the slow
response of these system$6], and (in real processes) stringent consent limits on the
effluent. Theculmination of these factors results in having to build the process model with
limited data. This is the first key challenge of this research worldeveloping techniques

to improve model accuracy with limited data.

Within the WWTP, one form of treatmentinvolved the bacteria driven breakdown of
organic waste to produce methaneich biogas and fertilisers. This is called anaerobic
digestion (AD). It is considered a renewable energy technology, and AD units have also
been installed on farms as standalone uts, using agricultural waste as the feed material.
Currently, farm-fed AD units in the UK rely on government incentives to be profitable. But
this incentive has been steadily decreasing in recent year§lany of these farmfed AD
units are owned by the famers themselves, who are nofexperts in the process (it is not

a core part of their business)There is a need to help these farmers manage the AD process
in the day-to-day operation and identify ways to improve biogas production. Addressing

this need formed the 2d key challenge of this research.
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1.1 Research Scope
The aims of this researclare to:

1 Develop techniques to improve model accuracy with limited data, and

1 Explore techniques to help with the dayto-day operation of farm fed AD units

To achieve the first aim, two avenues are explored. The first avenue is the use of
constrained model identification. The procedure of estimating the model parameters
(a.k.a. model identification) is an optimisation problem, and constraints can be applied t
these. The idea behind this approach is to use natata information, including first
principles knowledge and operator experience, as optimisation constraints to reduce the

search space for the datalriven optimisation.

The second avenue tackles the sasrchallenge from a different perspective. Experiments
are carried out to collect process data from which the model parameters are estimated
from. These experiments span over the course of several days in WWTPs (in part because
the process responds very shaly). This avenue applies the concept of information
content of a dataset. Between experiments, the current process model can be used to
make output predictions given a sequence ahputs (this is how it is used inMPC) The
idea is to design the sequencef input steps that generates the most information rich data,
OOET ¢ OEA i1 AAIT 60 POAAEAOGEITT OI i AEA OEA
information content. This would mean that a sequence of input changes can be developed

before the experment began, and would in theory improve the accuracy of the model

The second objectie is an exploration on howdata-driven modelling and data analysis

can assist farmers in the dajto-day operation of the AD unit. For many farmers, the AD

Ag
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it. Additionally , because of the capital investment of unit installation, and the dependency
of incentives to be operationally profitable, farmers are not interested in solutions tht
require expensive devices installed. This shaped the scope to become one of exploring
what techniques can be applied. This restricted to measurements typically accessible in
farm-fed AD units and supplemented by knowledge form first principles or operar

experience.
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1.2 Contribution to Knowledge

The contribution to knowledge of this research is based around application studifrom a
technical perspective, the techniques developed in this research project are not new. But
the use of these techniques in WWTRBNd farm-fed AD units have been limited. This is
discussed in greater detail in Chapter2 and 6. There is also an emphasis in this research
on practical applicability. The techniques explored in this research are purposely
restricted to only using measurements that are typically collected in URWWWTP and AD
processes. This is done so that the outputs of this research could be easily applied to other
WWTPs and AD units.

1.21 Academic Contributions

The academic contribution leans more towards application study these are applications
where these technques are generally not usedThe work on farm-fed AD unitswas an
attempt to bring a perceived knowledge gap. Studies on modelling AD units appeared to
follow two distinct directions. The first aimed at modelling the process from first
principles, to accuiately describe each mechanism taking place. The downside is that
these models are difficult and expensive to apply and does not guarantee better process
performance. The opposite end focused on models that can be readily applied. These
however have a limied scope, and the use of the information in daip-day operation is
limited. The proposed technique can be described as an assessment of how much complex

system behaviour can be modelled using only measurements typically found on site.
1.2.2 Industrial Contribut ions

Perceptive, the industrial sponsors, desloped a process monitoring and data analysis
software called WaterMV. They are interested in the use of constrained model
identification, seeing it as a functionality that can be added to their modelling softwa.
They have undertaken, and continue to work on, projects with many WWTP companies
in the UK to apply MPC and support services. The techniques developed in this research
should be applicable to other WWTP, and if the model accuracy can be improved, or
obtained with fewer experiments, this would result in resource savings. Their interest in
constrained model definition goesbeyond just WWTPs. In theory, these techniques can
be applied to process outside of WWTP. This was demonstrated in the case study on a

pharmaceutical manufacturing process.
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The work on farm-fed AD units is intended to provide lowcost solutions that help the
farmer manage the process in the dayo-day operation. Perceptive developed the
software ADvisorMWith farm -fed AD units in mind.The software was designed to help
the farmers quickly check the health of the AD unit and provided early fault detection
through data-driven process analysis. Because the research is based on using readily

obtainable measurement, the techniques should bepalicable for other farm-fed units.
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Part Il

Process Modelling for Model Predictive Control in
Wastewater Treatment and Pharmaceutical

Processes
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2 Background for Part Il

2.1 Introductionto Model Predictive Control

Model predictive control (MPC)is a technique used in automatigrocess control.
MPC explicitly utilises a process model to design the control actions; this feature
differentiates MPC from the traditional regulatory controllers, e.g., the proportional
integral-derivative (P1D) method.An MRC model describes how th@rocessoutputs
respond to changes in thanputs. If a sequence of input changesver time is fed to
the model, it can predictthe corresponding output responsein this time horizon.
For processcontrol, the model outputs are the contrded variables (CVs) of the
process, andthe model inputs are the manipulated variables (MVshand some
measured disturbance variables (DVs)n an operating process, a Cl givena set
point, i.e.the desired value for the CVThe setpoint itself is often determined by the
required operations, or more systematically by process optimisation which sits at a
higher layer of the process control hierarchy above the control laydi7] . Therefore,
the setpoint may change because of a change in specificatiooisthe operation. In
addition, the measured CV value cadeviate from the setpoint due to disturbances.
To bring the CVback to the current (or totrack the changing setpoint, MV changes

are needed.

For a proess using MP(Cthe necessaryMV changes areautomatically calculated and

carried out by the controller. An example of an MPC controller is shown iRigure 1.
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Figure 1 z MPC controller on a process with aetpoint change[8]
26|Page



The controller uses the MPC model to predict the CV along the prediction horizon
and calculates a sequence of step changes (or control steps) to make to the MV along
acontrol horizon such that the CV reaches the set point by the end of the prediction
horizon. It should be emphasised that only the first control step is implemented, and
when that happens the calculation is carried out again. This is to allow the controtle

to reoptimi se the MPC problem and is known as feedback control. If the control steps
are not recalculated, then that is known as feedforward control. The way the control
steps are calculated is an optimisation problem. A process with automatic control is
less susceptible to disturbances than if the process was manually controlled, and so
can keep close track of the setpoint. The operator only needs to specify the output

setpoint.
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211 Development of a Model Predictive Control Model

The overall procedure forcreating an MPC model is shown iRigure 2. The following

subsections discusses the procedure involved in each part.
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Figure 2 z Overview of the general algorithm for developing an MPC model

2.1.1.1 Data Collection

Data collection refers to the experiments carried out to collect process data to which

the modelwould be built or updated from. Prior tothe model being built, these are

called preliminary experiments. Thisdistinction is relevant for one of the research
avenues(see Section2.4 and Chapter4). In an experiment, thenput variables are
AAEOOOAAR AT A OEA 1 00POO OAOEAAI AOGS OAOD]
purposes of MPC, theseusually take the form of step changes. An input is only
changed and held at the new value for varying periods of time, before it is changed

to another value. The choice of steps is in part because overly frequently changes to
variables can danage physical equipment, and because it allows time to capture the
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output response to that changan terms of the dynamics and steady state gain (if

steady state exists)

The distinction between data quantity and data qualityshould be made here.
Process nodelling for MPC is about captung the output response to known input
changes, so that the controller can use the model to automate changes to the input
to bring the output to the setpoint. Good quality data, or informationrich data, is
data that captures the input-output relationships. This is different from data
quantity, which refers to the number of samples collectedn many WWTP sites,
there is a large quantity of historical process data recorded over the span of many
years. But itcould below-quality data for building models from, as the inputs are
kept constant and so the data does not capture how the process reacts to input

changes.

