University of Surrey

Test tubes in the lab Research in the ATI Dance Research

The electrical resistivity of dislocations in aluminium.

Foxon, Charles Thomas Bayley. (1965) The electrical resistivity of dislocations in aluminium. Doctoral thesis, University of Surrey (United Kingdom)..

[img]
Preview
Text
10804721.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (14MB) | Preview

Abstract

Aluminium foil was extended by tensile deformation at room temperature by amounts up to about 15% plastic strain. The flow stress (alpha) the change in electrical resistivity (Deltarho) and the dislocation density (N[1]) were measured as a function of plastic strain and subsequent annealing. The change in electrical resistivity was measured at liquid Helium temperature and the dislocation density was measured by thin film transmission electron microscopy. The change in electrical resistivity and the dislocation density were both proportional to the plastic strain and hence to one another. The annealing of the extended specimens was found to occur in three stages. The first, which occurred at room temperature was due to the annealing out of point defects; an activation energy of 0.65eV was obtained for this process. The second stage took place above about 70°C and during this process both a re-arrangement and loss of dislocations occurred. The third stage was recrystallisation. The resistivity of dislocations in the deformed state was found to be: Deltarho = (18 +/- 1) X 10[-20] N[1] ohm cm. and after the second annealing stage: Deltarho = (17 +/- 2) X 10[-20] N[1] ohm cm. These results have been compared with experimental values obtained by other authors and with various theoretical estimates. It is suggested, that the loss of dislocations during the preparation of thin foils was negligible, that the scattering of conduction electrons by the core of a dislocation compared with that of the long range strain field was not negligible in contributing to the electrical resistivity and that the theoretically calculated value of the stored energy of a dislocation in Aluminium[38] was correct within +/- 25%.

Item Type: Thesis (Doctoral)
Divisions : Theses
Authors :
NameEmailORCID
Foxon, Charles Thomas Bayley.
Date : 1965
Contributors :
ContributionNameEmailORCID
http://www.loc.gov/loc.terms/relators/THS
Additional Information : Thesis (Ph.D.)--University of Surrey (United Kingdom), 1965.
Depositing User : EPrints Services
Date Deposited : 22 Jun 2018 14:27
Last Modified : 06 Nov 2018 16:54
URI: http://epubs.surrey.ac.uk/id/eprint/848216

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year


Information about this web site

© The University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom.
+44 (0)1483 300800