Cardiac Potassium Channels: Physiological Insights for Targeted Therapy

Kamalan Jeevaratnam, DVM, MMedSc, PhD, MRCVS,1,2 Karan R. Chadda, BA1,3, Christopher L.-H. Huang, DM, DSc, FESC,3,4 and A. John Camm, MD5

Abstract
The development of novel drugs specifically directed at the ion channels underlying particular features of cardiac action potential (AP) initiation, recovery, and refractoriness would contribute to an optimized approach to antiarrhythmic therapy that minimizes potential cardiac and extracardiac toxicity. Of these, K⁺ channels contribute numerous and diverse currents with specific actions on different phases in the time course of AP repolarization. These features and their site-specific distribution make particular K⁺ channel types attractive therapeutic targets for the development of pharmacological agents attempting antiarrhythmic therapy in conditions such as atrial fibrillation. However, progress in the development of such temporally and spatially selective antiarrhythmic drugs against particular ion channels has been relatively limited, particularly in view of our incomplete understanding of the complex physiological roles and interactions of the various ionic currents. This review summarizes the physiological properties of the main cardiac potassium channels and the way in which they modulate cardiac electrical activity and then critiques a number of available potential antiarrhythmic drugs directed at them.

Keywords
potassium channels, repolarization, physiological mechanisms, currents, ion channel, drug target

Introduction
Orderly propagation of cardiac electrophysiological excitation and recovery depends on a normal sequence of cardiac action potential (AP) generation through its component myocytes. The depolarization and repolarization of AP is mediated by multiple, interacting, inward and outward currents mediated by different ion charge carriers dependent on the action of specific membrane ion channels (Figure 1). The initial depolarization phase takes the form of a rapid upstroke and is mainly driven by inward Na⁺ current (INa) through voltage-gated sodium channels (Naᵥ1.5). The succeeding plateau phase is dominated by inward Ca²⁺ current (ICa). The resulting entry of extracellular Ca²⁺ induces release of sarcoplasmic reticular Ca²⁺ stores, thereby activating excitation–contraction coupling. Repolarization, ultimately returning the membrane to the resting potential, is principally driven by outward current through voltage-gated K⁺ channels (Kᵥ). K⁺ channel activity is thus a principal determinant of AP duration (APD) as it limits the depolarization duration and therefore both the time course of the Ca²⁺-mediated contraction and the refractory period. There are numerous and diverse K⁺ channels types, each with particular kinetic and voltage-dependent properties. These result in numerous and diverse current contributions, each with specific roles at different phases of repolarization. Together these determine the relatively prolonged but finely tuned repolarization time course and the repolarization reserve following recovery of the resting membrane potential. The repolarization reserve refers to the partly overlapping function of these currents, namely, IKr, IKs, and IK1, that gives a limited level of redundancy to the system. The kinetics of repolarization varies greatly with cardiac region and species. This reflects variations in the occurrence and density of the different K⁺ channel subtypes. All these characteristics suggest that explorations of K⁺ channels may yield a useful group of pharmacological targets for arrhythmic conditions.

1 Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
2 School of Medicine, Perdana University–Royal College of Surgeons Ireland, Serdang, Selangor Darul Ehsan, Malaysia
3 Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
4 Division of Cardiovascular Biology, Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
5 Cardiac Clinical Academic Group, St George’s Hospital Medical School, University of London, Cranmer Terrace, London, United Kingdom

Corresponding Author:
Kamalan Jeevaratnam, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7AL, United Kingdom.
Email: drkamalanjeeva@gmail.com
Potassium Channels

