University of Surrey

Test tubes in the lab Research in the ATI Dance Research

Optical detection and excitation of vibrations in silicon resonator sensors.

Tudor, Michael John. (1988) Optical detection and excitation of vibrations in silicon resonator sensors. Doctoral thesis, University of Surrey (United Kingdom)..

Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (5MB) | Preview


The principle aim of this work was to investigate optical techniques for the excitation and detection of vibrations, at resonance, in Silicon resonator sensors. Two all-fibre detection techniques have been developed: one is based on phase modulation and the other on intensity modulation of the optical wave train. Both detection techniques may be implemented in either single mode or multimode fibre. The choice of measurement technique is determined by the desired system performance and cost. The development of these detection systems naturally led to a study of the properties of the sensors, and the characteristics of a pressure transducer and an accelerometer were investigated; the latter is reported in more detail here. The main characteristics studied were modes of resonance, quality factors, resonant frequency shift with temperature, resonant frequency shift with the measurand and the non-linearity of the resonator. Optical excitation of vibrations at resonance was achieved by using a pulsed laser source directly incident on the resonator. The addition of a thin Chrome layer to the resonator improved the largest optically excited amplitude of vibration by a factor of 9 compared with the uncoated resonator.

Item Type: Thesis (Doctoral)
Divisions : Theses
Authors :
Tudor, Michael John.
Date : 1988
Contributors :
Additional Information : Thesis (Ph.D.)--University of Surrey (United Kingdom), 1988.
Depositing User : EPrints Services
Date Deposited : 22 Jun 2018 14:27
Last Modified : 06 Nov 2018 16:53

Actions (login required)

View Item View Item


Downloads per month over past year

Information about this web site

© The University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom.
+44 (0)1483 300800