University of Surrey

Test tubes in the lab Research in the ATI Dance Research

Intermediate scale NMR imaging.

Bushell, Mary-Clare. (1985) Intermediate scale NMR imaging. Doctoral thesis, University of Surrey (United Kingdom)..

Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (6MB) | Preview


The design, construction and calibration of an intermediate scale NMR imaging system is described. The system is based on a 7" diameter, room temperature bore superconducting magnet at a field of 0.4T. Using selective excitation and projection reconstruction techniques, the production of density, spin-lattice and spin-spin relaxation weighted images has been achieved. An investigation of the feasibility of in-vivo tissue characterisation using NMR parameters has been carried out. Tissue characterisation using healthy animals of different ages, sex and species has shown that characterisation with the NMR parameters of T1** and T2** is feasible on a given system, where 1/T1** and 1/T2** are the spin-lattice and spin-spin relaxation rates calculated from the images assuming these rates to be mono-exponential. It is shown that the scatter in results which previously was believed by other authors to be due to biological variation is in fact due to experimentation and instrumentation, and that the biological limit has yet to be reached. The successful employment of quantitative characterisation in the observation and monitoring of diseased states is illustrated by two examples. The first shows the growth of a tumour and the second uses T1* to observe the effect of toxic drugs on the kidney. In the latter case, little evidence of damage was visible on the image. Following characterisation, it is demonstrated that it is possible to optimise an imaging sequence by careful selection of the timing parameters. Optimisation of the sequences used in this work gave an increase of upto a factor of two in the signal-to-noise ratio and increased the accuracy of the relaxation rate evaluation. Finally, a technique for obtaining a map of the spatial distribution of the molecular translational diffusion coefficient together with perfusion and flow information has been developed. These parameters may well enhance the contrast as well as providing new information on the biological system.

Item Type: Thesis (Doctoral)
Divisions : Theses
Authors :
Bushell, Mary-Clare.
Date : 1985
Contributors :
Additional Information : Thesis (Ph.D.)--University of Surrey (United Kingdom), 1985.
Depositing User : EPrints Services
Date Deposited : 22 Jun 2018 13:00
Last Modified : 06 Nov 2018 16:52

Actions (login required)

View Item View Item


Downloads per month over past year

Information about this web site

© The University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom.
+44 (0)1483 300800