K⁺ channels represent the most functionally diverse cardiac ion channel type.3-6 Together, they tightly regulate cardiac repolarization, thus ensuring stable and consistent AP signaling. The different K⁺ channel types have overlapping functions,2,7 resulting in some degree of functional redundancy,2 which in turn contributes to repolarization reserve. Table 1 summarizes their encoding genes with their chromosomal locations and the structural properties of their pore-forming α- and accessory β-subunits. The α-subunit of different K⁺ channel types all possess a conserved pore-forming region allowing K⁺ movement across the plasma membrane down an electrochemical gradient possessing a selective permeability to K⁺ attributable to a specific structural motif. They may also exhibit gating mechanisms responsive to membrane depolarization and ligand-binding sites whose occupancy could alter channel conformation. Finally, individual monomeric α-subunits may assemble into functional dimers or tetramers due to the presence of one or more subunit-assembly domains.6,8-10 K⁺ channel α-subunits fall into 3 structural types based on subunit topology (Figure 2). The first has 1 pore-forming region with 6 or 7 transmembrane regions (Figure 2A), the second has 1 pore-forming region and 2 transmembrane regions (Figure 2B), and the third has 2 pore-forming and 4 transmembrane regions (Figure 2C).5,6,10

K⁺ channel β-subunits encompass many molecular groups, such as adenosine triphosphate (ATP)–binding cassette transport-related proteins (eg, sulfonurea receptors) for inward rectifiers, cytoplasmic proteins (KChIP, KChAP, and Kir6.1-3), and single transmembrane spanning proteins (minK).10 These β-subunits form complexes with the α-subunits and can modify the channel’s functional properties. For example, K⁺ β-subunits can alter channel trafficking and the kinetics of current activation and inactivation when interacting with K₁,1.5,11 More specifically, K₁, β2.1 and K₁, β4.1 behave as chaperone proteins.12 Furthermore, the N-terminus of K₁, β1.2 and K₁, β1.3 has an inactivation domain resembling the inactivation particle of the α-subunit, allowing it to modulate channel inactivation.12-14

Table 1. Molecular Details and Activation Mechanisms of the Cardiac Potassium Channels.2

<table>
<thead>
<tr>
<th>Current</th>
<th>Gene</th>
<th>Chromosomal Location</th>
<th>Associated Protein</th>
<th>Type of Subunit</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{cat}</td>
<td>KCND3</td>
<td>1p13.2</td>
<td>K₄.3</td>
<td>α</td>
</tr>
<tr>
<td>I_{cat}P</td>
<td>KCNIP2</td>
<td>10q24.32</td>
<td>KCHIP2</td>
<td>β</td>
</tr>
<tr>
<td>I_{cat}A</td>
<td>KCNE3</td>
<td>11q13.4</td>
<td>MirP2</td>
<td>β</td>
</tr>
<tr>
<td>I_{cat}N</td>
<td>KCNA4</td>
<td>11p14.1</td>
<td>K₆.1</td>
<td>α</td>
</tr>
<tr>
<td>I_{K₄}</td>
<td>KCNQ1</td>
<td>11p15.5-p15.4</td>
<td>K₇.1.1/K₉.1LQT1</td>
<td>α</td>
</tr>
<tr>
<td>I_{K₆}</td>
<td>KCNE1</td>
<td>21q22.12</td>
<td>minK</td>
<td>β</td>
</tr>
<tr>
<td>I_{K₇}</td>
<td>AKAP9</td>
<td>7q21.2</td>
<td>AKAP-9</td>
<td>β</td>
</tr>
<tr>
<td>I_{K₈}</td>
<td>KCNH2</td>
<td>7q36.1</td>
<td>K11.1/IHERG</td>
<td>α</td>
</tr>
<tr>
<td>I_{K₉}</td>
<td>KCNE2</td>
<td>21q22.11</td>
<td>MirP1</td>
<td>β</td>
</tr>
<tr>
<td>I_{K₁}</td>
<td>KCNJ2</td>
<td>17q24.3</td>
<td>K₁.2.1/IRK1</td>
<td>α</td>
</tr>
<tr>
<td>I_{K₁}</td>
<td>KCNJ12</td>
<td>17p11.2</td>
<td>K₁.2.2/IRK2</td>
<td>α</td>
</tr>
<tr>
<td>I_{K₁ATP}</td>
<td>KCNJ8</td>
<td>12p12.1</td>
<td>K₆.1</td>
<td>α</td>
</tr>
<tr>
<td>I_{K₄ATP}</td>
<td>KCNJ11</td>
<td>11p15.1</td>
<td>K₆.2</td>
<td>α</td>
</tr>
<tr>
<td>I_{K₅ACh}</td>
<td>ABC9</td>
<td>12p12.1</td>
<td>SUR2A/SUR2B</td>
<td>α</td>
</tr>
<tr>
<td>I_{K₅ACh}</td>
<td>KCNA5</td>
<td>12p12.32</td>
<td>K₁.5</td>
<td>α</td>
</tr>
<tr>
<td>I_{K₅ACh}</td>
<td>KCNABI-B3</td>
<td>N/A</td>
<td>K₁β1-3</td>
<td>β</td>
</tr>
<tr>
<td>I_{K₅ACh}</td>
<td>KCNJ3</td>
<td>2q24.1</td>
<td>K₉.3.1/GIRK1</td>
<td>α</td>
</tr>
<tr>
<td>I_{K₅ACh}</td>
<td>KCNJ3</td>
<td>11q24.3</td>
<td>K₉.3.4/GIRK4</td>
<td>α</td>
</tr>
</tbody>
</table>