In WWTP, pojects that Perceptive worked to apply MPC typically allocateseveral
days to collect the process data to build the MPC mod@&lut this is actually a very
challenging task for several reasonsFirst, WWTPs are very slow processes- an
input change may take over an hour before the output even begins to respotwlit.
Seconddomestic sewage entering the treatment plant is subject to a diurnal pattar
(see Section2.5) due to human activity operating to a %o-5 schedule This limits
the window from which experiments can be carried out to get useful data. Third is
that the treated effluent leaving the WWTP must conform to stringent limits to
protect the environment. Experiments must be carried out whilst keeping to those

output restrictions.
2.1.1.2 Data Pre-treatment

Real processes are subject to system noise, missidgta samples andbad data
sample. These reduce the quality of the data, and in turn the accuracy of the model.
Data pretreatment reduces the effects of bad sampk, background noise and other
disturbances that may adversely affect the accuracy of the model being built.
Techniques used in data prdareatment are generally standardised. This research
project is not focused in developing these techniques, but made usecommon data
pre-treatment techniques, summarised inTable 1. For a more general background

on data pretreatment, the following references can beaught: [9] .
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Table 1 z Overview of @mmon types ofdata pre-treatment techniques

Technique Description

Sample removal | Identified outlying samples are removed from the datase
and subsequent analysis.Statistical model identification
produces the best fit to that dataset, and these outliers woul

detrimentally affect the model accuracy.

Data filtering Data filtering attempts to smooth the data trends and reduce
the noise fluctuations within each sample These take the
form of averages appliedo samples within a single variable,
Different averages can be used, but commonly these wou
be either a moving average or an exponentially weighte

moving average.

Sampling interval | Used in processes Were the sampling frequency is very high
reduction compared to the process response, which can cause a mo(
to be much more susceptible to background noise. This cé
simply be only retaining the nth sample orcombined with

data filtering techniques.

Dimension Used to deal with the problem of multicollinearity, where
reduction model inputs exhibit correlation among themselves. The
relative contribution of each input to the output become
harder to identify [10], and the model is more sesitive to

certain noises and perturbations[11] .

Auto-scaling Auto-scaling transforms a signal to have zero mean and un
variance. This is used to prevent the sensitivity bias tha

occurs when modelling with signals of numemally different

magnitude scales

2.1.1.3 Model Identification

Model identification is the procedure of estimating the model parameter values
using thecollected (and pretreated) experiment dataset.The dataset used to build
the model is called the training datasetdow the model parameters interact with the
inputs to determine the outputs is dependent on the model structure. Model

structures are discussed in Sectio.3. When the model parameters are estimated,
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it is validated using a separate dataset, called the validation dataset. Common model

validation techniques can be found if12].
2.1.1.4 Experiment Design

Projects to install an MPC controller will allot time and resources to carry out
multiple experiments to collect the data. A good model needs informatierich
training data, ideally in large quantities{by carrying out many experiments. But
there are financial incentives to not carry out more experiments than what is
necessary.Experiment design is about balancing these two demandsto design

better step tests that obtain more informationtrich data.

Optimal experiment design (OED) is based around the theory @stimating an
information content value (based on the Fisher Information Matrix) for agiven
dataset.As described above, MIPC modepredicts how the process output responds
to changes in the input.When given an input sequence, such as a step test, the
expected output response iscalculated from the model. The information content
value isthen estimated from the model predictions. In other words, if the current
model is reasonably accurate, a stepest can be designedo obtain the most
information -rich data before the experiment is even carried out. If OED is applied to
a series of experiments, this becomes a methodology to systemically obtain the most
information rich data with fewer experiments, i.e. sequential OEDSOED. SOED is

an optimisation problem andis discussed in Sectior2.4.
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2.2 Mathematical Optimisation

Mathematical optimisation forms a central part to this researchFrom the overall

framework in Figure 2, three different optimisation problems are present:

1 the optimisation to estimate the model paameters (model identification);
the optimisation to design the step tests for the next experiment (sequential
optimal experiment design), and

1 the optimisation carried out by the MPC controllerto determine the input

sequence that would bring the output to the setpoint.
2.2.1 Characteristic Components in Optimisation

A common way to frame amptimisation problem is by describing it in terms of three

characteristic components:

1 Theobjective function : the scalar criteria value that determine the optimality
of a possible set of decision variable values,

1 Thedecision variables : the set of parameter values to be determined, an

1 The constraints : optional conditions that limit the range of feasible decision

variable sets.

In equation form, this can be generalised as shown Bqn.2.1:

i PE gol> Eqn.2.1
66A @zllago "
where:
QP = Objective function
P = Decision variables
| P Inequality constraints
Ir Equality constraints

In terms of execution, many software programs such as Matlab provide a selection
of standard algorithms to automate the optimisation. They handle iterative
calculations much faster than calculated by hand, and improvements to computing

hardware have allowed most modern computers to run these solvers. How quickly
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an optimisation problem is solved depends on the complexity of the problem, the

choice of algorithm, and computation speed of the hardware.

Optimisation Components for Model Predictive Control

As explained in Sectior2.1 (it may be helpful to refer toFigure 1 in Section2.1), the
MPC controller determines the input steps across the control horizon to be carried
out to bring the output to a specified setpoint by the end of the prediction horizon.

The optimisation components are:

Objective function: A weighted cost function balancing betweenreaching the

set-point quicker and penalising large steps

Decision variables: | The valuesof the input steps along the control horizon

Constraints: Step sizeminimum/maximum model input values

A common objective function used in MPC, as noted[ib3], is shown inEqn.2.2

v v
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where:
= Estimated value of the contrdled variable at sample i
= Setpoint of variable y at sample i
p{0) Incremental manipulated variable at sample i
) = Number of samples across prediction horizon
) = Number of samples across control horizon
T andsf = Weighting coefficients

The estimated value of the outputy, is calculated from the MPC model, as in a
function of the model input¢ and the model parametery . The way in which these two
interact is described by the model structure, and this is covered iSection2.3. INnEqn.2.2,
the vector ¢ representthe decision variables the optimisation aims to solve. The left term
pushes the optimiser to quickly bring the output towards the sefpoint, whilst the right term
penalises large and too frequent control steps. Steps that are too large, or made to

frequently, can damage process equipment.

33|Page



It is worth reemphasising that although theoptimisation problem solves for several
control steps (governed by the control horizon) only one control step is carried out.
After the control step, the optimisation problem is repeated using more updated
data and output predictions for the next set of control steps, of which only the first
is carried out. The frequency at which the contrbsteps need to be calculated

requires an optimisation problem that can be solved quickly.
Optimisation Components for Model Identification

Model identification refers to the procedure of estimating the model parameter

values based on collected process dat@he optimisation components are:

Objective function: Model prediction accuracy against the training dataset

Decision variables: | Themodel parameter values

Constraints: Process gain, output response trend, response delays

Because the model is to be used by an MPC controlligrgre is acritical, but implicit ,
need for theoptimisation to correctly identify the sign of theprocess gan (positive
or negative gain) This relationship iscritical to an MPC controller an incorrect sign
of the gain would turn a negative feedback control (which is necessary for automatic
control) to a positive feedback (which amplifies, instead of reduceshe error

between output thesetpoint).

For example,consider a process with one inpuand one output with a positive gain;
however, the modelincorrectly identified the gainas negative. If thecurrent output

is below thesetpoint, the correctcontroller action would be to increase the input (to
increase the output). But with the incorrect model gain directionthe controller
would instead decrease the inputDoing so would decrease the actual output, bring
it further away from the setpoint. The controller would then pick up this deviation,
and decrease the input even more (because the model gain direction is wrong), and

the output would deviate even more
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Optimisation Components for Sequential Optimal Experiment Design

SOED desigathe input steps to be carried out in thesubsequent experiment.The

optimisation components are:

Objective function: Information -richness of thespeculateddataset

Decision variables: | The input sequence

Constraints Step size, minimum/maximum inputvalues

The SOED optimisation needs to be calculated between the model being identified
from one experiment and the starting of the next experiment. Based oproject
experience,Perceptive engineers allot several days to carry out experiments, with
each periment during the visiting hours of the process site (they are external
visitors). Practically, the optimisation problem needs to besolved as fast as possible,

but in the worst case no more tharseveral hours.
2.2.2 Optimisation Methods

Optimisation methodsrefer to the approachesused to determine the values of the
decision variables, basedon the criteria of the objective function. Nowadays,
numerical optimisation is carried out by computers, and widely available
commercial software such as Matlalprovide functions to automate commonly used
methods. This research project is not focused on the development of new
optimisation methods, but the optimisation method does play a role in the choice of
MPC model structure. This section briefly discusses common types optimisation
methods. For additional information, the reader may wish to consul references on

mathematical optimisation methods, such as fronil4] and [15] .
2.2.2.1 Classical Optimisation Methods

Classical Optimisation Methods useanalytical methods to determine the optimum
(the maximum or minimum of the objective function). They are ideal for objective
functions which are continuous and differential[16] . Two generalclassifications for

these methods are gradient and nogradient based optimisation.

Gradient based optimisation assumesthat the correlation between a decision
variable and the objective function value is a convex or concave functioimhe

general theory @n be summarised as follows: given a set of decision variables, the
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scalar objective function value can be calculated. If a small shift is applied to a
decision variable, this would shift the objective function value towards or away from

the optimum (the maximum or minimum). If the shift moves the objective function

value towards the optimum, then another shift towards that direction is made, and

the procedure repeated. If it moves away from the optimum, then that shift direction

is not pursued further. Gradient based methods can usérst or second derivative,

and examples of these methods includeSteepest descent. Ax OT T 8 Oantdl AOET
Conjugate gradient method14] [17] [18].

