University of Surrey

Test tubes in the lab Research in the ATI Dance Research

Nuclear-cytoplasmic compartmentalization of the herpes simplex virus 1 infected cell transcriptome is co-ordinated by the viral endoribonuclease vhs and cofactors to facilitate the translation of late proteins

Pheasant, Kathleen, Moller-Levet, Carla Sofia, Jones, Juliet, Depledge, Daniel, Breuer, Judith and Elliott, Gillian (2018) Nuclear-cytoplasmic compartmentalization of the herpes simplex virus 1 infected cell transcriptome is co-ordinated by the viral endoribonuclease vhs and cofactors to facilitate the translation of late proteins PLOS Pathogens, 14 (11), e1007331. pp. 1-33.

[img]
Preview
Text
journal.ppat.1007331.pdf - Version of Record
Available under License Creative Commons Attribution.

Download (7MB) | Preview

Abstract

HSV1 encodes an endoribonuclease termed virion host shutoff (vhs) that is produced late in infection and packaged into virions. Paradoxically, vhs is active against not only host but also virus transcripts, and is involved in host shutoff and the temporal expression of the virus transcriptome. Two other virus proteins—VP22 and VP16 –are proposed to regulate vhs to prevent uncontrolled and lethal mRNA degradation but their mechanism of action is unknown. We have performed dual transcriptomic analysis and single-cell mRNA FISH of human fibroblasts, a cell type where in the absence of VP22, HSV1 infection results in extreme translational shutoff. In Wt infection, host mRNAs exhibited a wide range of susceptibility to vhs ranging from resistance to 1000-fold reduction, a variation that was independent of their relative abundance or transcription rate. However, vhs endoribonuclease activity was not found to be overactive against any of the cell transcriptome in Δ22-infected cells but rather was delayed, while its activity against the virus transcriptome and in particular late mRNA was minimally enhanced. Intriguingly, immediate-early and early transcripts exhibited vhs-dependent nuclear retention later in Wt infection but late transcripts were cytoplasmic. However, in the absence of VP22, not only early but also late transcripts were retained in the nucleus by a vhs-dependent mechanism, a characteristic that extended to cellular transcripts that were not efficiently degraded by vhs. Moreover, the ability of VP22 to bind VP16 enhanced but was not fundamental to the rescue of vhs-induced nuclear retention of late transcripts. Hence, translational shutoff in HSV1 infection is primarily a result of vhs-induced nuclear retention and not degradation of infected cell mRNA. We have therefore revealed a new mechanism whereby vhs and its co-factors including VP22 elicit a temporal and spatial regulation of the infected cell transcriptome, thus co-ordinating efficient late protein production.

Item Type: Article
Divisions : Faculty of Health and Medical Sciences > School of Biosciences and Medicine
Authors :
NameEmailORCID
Pheasant, Kathleenk.pheasant@surrey.ac.uk
Moller-Levet, Carla SofiaC.Moller-Levet@surrey.ac.uk
Jones, Julietj.l.jones@surrey.ac.uk
Depledge, Daniel
Breuer, Judith
Elliott, Gilliang.elliott@surrey.ac.uk
Date : 26 November 2018
Funders : Medical Research Council (MRC)
DOI : 10.1371/journal.ppat.1007331
Copyright Disclaimer : © 2018 Pheasant et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Depositing User : Clive Harris
Date Deposited : 11 Jan 2019 14:41
Last Modified : 05 Feb 2019 16:00
URI: http://epubs.surrey.ac.uk/id/eprint/850128

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year


Information about this web site

© The University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom.
+44 (0)1483 300800