University of Surrey

Test tubes in the lab Research in the ATI Dance Research

Election Field Emisson From Amorphous Semiconductor Thin Films.

Forrest, Roy Duncan. (2000) Election Field Emisson From Amorphous Semiconductor Thin Films. Doctoral thesis, University of Surrey (United Kingdom)..

[img]
Preview
Text
11010011.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (14MB) | Preview

Abstract

The flat panel display market requires new and improved technologies in order to keep up with the requirements of modem lifestyles. Electron field emission from thin film amorphous semiconductors is potentially such a technology. For this technology to become viable, improvements in the field emitting properties of these materials must be achieved. To this end, it is important that a better understanding of the emission mechanisms responsible is attained. Amorphous carbon thin films, amorphous silicon thin films and other materials have been deposited, in-house and externally. These materials have been characterised using ellipsometry, profilometry, optical absorption, scanning electron microscopy, atomic force microscopy, electron paramagnetic resonance and Rutherford back-scattering spectroscopy. An experimental system for evaluating the electron field emitting performance of thin films has been developed. In the process of developing thin film cathodes in this study, it has been possible to add a new and potentially more useful semiconductor, namely amorphous silicon, to the family of cold cathode emitters. Extensive experimental field emission data from amorphous carbon thin films, amorphous silicon thin films and other materials has been gathered. This data has been used to determine the mechanisms responsible for the observed electron emission. Preliminary computer simulations using appropriate values for the different material properties have exhibited emission mechanisms similar to those identified by experiment.

Item Type: Thesis (Doctoral)
Divisions : Theses
Authors : Forrest, Roy Duncan.
Date : 2000
Additional Information : Thesis (Ph.D.)--University of Surrey (United Kingdom), 2000.
Depositing User : EPrints Services
Date Deposited : 30 Apr 2019 08:07
Last Modified : 20 Aug 2019 15:32
URI: http://epubs.surrey.ac.uk/id/eprint/851278

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year


Information about this web site

© The University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom.
+44 (0)1483 300800