Non-gradient based methods do not use information about the gradient of the
objective function. They still explore how the objective function changes with
different sets of decision variable values, but the change in decision variable values
are not carried out as shifts. Norgradient methods include:Random Search, Gid
Search,and Simplex 8arch[14] [17] [18].

2.2.2.2 Global Optimisation Methods

In some processes, the gbctive function may be more complicated than quadratic,

and some may not even be continuous. These functions may exhibit local minima

and maxima. These are minimum or maximum within a localised region of the

I AEAAOCEOA &£O01 AGET T8 " té® globdt AgtimurA. OChabsidd 1 A /
optimisation methods are not designed to distinguish local and global optimums

and so global optimisation methods were developed. But many global optimisation
methods are extensions of classical optimisation methods. Globaptimisation

methods can be classified into 3 types

Exact methods find global solutions within a finite humber of steps and this is
typically achieved by dividing a large search space into smaller ones (search and
bound) [19] and finding the local minima[14], or by using multiple starting points,
finding the local minima, and determining the best overall minimaHeuristic search
methods begin from given point with a real solution. The procedure then explores
real solutions from nearby possible points to find a better point. If a better point is
identified, it becomes the given point and the procedure is repeatd@0] [21] . Meta-
model methodsutilise meta modelsto determine which search point is selectedil4]
[22].
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2.2.3 Optimisation methods in MPC Control

Optimisation methods in MPC controbre based on the structure of the MPC model
itself. The model structure describes how the model parameters interact with the
model inputs to estimate the model outputsThe common classification is between
linear and nontlinear MPC models. In a linear model, the output is estimatdtbm a
linear combination (or summed product) of the inputs and model parameters. This
is shown in Eqgn. 2.3 (for a single output value)and Eqgn. 2.4 (for a set of output

values). Otherwise they are nofinear models.

Ud v OPe Eqn.2.3

« & Re Eqgn.24
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where:

3 O = Data sample associated with the -th model parameter and
predicted output at sample t
I = Total number of modelparameters

I = The ith model parameter

For linear MPC models, the objective function for MPC controE@n. 2.2) can be
expressed as a quadratic functionf23] [24]. The generalised form for a (convex)
quadratic function is shown in Eqn. 25. A concave quadratic function can be
expressed in this form also by adding a negative sign, and for notation convenience,

only the convex form is referredto in the rest of this thesis.

iPEgPﬂ P e Eqn.25
0 O A BARFO A Eqn.2.6

where:

A real symmetric matrix (dimensions:i A U )

9
A real vector (dimensions:;p A U )
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e = Constraint matrix (dimensions:T A U )
2 = Constraint vector (dimensions:l A )

P = Decision variables

Quadratic functions can be solved by a special type of gradiebased optimisation
method called quadratic programmingFor non-linear MPC models, if they conform
to certain structures, can be solved using sequential quadratic programming or nen
linear interior point methods [24] . Quadratic programming are specialised gradient
based methods that can be calculated much faster than generic optimis¢2s] (up

to 100 times faster according td26]).

This project is interested in the use of quadratic programming to handle the
optimisation of MPC controller. Assuming a linear model can accurately describe the
process dynamics, the faster computation speed is an atttive feature for MPC
controllers z because the optimisation is carried out at every control step. But this
assumption must be considered further. Most real processes are ndinear,
meaning that a linear model would not accurately describe the process dgmics.
But for a finite prediction horizon, a nonlinear could reasonably be described with

a linear model. MPC control is based on predicting across a finite horizon, and so the
use of a linear model may be justifiable. This is called process linearisatioand if
can be applied, then the computationally faster quadratic programming can be used

to handle the MPC control optimisation.

Given that the waste treatment process of interests slow, and a control time
interval around 30 minutes (based on engineeng experience). The use of a non
linear MPC model should be plausible so long as the computation completes before
the control interval. But in practice there are two main challenges to overcome. The
first is the issue of stability - there are no hard guaantees that nonlinear model

would produce a sufficiently good solution.

The input trajectory determined from the MPC model is used in a close loop control
system, and if thetrajectory is not sufficiently good, the system may become
unstable [27]. Linear models by contrast are much easier to conceptualise, and
safeguards implemented to ensure the control system is stabl@8]. The second

reason relates to industrial uptake. Operators on site favaumnodels that provides
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an answer quickly, even if the slower computation isompleted within the control
interval. Combined with the concerns over the system stability, there is a significant
barrier towards the application of nonlinear MPC in waste treatrant processes.
With the intention of improving the accuracy of existing MPC models, the focus on
linear models allow for quicker uptake in industry, provided that the process can be

linearised.
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2.3 Model Identification for Linear Models

Section 2.2 concluded with this project being focused on the use of linear MPC
model, provided it can accurately describe the process dynamics across aitién
prediction horizon. The choice of a linear model structure has a knoabn effect on
the optimisation for model identification and sequential optimisation experiment
design (the latter is discussed in Sectio.4). This section outlines the variations of
linear model structures and discusses the optimisation to estimate the model
parameters. As previously mentioned, the output is predicted from alinear
combination (or summed product) of measured data samples and model

parameters. For each sample, the general equation form is shownkign.2.7.

ué 3 6 E 3 O | Eqn.2.7
where:
3 O = Data sample associated with the -ih model parameter and
predicted output at sample t
] = Total number of model parameters
| = The ith model parameter

For convenience, matrix representation is used to represent a linear model. In

matrix notation, the prediction of a single output sampléas shown in Eqn.2.3. For a

series of output sample predictiondJp OWUT , itis shown inEqn.24.
UO v OPe Eqn.2.3
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Number of Inputs and Outputs

One of the first classifications for process modeldinear or not,relate to the number
of model inputs and outputs. Models with a singlénput and single-output are called

SISO models. Some models may have multiplgouts and/or multiple outputs,
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resulting in similar abbreviations of MISO, SIMO and MIMO models. Most frea
processes are modelled using MIMO models. For MIMO models, tb&uie of causality
is important. If there is causality between an input and an output, the sample values
of that input affect the sample values of the output. Butat every model input
contributes towards one or more of the output, and an output may be affected by

the value ofother outputs.

In the case there is no causality between the outputg MIMO model can be
expressed as a series of MISO modélsne model for each outpu}. This means hat
algorithms designed for MISO models can be readily applied fauch MIMO
applications. But where causality exist between outputs, other techniquesvould
need to beused for those MIMO models (both in model identification and output
prediction). In the scope of this project, thecase wherecausality exist between
outputs was not explored due to time constraintsFor notational convenience, the

equations in this section takes the MISO form.
2.3.1 Types of Linear Models relevant for this Research

This project has focused on three generalised model structures: finite impulse
response (FIR) models, autoregressive exogeneous (ARX) models and output error

(OE) models. All three, to an extent, can be described usiggn.2.4.
2.3.1.1 Finite Impulse Response Model Structures

Finite Impulse Response (FIR) modelsre also known as a linear timeinvariant
model. The timeinvariant means that the model output is not a direct function of
time; the same output response will be predicted given the same input trajectory,
regardless d when that trajectory occurs.The estimaed output value at a given

sample is expressed as shown iBgn.2.8.

udb 66A A E OOA T p A Eqn.2.8
where:
ud = Estimated output value at sample t
00 = Measured input value at sample t
d = Dead time
A = i-th FIR coefficient (modelling parameter)

I = Total number of FIR coefficients
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This can be simplified with matrix representation to giveEqn. 2.9, which is of the

same structure as the linear regression model structuregn.2.3):

Ud ¢° Ofee Eqn.2.9
A
00 OO0 A8OO A T p e 8
A

« Fe Eqn.2.10

z

= 0 p8OT

In the caseof MISO and MIMO processes, the output is still a linear combination of
input sample values and model parametersThe number of elements that form the
vectors ¢* O and -H-would expand to accommodate the additional pairingsThe

same FIR structure withl inputs is shown inEgn.2.11 and Eqn.2.12.

O ¢ Ofee Eqgn.2.11

« e Eqn.2.12
8

where:

>
1

Deadtime associated with the input |

—_—)
¢
I

Number of FIR coefficients associated with input |

>
=x
1

i-th FIR coefficient for input |
Eqgn.2.12 relates back to the general linear model structur&qgn.2.4 by equating the
terms asshown in Eqn.2.13.

« & Re Eqgn.24
= ;P -Hee Egn.2.13

L g

42| Page



2.3.1.2 Autoregressive Exogeneous Model Structures

Many processes are timevarying, meaning that the process might react differently
from the same input sequence at different times. This is a characteristic that the FIR
model structure cannot handle. An extension to the FIR model is the autoregressive
exogenous (ARX) model structure. An autoregressive component (a weighted sum
of past output values) added to the FIR model structure. This is represented Huyn.
2.14 and it can be observed that the righthand side of the equation is the same as
the FIR structure Egn. 2.14).

udbi A E U0 ¢ Ofe Eqn.2.14
where:
ud = Measured value of the output at time t
A = k-th autoregressive coefficient

—_
]

Number of autoregressive coefficient

A matrix representation on the lefthand side can simplify the notation. With the
interest is estimating the value of the outputU OhEgn. 2.14 can beexpressed as
shown in Egn. 2.15. Note that this too is a linear model, as the output can be
estimated from a linear combination of the measured data ahmodel parameters.

ud o 04 « O+ Eqn.2.15

O U0 p8UOI
+ ABA

This too can be simplifiedas a single linear combination Eqgn. 2.16), which

corresponds to the general form oEqgn.2.3. In turn, for the whole dataset, this can

be expressed by the more generalised form &qn.2.4.

Ud v OPex Eqn.2.3
v O v 08v O¢ O;:P= 'H'e Eqgn.2.16
« & Pe Eqn.24
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2.3.1.3 Output -Error Models

The output error (OE) model is very similar in structure to the ARX model. It too is
an extension from FIR model to aaunt for auto-regression. The MISO OE model
structure is shown inEqgn.2.17. Although it shares a strong resemblance to the ARX
model structure (Eqn.2.15), the key difference between an OE model and ARX is
which past output values are used. An OE model uses the predicted output, whilst
an ARX model ges the measured output. This has a notable impact for the model

identification and model prediction.

udé ¢* 04 O+ Eqn.2.17
O UOps8uUOT
+ AB8A

There are two key implications that arise from the difference between the OE and
ARX structures. For model identification, where the data is already measured and
recorded, and ARX model behaves as a linear model structure. An OE model
structure however, isnot linear z each estimated output value can be expressed as
a function of past output valuesThis is illustrated from Eqn.2.18 to Eqn.2.20, using

a 2 parameter (a and b) SISO OE model.

ud OOA UO p A Eqn.2.18

udbp OO0 pA UO ¢ A Eqn.2.19

CUO OOA OO p A UO ¢ AA Eqn.2.20
udb OOA OO0 p AAUOD ¢ A

The interest in OE models instead is in model prediction (to make predictions across
a future horizon). Strictly speaking, and ARX model cannot predict beyond the next
step (because it does not have measured output data to predict beyond that). An OE
model, on the other hand, can extend the prediction indefinitely, as it can use the
predicted output to carry on making future predictions. In order words, an ARX
model is a one step ahead predictor, whereas an OE model is an infinite step ahead
predictor. While an infinite step ahead predictor is practically infeasible (it would

not be accurate anyway), it is useful for a MPC controller to be able to predict a
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certain number of steps ahead of time, to reduce how abruptly it makes input

changes to bring the outpits to their setpoints.
2.3.2 Optimisation for Model Identification

The objective function for model identification is typically a model fit to the dataset.
Typically, this is a separate dataset that was not used for building the model in the

first place z this reduces the chance of noise overfitting.

One common approach is to use the sum of squared error, as shownkEqgn. 2.21.
The smaller the error, the better fit the model is to the data. So, the objective function

for model identification is the minimisation of Eqn.2.21.

- «C @« Egn.2.21
« &P Eqn.24
where:

= Sum of squared error

If there are no optimisation constraints, sibstituting Eqn.2.4 into Eqn.2.21, carrying
out the derivations shown inEqn.2.22
- «C C O Eqgn.2.22
« &aP « oP

(e oP Paodc Peoa?P
P & & P «ce P

'I'PiTF’QQP Ca P Eqn.2.23

This form is dso known as the least squares solutionGiven the assumption of a
convex function, the value of the parameters can be explicitly calculated by taking
the first (to identify stationary points) and second derivative (to determine if the

stationary point is a minimum or maximum), or as shown irEqn.2.24

P & & o« Egn.2.24

In the case that constraints are added, and this is an essential part of this research,

this special case solution is unlikely to work.
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2.3.3 Model identifiability

A model is identifiableif the OD A OAT AOAO OAI OAO &1 ENOAI U

s oA L=

distributiol T £ O&nd vicA veBd#28]. In other words, the model parameters
can be learned if an infinite number of samples are takeihe true model structure
for a real process may not be known due to the complexity of the prosganda priori

knowledge available.

This project used inear regression model structures. While flexible in the
parameter-input interaction, provides no hard guarantees that it will fit the
underlying structure of the processModel prediction accuracy gainst a validation
dataset as a weaker justification to say that the model structure is a reasonable fit to
for the process. t it can be assumed that the model structure is a good fit for the
process, then the conditions for a model to be identifiablean be determined. From
Eqgn.2.23, it can be shown that for a linear regression model, the objective function
is a quadratic problem with respect to themodel parameters P, and quadratic
problems have a single global minimum. Assuming the data is noifee, the model
is identifiable if the matrix # & is invertible [30], or in other there are no linear

dependency between thananipulated variables of the dataset.

In practice, real processes are noisythere may be correlation between the
manipulated variables, and the number of observations finite. The first two points
can be addressed to an extent by data piteeatment techniques. The quadratic
problem should provide a single minimum or solution to that finite training dataset.

But this may not be the same as the true parameter values of the system.

Constraints based on a priori knowledge can be used to improve model
identifiability, and this project implemented this by translating common/easy to
obtain a priori knowledge into optimisation constraints (Section3.2). But gven the
limited knowledge about the process beyond qualitative descriptions, this would
not guarantee a unique model (e.g. a parameter value can be restricted to 0~10 as a

constraint, but 4 and 7 are both valid answers within those constraints).

For nonlinear model structures, local minimums may exist, which complicates the
issue of model identifiability. One way to address this problem experimentally, is to

use multiple initial values to identify local minimums.[29]
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2.3.3.1 Quadratic Programming for Linear Regression Model

The general form forthe objective function of a quadratic function is shown irfegn.

2.25. The optimisation constraints ardinear and represented byEqgn.2.26.

iPEgPﬂ P e Eqn.2.25
0 O A BARFO A Eqn.2.26
where:
o = A real symmetric matrix (dimensions:i A U )
[ | = Areal vector (dimensions:;p A U )
= = Constraint matrix (dimensions:T A 0 )
2 = Constraint vector (dimensions: A )

I = Number of constraints

I = Number of model parameters
In model identification, the objective function is the accuracy of predicted model fit
to the training dataset. For a lineamodel structure, the matrix5 and vector[Jcan
be derived as shown inEgn.2.27. In this way, quadratic programming can be used

for carrying out the model identification of a Inear model.

LI Eqgn.2.27
[ | Ceam Ca

2.3.4 First Principles Modelling, Data-Driven Modelling and Constrained
Model Identification

About model identification, the categories of firstprinciples modelling, datadriven

modelling and greybox modelling should be discussed.

First principles modelling derives mainly from mass, energy and momentum
balances coupled with constitutive equatios (thermodynamics, mass transfer, heat
transfer, reaction kinetics, equipment workings, etc.). A process is regarded as a
combination of mechanisms taking place, and the model structure is built to
describe the relevant mechanisms. A first principles modemay, in some cases,
produce a clear structure that can give an estimate of how the model output would
respond to an input change even before any data is handled. Model identification is

a way of finetuning that response. The procedure can be summarisexs:
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1. Identify the key mechanisms taking place in the process relevant to what the
user needs to model (i.e. rate determining step in a reaction series), then

2. Develop, from using established laws, a model to describe that mechanic, then
Estimate the paramete values (model identification) with process data, then

4. Validate the model

These procedures are like the outline shown ifrigure 2. A key point to not is that
by the time any data is handled, the model structure, particularly how the system is
likely to respond to changes, is largely defined already (derived from established
theory). The data handling that occur in model identification is to estimatehte value
of the model parameters to fine tune that responséirst principles modelling is also
known as white-box modelling. For an example ofhow this is applied, refer to
Section2.5.1

Datadriven modelling refers to the approach used to build the model. The
modelling discussed so far in Sectior2.3 is datadriven modelling. Generalised
model structures (including FIR, ARX, OE), which can describe many correlations,
are used. Collected process data is used to statistically describe the relationship

between the inputs and outputs. This is also knownsablackbox modelling.

A key advantage of datalriven approach in practice relates to the ease of
implementation, especially for a complex process (where the information needed to
build). It is this advantage which makes datalriven models favoured in industry for
process control over firstprinciples models. Practically speaking, process control
(and in turn the purpose of the process model) is to establish the connection
between the manipulated variables and the controlled variables, and the ability of
the model to be used to make future predictions. The accurate representation of
every mechanism taking place in the process is often difficult to achieve and

unnecessary for process control.

However, datadriven modelling has a major disadvantage in noiseverfitting. Data-
driven models identify the correlation between MV and CV by statistical analysis of
the data alone. Real processes exhibit background noise, and this distorts the clarity
of the correlation between MVs and CVs in measured data. For dataven
modelling, this can lead to the algorithm falsely identify the noise as correlations

between an MV and CV. This is called noise overfitting, and it reduces the prediction
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accuracy of a model. This is particularly problematic for noisy processes, wheethe

training dataset is small and informationpoor.

The third category is a combination of first principles modelling and datalriven
modelling. This is called greybox modelling. Thereare various ways that the two
techniques are combined31]. For this research, the way that two interact is that
first principles knowledge and operator experience are added as constraint3his is
referred to as constrained model identification (CMI). The intention is to include
these constrants (representing non-data process information) and allow a more
accurate model to be identified from the dataset (because additional process
information is provided). Grey-box modelling is also referred to as hybrid modelling

in some literature, but hybrid modelling is quite broad in definition.

CMl is also referred to as greypox modelling and hybrid modelling, but those terms
are broader in meaning and can refer to other things. Greyox modelling refers to
combining white-box and blackbox modelling together, but there are several ways

that they can be combined CMI is one such combinatiorn[31]
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2.4 Sequential Optimal Experiment Design

Information -rich process data is needed to build accurate MPC models. Experiments
in the form of step tests are carried out to obtain this dataOptimal Experiment
Design, OED, aims at determining best set of st obtain the most information
rich-data. This is achieved by using the current MPC model to predict the output
response of a possible stepest and assign an information content value for that
possible dataset. Optimisation is carried out to determine the input steps that give

the best information content index.

Sequential Optimal Experiment Design, or SOED, refers to iterative use of OED is a
series of experiments. This follows the algorithm flow shown irFigure 2. When a
step test is designed, and carried out, the model is updated with this new data to
improve the model accuracy. The updattmodel is then used in OED to design the
next set of step tess, until no more experiments are to be carried oufThe number

of experiments to be carried out is limited byresource limitations. Typically,
resources are allocated to support a specified number of experiments to build an
MPC model.

But using the sameinformation content index could be used to determine when
further experiment would not significantly improve the model accuracy andcan be
stopped. If the information content index for a dataset can be determined, then the
information gained from the next experiment can be estimated using that same
index. If the estimated information gained from the next experiment is below a
threshold, it would mean that even the theoretically optimal experiment would not

improve the information richness of the data.
2.4.1 Infor mation Content of a Dataset

The Fisher Information Matrix (FIM) is used to describe the information content of

a dataset. The FIM concept share some similarities with the likelihood function. A
likelihood function tells the user the probability of observing the variable at a value

given a specified parameter value. From that set of observed variables, FIM
describes how likely the specified parameter values (from previous experiments)

are, given those observations. Those observations are hypothetical at thi#ne z
AoPDAOEI AT O EAO 110 AAAT AAOOEAA 100 AxEOA
designed input sequence and the model estimated output from that sequence. OED
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variables carry the most information for the most up to date (and presumably most

accurate) model parameters.

The FIM can be expressed as shown lgn.2.28 [32]. A sensitivity matrix is used to

represent the relation between the model parameters and observed variable.

EL 4 kg Eqn.2.28

1 A

ﬂ

where:
3 Ed = Fisher Information Matrix for experiment E
= Sensitivity Matrix

= Weighting Matrix

E == 4
|

= Estimated Process Response to a sequence of input steps

P = Estimated model parameters from experimenE p

In terms of implementation, the sensitivity matrix 4 is calculated using a finite
difference method. This is shown irEgn.2.30 and Eqn.2.31.

PE EEE
pPPE PE p@&implEEE AIRAE pQ v Eqgn.2.30
pPQ v FEEEE ATRE pQ v
. B ©. :jp;z SLE)OHD Eqn.2.31
e
where:
P = Model parameter vector
P’ = Modified parameter vector for the purposes for sensitivity
analysis; a small increment is applied to th&d Element
W, 0P = Theh& O E O O pedddated from inputs¢ and model parametersP

The FIM is a matrix, btifor the purposes ofoptimisation, the information content
index needs to be a scalar valuec@&ar transformations for the FIM have been
developed, called criterionsFor convenience the scalar index is referred to as Fisher

Information Value, or FIV, in this report Most commonly usedFIVs[33] include:
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A criterion: &) 6 I ETYig Ed Eqn.2.32

D-criterion: &) 6 1 A@mQp Edori ETQQ9 E Eqn.2.33

E-criterion: &) 61 Ag 3 Edori ET_ 5 EJ Eqn.2.34
S gkl

ME-criterion: &) 6 | El/—— Eqgn.2.35
- Ak

24.2 Step Test Design in Industry

Based on engineering experiencethe engineers at Perceptive have noted the

following rules of thumb when carrying out step tests.

1 Always alternate between a step up and step down, do not haestep ups and
two step downs in sequenceThis reduces some noise overfitting,
Explore the full range of input values, the system may not be continuous

1 Make larger steps over smaller ones so that the output response is easier to
distinguish from background noise, and

1 Vary the step lengths. This reduces some noise overfitting.
2.4.2.1 Pseudo Random Binary Sequence

Pseudo Random Binary Sequence (PRBS) is a common technique for step testing to
generate steps of a random length#\s the name suggest, the technique generates a
binary sequence (0Os and 1s) that can be translated into action (e.g. 0 = no step
change; 1 = step change). The pseudandom refers to the deterministic nature of
this sequence whilst exhibiting characteristis like that of a random sequence. In
terms of application, a PRBS sequence is determined by a seed, which forms as an
identifier for that sequence. If the same generator is given the same seed, the
resulting sequence is identicalThe generated sequence ifinite and will at some
point repeat itself in aloop. But theloop is sufficiently longso when a short sequence

is taken, that sequence would appear as though it was a randomly generated.

2.4.2.2 Optimal Experiment Design in Wastewater Treatment

P - T

41 OEA Khdviadgé, OBDOhas not been applied to the design of MPCdeis
in wastewater treatment. SOEOhas however been usedn wastewater treatment

applications, but for a different type of mode[34] [35].
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2.5 Municipal Wastewater Treatment

This project focused on the application of MPC on municipal wastewater treatment
process (WWTPs). This section briefly outlines the processes that make up this
treatment, the interest in the use of MPC, andow this work contributes toward

improving the use of MPC in WWTPs.

The WWTP removes pollutants in sewage so that the treated water can be safely
discharged to the environment. The pollutants include biodegradable organic
material, pathogens, nitrates and phosphates.HE WWTP consists of a series of

treatment processes, which are broadly clasfied into five treatment stages:

1 Screening: Incoming sewage is screened to remove large, nol

biodegradable solids from the sewage,;

1 Primary After screening, thesewage is then allowed to settle in large
Treatment: tanks to physically separate (and remove) the heawv

biodegradable solids and floating solids.

1 Secondary After primary treatment, the sewage then undergoes
Treatment: biological treatment to remove pollutants in the liquid. The

effluent is then discharged or undergoes further treatment

1 Tertiary Tertiary treatment is used for sites where the environment
Treatment: the treated effluent to be discharged to is particularly
sensitive. A combination of chemical and blogical

treatments takes place.

1 Sludge Sludge Treatment removes pathogens in the sludg
Treatment: accumulated in the upstream treatmentstages andreduces
the waste volume. Anaerobic digestion is a treatmen

method used here.

Within the WWTP, AnaerobicDigestion (AD) is used for the treatment of sludge
toxic by-product of wastewater treatment. The AD technology is used outside of the
WWTPs, including in farms to treat agriculture waste. Farafied AD technology is an
interest of this research. The work a farm-fed AD was quite separate from the work

carried out in Part I, and so the overview of farrffed AD is discussed ifPart 1.
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The treatment stages for WWTP iglustrated in Figure 3.

. Primary Secondary, Tertiary Treated
Sewage —»| Screening—» —p —>
Treatment Treatment Treatment water
Sludge Sludge . .
—» Bio-solids
Treatment

Figure 3 z Overview of a WWTP

Municipal sewage has a characteristic diurnal (daily) pattern. This is summarised by
greater flow during the daytime than nighttime, and two peaks corresponding to
human activities around the 9to-5 work schedule. The diurnal pattern profile for

municipal sewage is illustrated inFigure 4.

Profile of the wastewater inflow to a municipal WWTP

Relative magnitude of inflow
o o = = =
[«)] (o] o N 5

I
'S

0.2

0.0
12:00 AM 6:00 AM 12:00 PM 6:00 PM 12:00 AM
Time

Figure 4 zThe diurnal pattern of municipal sewage inflow; data froni5]

Although the primary treatment stage is essentially a set of holding tanks, these are
typically filled to full capacity and provide very limited buffering. This means that
the influent flow for the ASP unit, a process downstream of the primary treatment,
exhibits largely the same diurnal pattern. The key point is that even when
considering a single WWTP, there is a lot of variability in the influent. This influent
cannot be controlled (municipal WWTP would have to treat all the sewage that
enters the proces). In terms of modelling, the influent load is essentially a large

disturbance [4].

54|Page



251 Activated Sludge Process

The ASP is a biologicaliriven process that breaks down biodegradable material
and other contaminates found in sewge. The sewage is aerated (by oxygen or air
injection) to form a biological floc; a soup where bacteria then breaks down the
sewage and pollutants. The floc is then allowed to settle at a clarifier to form three
layers: a crust of dead bacteria at the suwate, clear liquid in the middle and activated
sludge (containing live bacteria) at the bottom. The clear liquid goes downstream to
undergo further treatment or is discharged to the environment if there is no tertiary
treatment. The activated sludge is reagled upstream with the influent sewage. An

illustration of the unit, based one operating in Lancaster, is shown iRigure 5.

Primary

Activated Sludge Process Clarifier
Treatment

— \
Influent |
—>

(after screening |
\
Settling tank -

\
\
\
| | |
) Mixer Surface Aerated Pockets
with scraper .

Returning Surplus
Activated Sludge Activated Sludge

\ \ \

| | | Effluent
\ \ \

|

Figure 5 z lllustration of an ASP in a WWTP in Lancast¢4]

2.5.1.1 First principles modelling in ASP

In Section2.3.4, first principles modelling was briefly described. The use of first
principle modelling can be explained using the ASP as an example. The key
mechanism of interest is the bacteria driven breakdown of pollutant compounds
and conversionto product. One of the most common starting point is the Michaelis
Menten kinetics model. It considered a generic set of enzyme reactions shown in
Eqn.2.36: where an enzyme [E] binds onto a substrate [S] and forms a complex [ES],
which transforms into a product complex [EP], which then releases a product [P]

and regenerates the enzyme [E].

% 3% %30 %0° % O Eqgn.2.36

Eqn.2.36 represents 4 simultaneous reactions (represented by each arrow). From
reaction mechanics, the Michaeligventen kinetics model of that reaction series can

be derived to the form shown inEgn. 2.37. Some models reported in literature
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reference the Monod model for bacteria growth, which is an empirical model with

the same structure as the Micaelis-Menten kinetics model.

AO * 3 Eqn.2.37
A + 3
where

A?OA = Rate of product production; the model output

AO

+ = Constant representing the maximum rate

3 = Limiting substrate concentration (concentration of the limiting

pollutant compound consumed by bacteria); the model input
+ = Constant representing [S] when+ 1@+

The constants+ AT #A are estimated from process data using model identification.
Based on the theory, it is known that the constants are positive. This already dictates
some characteristics to how the output would behave. This is illustrated iRigure 6.

In terms of measurement, the model would require measurements of the limiting

substrate concentration, the product compound concentration and time.

Michaelis-Menton kinetics model structure

1.2

0.8
0.6
0.4
0.2

dP/dt

—f1=1;K2=1 K1=2;K2=1 K1=0.5;K2=1
K1=1;K2=2 em——K1=1;K2=05

Figure 6 z Possible system responses for Michaelislenton kinetic model

This example illustrates the approach used in first principles modelling: first
identify the mechanisms taking place (bacteriadriven breakdown), then deriving a
model structure from established theory, then using model identification to
determine the parameter values. Preliminary estimates for the model parameters

may be obtainable from published literature.
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252 Model Predictive Control in Wastewater Treatment

There aretwo main reasons for the use of automated process control in wastewater
treatment: for better effluent quality control, andto reduced energy consumption.
WWTPs are primarily to ensure safe treatment of sewage so that the treated water
(effluent) can be sdely discharged to the environment. But this is an energy
intensive process. In the UK, the WWTP consumes over 2,300 GWh/yr of electricity
[1], making up about 1% of the total consumef]. But this is expected to increase
to 3.4% by 2023, due to reductions in energy consumption in other sectors and
increases to sewage volumegl]. Under the Climate Change Ad3], the UK
governmenthas driven efforts towards energy reduction in most sectors, including

x AOOAxAOAO OOAAOI AT O8 4EEO OEEAOAA OEA
OOAAOI AT OB8A MyEE AERNTAD AU A OAZEA xAOOAXxAOGAO C
The use of MPC in WWTP came as a progressimom the use of proportionak
integral (PI1) controllers [36] [37]. PI controllers were easy to implement, but their
ability to handle constraints were limited, and this shifted the focus towards theise

of MPC.The application of MPC in WWTP included both works to improve effluent
quality control [38] and more reducing energy consumption without compromising
treatment [4] [39] [40]. In [4], which was applied to an operating WWTHN
Lancaster, it was observed that the use of MPC could deliver up to 25% energy
savings whilst ensuring safe treatment of sewagaVhile the use of linear MPC is
popular [41] [42], nonlinear MPCJ[43] is used for some applications, including in
the ASP unif39]. The maindrawback of nonlinear MPC is that it is computationally
slower than linear MPC, but for slower processes, the slower computation may still
be useable. This project focused on the use of linear MPC, but it is recognised that
due to hardware improvements and the development of better algorithms, non
linear MPC optimisation might be computed quickly enough to reconsider the
applications it is used onReference[44] in particular, proposed a nonlinear MPC

algorithm that claimed to be of a comparable computation speed to linear MPC.

Modelling the WWTP is difficult for many reasons, including the variability in the
influent flow [5], the complexity of the reactions taking placethe slow response of

these systemg6], and (in real processes) stringent consent limits on the effluent.
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Step testing (to obtain more information rich data) carries a running cost fothe
duration of the experiment, and the tradeoff between model accuracy and
resources spent is one with diminishing returns. There is a potential gap for the
development of ways to determine when a model is good enough (where additional
experiment does na improve the model accuracy enough to justify the cost), or

better ways to build accurate models with fewer experiments.

Applying MPC control on real processes can be difficudue to the stringent consent
limits of the effluent and the inherent risk ofbreaking those limits when applying
the controller. Many research on the subject have utilised process simulations to test
the MPC controller[39] [45] [38]. The most canmonly used simulations include the
benchmark simulation model 1 and 2 (BSM1 and BSM2). BSM 1 simulate8-stage
active sludge process (one of the secondary treatment stagesjth a clarifier, and

BSM 2 wasextend the scoperepresent a general WWTH6] .

The focus on ASP likely came even before the motivation for modelling the WWTP
shifted towards more energy efficient treatment. But hotspot analysis of energy
used in a WWTP noted that 30~60% of electricityj46] [40] [47] [48] is consumed
within by the ASP unit. So een with the intent to reduce energy consumption,

improving ASP energy efficiency is likely a priority.
2.5.3 Pharmaceutical Manufacturing Case Study

The work on constrained model identification was also demonstrated on a
continuous direct compression process used in pharmaceutical manufacturing. This
contributed to a project Perceptive was involved in. For this research, it was an
opportunity to explore the potential of this modelling approach in other

applications. The process in question is discussed in greater detail in Sectidb.
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2.6 Background Summary

26.1 Research Problem

Case studies have demonstrated the use of MPC reducing the energy consumption
in WWTP without compromising the treatment. But buildingsuch an MPC model is
time consuming, resource intensive, and difficult (due tstringent effluent consent

limits, process complexity system noise, slow process).

In most cases, new experiments would need to be carried out to build a good MPC
model. BUtWWTP are slow to respond and subject to large disturbances (including
the influent loading). Even the sign of the gain direction many be incorrectly
identified due to noise overfitting, and this would have significant ramifications to
the stability of the MPC controller.

2.6.2 Research Avenues

The first research avenue investigates the addition of optimisation constraints that
are based on first principles or operator experience. In this way, the optimisation
scope (or combinations to calculate though) is reducedand in theory allowing for
more accurate models to be developed without necessitating additional
experiments. The second research avenue is about designing experiments to obtain
as much information rich data within each experiment, so that fewer experinrés

are needed to produce a good enough model. This is achieved using a scalar value
representing the information content of adataset andusing the process model to

make estimations of the process response to a speculative input sequence.

Both avenues reolve around building more accurate models with smaller
quantities of data, whether by adding nordata information to the model

identification, or design step test that produce more information rich data samples.
2.6.3 Justification for using Linear Model

Many processes exhibit nodinearity, and when modelled, requires the use of non
linear models to accurately describe. But optimisation calculation for a nehinear
model is much slower. Inan MPC controller, where the optimisation calculation
must be cariied out and completed at every decision interval, nofinear models are
not feasible. Using a linear model does not accurately describe the process
behaviour, but across a small prediction horizon, a linear model can reasonably
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describe the process behavior. This research project developsmodelling
techniques with the intent of the model being used by an MPC controller. hE
computation speedneeded for MPCrestricts the scope of this research to linear
models. If in future, nonlinear optimisation be calcuated quickly enough to be used
in industrial MPC controllers (through improvements in computer hardware
accessibility, optimisation algorithm efficiency etc.), the use of netinear models

can be considered.
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3 Constrained Model Id entification

CMI revolves around the idea of translating process knowledge (from first principles
knowledge or operator experience) in the form of optimisation constraints. These
constraints are applied to datadriven modelling techniques to estimate a liear
MPC model for the process. The intent is that this nediata information can help
identify more accurate models in applications such as the WWTP, where access to
information -rich data is limited due to the process being slow, complex and noisy.
Better modelling accuracy can allow for better output predictions, which can allow

a setpoint to be safely brought closer to the process boundaries (or consent limits).
This in turn allows for safe treatment with less energy consumed. A soft benefit of
including operator experience as constraints is that it allows greater acceptance of

the model on site.

The work carried hereis divided as such: Sectior8.2 outlined a common set of
constraints made. These are based on neagtata information that should be relatively
easy to obtain from most processes, and how these would translate into constraints.
This was then applied tonumerical examples to assess their impa on improving
model accuracy. This is detailed in SectioB.3. This was then applied to a ASP
simulation developed within Perceptive as a casewgdy. This isdiscussed in Section
3.4. A case study was carried out on a continuous direct compression process used

in pharmaceutical manufacturing This is detailed in Sectior3.5.
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3.1 Overview of the Constraint Matrix

Before explaining how process knowledge can be translated into constraints,is
important to first explain how the constraints are structured in relation to the
parameters. As previously discussedin Section 2.3, the modd parameters as a

vector P. Constraints are applied to this vector, and these take the form of:

=P I Eqgn.3.1

where:

Constraint matrix

Fe
H Constraint vector

Each condition is represented by a row in— and an element irq. The number of
columns in fis equal to the number of parameters (or the length oP . Using a 3

parameter vector as an example, the constraint matrix and vector would look like:

Condition 3

G G
As an example, let==  p ¢ T andfy p T Referring to the form shown in
Eqn.2.3, this translates to a condition op | ¢ | m | p 1iNote that if

a parameter is not involved in one or more condition, the corresponding value in

that row is zero.

From Section2.3, the parameter vector can contain different groups of parameters.
One parameter group may not directly interact with another group, and may hav
separate constraints, but they must be solved simultaneously in the optimisation.
Since f= contains a column corresponding to each parameter P, and the
interaction is a linear combination, parameters not related to a condition can simply

have the orresponding element in f= set as zero.

As an example, suppose the parameter vector is a composite of two different
parameter groups (a and b), with each group having 2 parameters. Suppose then

there are three conditions to be used as constraints:
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Parameter vector Constraints

A A v A 1
A ) )

P A c A ¢ A
A A o A ¢

If an individual parameter is not involved ina condition, the corresponding value in
that row is zero.For the given example, the constraint matrix and vector become:
T T
e m m andqy
T T

There were four parameters, and so the constraint matrix has four columns. There
were three conditions, corresponding to three rows in the matrix and vector. If
additional conditions are needed on top of the existing conditionghese are added

as additional rows.
3.2 Common Constraints

Common constraints relate to nondata information about that process that should
be relatively easy to obtain in most processes. Namely, these &ne direction of the
process gain, the gain magnitudeange, minimum phase and dead timeThis
information should be relatively easy to obtain, and the algorithms can be written
to automatically translate this information into constraints for convenience. Tis
automated translation is an innovation of this poject andto be incorporated into
the in-house software developed byPerceptive as an additional functionality. This
would then be used by the engineers to build MPC models for real processéhe
translation procedure is written as Matlab function scripts This section will cover
how each of the constraints can be visualised (by unit step response), and how it is

written as constraints.

This project focused on the use of ARdd FIR models. an ARX model takes the form

shown previously inEqgn.2.3.

U0 v OPe Eqn.2.3

v O v 08v OO €

o

B

8
=+

where:
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ud = Estimated output value at time t

v O = Data matrix associated to predicting the output at time t
Pae = Vector of model parameters (optimisation decision variables)
4 = Vector of FIR coefficients
+ = Vector of autoregressive coefficients

This project deals with MISO model structure (and treats MIMO problems as
multiple MISO problems). If there arel number of inputs, then there arel  p
groups of parameters. Constraints described here typically apply to individual
groups. SectiorB.1explained how this is translated in terms of the costraint matrix
(coefficients corresponding to parameters unrelated to a condition is set to zero)
Each constraint is represented by one or more rows i and J,H‘L To help visualise
the constraints, this section uses two components:
1 A step/impulse response to visualise the constraint in a measurable way
1 An example to show how the conditions translate in terms of the constraint
matrix and vector for an example model (see below)
Example model:
The example modelis a Zinput 1-output model of an ARX sucture. It has 2
parameters per input, and 1 parameter for the output autoregression. In equation
form, this takes the form shown:
UO W60 ®p60 p Wr00 w60 p GUO p
n’(i)ﬁ Ul
1996
Model parametersPee 16

I(lj)ﬁ M
VYRY
constraints P {5

3.2.1 Sign of autoregression coefficients

The first condition set is one of convenience: all the autoregressive coefficients

(every element that make up#) are negative ( ={=should be positive).

As previously noted, the structure of a FIR and ARX model aimilar in terms of the
-H-coefficients (which relate the inputs to the outputs). The main difference is the

addition of the =|= coefficients (relating past values of the output to the present
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output). A model with positive =|=va|ues can be written as havig negative=|=va|ues
Z the values of—H—wouId be different. But stting =|=as negative allovs the two forms

to be more directly comparable(the values of-H-are more visually intuitive).

Example model constraints:

Description Constraint condition

All values of=are negative e T MM T P g W

3.2.2 Sign of the Process Gain

4EA OECI 1T &£ OEA POl AAOO CAET AOOAT OEAI T U
response increase or decreasat the steady state 6 8 ! AAOOAOA AOOEIT A(
in the MPC model is essential if the MPC controller is to maintain stable process
operation. In practice, this is achieved by specifying the sign of the summation of a

set of FIR coefficients (a set being the coefficients correlating one input to an
output). Figure 7 is an illustration of what is referred to as the sign of the process

gain in terms of an output step responserive example signalsare shown, of which

models 1,3 and 4have a paitive process gain, while 2and 5 have a negativ@rocess

gain. The longterm part should be emphasised, because the path taken by the

output to reach the new steady state is not important for this constraint.

Input Output
1 p 8 __________ = _p
0.9
6 —Model 2
[ Model 3
0.8 —Model 4
Model 5
0.7 - —Model gain 1
4 = =Model gain 2
0.6 |~ ~Model gain 3
® ® - —Model gain 4
3 Model 5
205 % 2 odel gain |
> >
0.4
O !
0.3
o2+ 1 TTTT=== 7]
2t
0.1
0 ' : 3 -4 : . :
0 20 40 60 80 100 0 20 40 60 80 100
sample sample

Figure 7 z Steadystate gain from the 5 example models

For a FIRmodel, whereP is made up of sets oﬂ-(in a MISO model, there is one set

of 4 for each input which together make upP as shown inEqn.2.3). Each set offf
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would be summed, and a constraint assigned to that summed value. If the gain is
positive, that summed value must be greater than 0; and if negative, that summed
value must be less than 0. Each input would have a single constraint, so if there are

n inputs, up to n constraints would be set.

For an ARX model, if all the elements Hris negative, the set up used to constraif
in a FIRmodel would still apply z there would only be an extra line to constrain=|=
(since it too is a decision variable of the ggmisation). This applies no matter how
many elements there are i But if$=contains one or more positive elements, the
constraints for -H—becomes more complicated, due to the more complex interaction
it would have on the output response. The constrais for =|= should be self

explanatory, but each variation of=|=wou|d result in a unique set of constraints forb.

Example model constraints:

Description Constraint condition
Process gain for input 1 is positive e P p TUT Ty T
Process gain foinput 2 is negative I T T op op T T
Process gain for input 1 is positive ANL PP T T T n
. . . _ = n n popm Mhip T
Process gain for input 2 is negative

3.2.3 Gain Magnitude Range

For stable models, an additional constraint can be set up on the magnitude of the
gain. The models shown inFigure 7 are all stable, and their unit step responses are
bounded to the value markedy the dotted line. As shown previously, if the sign of
the process gain is specified as positive, models 2 and 5 would be rejected. Suppose
the gain magnitude was specified by be between 2 and 4, this would mean that of

those 5 models, only model 3 wouldneet those constraints, as shown ifrigure 8.
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Input ] Output

1 8——————————'——_—_;_—_—_} _____
[lacceptable step gain region
09 - =Model gain 1
= =Model gain 2
61 Model gain 3
0.8 = =Model gain 4
Model gain 5
0.7
4
0.6
s 5
= 0.5 Tl 2
> >
04
0
0.3
o2 1 4  [[TTTTTTTTTTTTETETTITITETTTTA
-2
0.1
0 : 4 : : : :
0 20 40 60 80 100 20 40 60 80 100
sample sample
Figure8zO' AET | ACT EOOAA AAOxAAT ¢ AT A Is 6o

It is implicitly assumed that if the process gain magnitude as a range, it is a stable
system (i.e. the output response to a bounded input is bounded). If that is not the
case, this constraint cannot be sethe way the constraints are set up foa FIRmodel

is like that for process gain direction, but there would be up to tw@onstraints for
each set offt- (one for the minimum, one for the maximum). Setting these constraints
mean that the constraint for process gain direction is redundantor an ARX model,
the constraint would instead be a weighted sum off-: The weighting is subject to the
value(s) of+

Example model constraints:

Description Constraint condition
The gain magnitude for input 1 is I=— p p T TMT JI v
- m T T’
between 2 and 5 PP ¢

3.24 Minimum -Phase

A minimum phase system is one where the systens causal and stable. In a causal
system, the output is determined from past and present input values, not future
inputs. In terms of real systems, one observable characteristic for neminimum

phases isthe inverse response- an undershoot (or sign reversal) in the step

response. The detection of this sign reversal is used for the constraint.
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In terms of implementation, this constraint requires the sign of the process gain to
be known. But rather than specifying the sign of a sum of FIR coefficients, a sign
constraint would be applied to every FIR coefficient. Visually, this can be shown
using the output response to an impulse function, or the output increments in
response to a unit stepchange.Figure 9 shows the latter (for consistency with

previous figures) across thdive example models:

Input Output (incremental)

—Model 1
09t 1 —Model 2

Model 3
1r —Model 4|
Model 5

0.5r

value
o
w
value
o

-0.5

0 20 40 60 80 100 "0 20 40 60 80 100
sample sample

Figure 9 z incremental step response of the 5 example models

Suppose the costraint was that the gain direction is positive, and the system is
minimum phase, then the constraint would mark out an area where the incremental
output response cannot occupy, as shown figure 10. In terms of the actual output
response, the constraint would look for sign reversals or undershooting, as shown
in Figure 11. For the 5 example models, only Model 1 would satisfy the constraint.
Note that model 2 is minimum phase, but of the wrong gain direction to that

specified by the constraint.
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Input Output (incremental)

1 15 : )
I unacceptable response region
09+ ——Model 1
’ | |—Model 2
11 Model 3
081 1 —Model 4
—Model 5
0.7+
05+
06
2 2
> >
04+
03+
0.2
0.1
0 ; 1.
0 20 40 60 80 100 20 40 60 80 100

sample sample

z £ oA sa o=

Figure107001 OEOCEBRAABAETT AT A T ETEI Oi DPEAOAS

example models

Input

value
o
w

value
[3%]

0 20 40 60 80 100 0 20

sample ]
P Detected sign reversal that

violated the constraint

Figure11zO001T OEOEOA CAET AEOAAOQOEIT AT A 1 ETEI
example models

Based on information accessibility, it is assumed that the sign of the process gain is
already known. As discussed in Sectiol.2.2, the sign of tle process gain is
constrained by setting a constraint on the sum of the coefficients that make up each

-H- In the case of minimum phase however, a constraint is applied to each element
So,for positive process gain and minimum phase, each elementﬂz;};;;would need to

be greater than O (or less than O if the sign of the process gain is negative).
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In hindsight, based on the numerical examples analysed in Secti8rB.2 it may be
beneficial to only apply the constraint to the first few elements that make U}#ﬁ;gigg(i.e.
the coefficients that cover the early response). The reason for this is because this
constraint has the disadvantage of forcing any model overfit to go one way, and
while this may be useful for systems with a large dead time (to avoid noise
overfitting in the short-term response), this can be detrimental in terms of théong-

term response estimation.

Description Constraint condition

Input 2 has negative process gain . T T p T T .| n

. = nnmnp T
and is minimum phase

3.25 Dead Time

Dead time refers to the delay between an input change and the output responding
to that change. This is not actually corstrained in the form of optimisation
constraints. What is changed instead is the training dataset used for model
identification. A shift is applied to the input samples that make up the data matrix
& .Toillustrate, the training dataset for a SISO process modelled By IR model with

3 coefficients. The top row shows the case there is no dead time, the middle a dead
time of 5 samples, and bottom a dead time of 10 samplddlSO systems would be

constrained in the same way, but with a different shift for each input.

Training data with no Op O¢ bdo Uo
dead ti & & & ¢
€ad time 61 ¢ 061 p O1 Ul
Training data with dead Op Oc¢ Oo Uy
ot s o I S
ime of 5 samples 51 x Ol ¢ ©1 v Ul
Training data with dead Op Oc¢ Oo Upo
10 s - T N
time of 10 samples 51 pc ®1 pp O] pm U

Table 2 z Training dataset for a SISO,-8oefficient FIR model with different dead

times

ARX systems would follow this same approachautoregressive coefficients do not
have a dead timelf it did, an additional set of shifts would be applied to the data

matrix. Model identification is therefore used to estimate the values of the nedead
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time coefficients. Dead time can be constrained usingexplicit optimisation
constraints. Butthis is a lot less efficientin execution (as more decision variables

need to be optimised this way)and results in a slower optimisation.
3.3 Analysis on Numerical Exam ples

Numerical examples are created using a prepecified model to represent a process.
4AEEO OOO0OOAG6 11T AAT Ethemood tobe&identifed,buktheati@d A O O C
parameters are not supplied, and must be identified from the collected processita.

The same structure is used because it allowed for a direct comparison in terms of

model identification accuracy for different approaches. Therocess data (output
response to input steps) is subject to background noise to simulate the situation

with real processes.

Severalsimulation experiments were carried out over the course of this project.
These can be categorised intawo types: Monte Carlo style experimentswhich
carried out experiments on the same process many times, to assess the consistency
of added constraints to model identification; and smaller scale experiments to
assess how particular characteristics affect model identification, and how the

constraints affect those.
3.3.1 Monte Carlo Experiments

The Monte-Carlo style experiments carried outl00 examples using the same true
model for every experiment. What is changed between experiments is the input
steps and background noises added to the measured values. Thissessed and

compared the robustness of the model identification when constraintsra added.
3.3.1.1 The true model and experiments

4EA OOCOOAG6 11 AAT {inpudl-cbpdi nfodeDThe details Of thd o
process are:

Dead times / Pure Delay: 20; [3 7 10]; Number of FIR coefficients: 24;

Number of AR coefficients: 1; [1]; Noise added toutput at SNR = 10
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™G T™WE TP TN Tw ™Y X T8

In total, 45 coeficients would be estimated across 100 experimentsThe training
data consist 0f300 samples partitions such that 100 samples areallocatedfor step
tests for each input separatelySince the output responds to changes to all three
inputs, this makes the output response to an input much clearer, and in turn should
improve the accuracy of the identified modelStep werecarried out using a PRBS to
determine when steps are to be made, nal the magnitude is restricted to a

prespecified minimum and maximum input value range (0~10).

Model identification is the linear model was shown inEqn. 2.25, subject to
constraints in the form of Eqn.2.26. In this Monte Carlo experiment, the constraint
conditions are shown below:

ipsgpﬂp BP 0OA OAZRO 4y

Pt Fe
p E m m E m m E m e
'é E €& é E & & E & &
IIT[ E P n E n n E n 1l
I = Tt p E n nm E m T,
W€ E & & E & & E €& Ei.f prui

= m E T L E p T E Tt T[.’.’SIZe[I byl ]

im E m m E m p E m TmA
1neg E & € E €& €& E & én
m € nmom E mom E p m
urr  E Tt n E n n E m pU

T[ ~

M 6 ;vectorof size[ by 1]
Tt

/ITA AGPAOEI AT 060 EIT BOO FiduteA2 ahdFFQ®ed®.0he A O A
output is filtered and auto scaled before model identification icarried out. Model
identification is carried out twice, once using unconstrained model identification for
and ARX model, and another with constraints added (the sign of the procegains

and minimum phase).
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10 9e J y .
I— —Input 1
9l — | Input 2

flnput37
Bt = 4
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sample

Figure 12 z Training Input for the Monte-Carlo Experiments

Training Output

60

-20 ‘ ‘ :
0 50 100 150 200 250 300

sample

Figure 13 - Training Output for the Monte-Carlo Experiments
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