Abbreviations: Kᵢ, inward rectifier K⁺ current; I_{ACH}, acetylcholine-activated inward-rectifier K⁺ current; I_{K₁ATP}, ATP-sensitive K⁺ current; K₁, rapid component of the delayed rectifier K⁺ current; K₆, slow component of the delayed rectifier K⁺ current; I_{K₆ATP}, ultrarapid component of the delayed rectifier K⁺ current; I_{K₆ATP}, fast transient outward K⁺ current; I_{K₆ATP}, slow transient outward K⁺ current.

*SUR2A and SUR2B are splice variant of ABCC9 and considered as cardiac (SUR2A) and vascular (SUR2B) isoforms.

Figure 1. The ventricular action potential as a paradigm for cardiac electrophysiological activity. In the resting state, the voltage of the cell intracellular space is negative to the external environment. This reflects its higher K⁺ but lower Na⁺ and Ca²⁺ concentrations and its lower membrane permeability to Na⁺ and Ca²⁺ in comparison to K⁺. K⁺ efflux from the cell is then controlled by the inward rectifier K⁺ channel (Iₖ₁). When excitation threshold is reached, a large Na⁺ influx (Iₙa) into the cell through Na⁺ channels produces phase 0 depolarization. This is followed by activation of fast and slow transient outward K⁺ currents (I_{Kᵢ1} and I_{Kᵢ2}, respectively) mediating a K⁺ efflux driving a rapid phase 1 repolarization. There is also an activation of a depolarizing inward Ca²⁺ current through L-type Ca²⁺ channels (I_{CaL}), which initiates excitation contraction coupling. The reduced membrane K⁺ permeability due to Iₖ₁ rectification combined with Iₙa maintains the action potential phase 2 plateau phase. Phase 3 repolarization is driven by K⁺ efflux through the rapid and slow delayed rectifier K⁺ channels (Iₖᵢ and Iₖᵢ, respectively), as well as Iₖᵢ. At the end of phase 3, the Na⁺ and Ca²⁺ that have accumulated in the cells are removed by the Na⁺, K⁺ pump, and the Na⁺, Ca²⁺ exchanger (NCX). The atrial action potential shows greater contributions to recovery from the ultrarapid delayed rectifier outward currents (I_{Kᵦᵢ}) and acetylcholine-activated inward rectifying K⁺ channel (I_{KACH}). Adapted with permission from Huang.1
Cardiac Potassium Currents

Cardiac K⁺ channels vary in their permeability properties, membrane potential dependence, and their opening or closing activation and inactivation kinetics. The major currents are classified into the transient outward currents, delayed rectifier outward currents, and the inward rectifiers (Figure 3). Advances in electrophysiological and molecular biology techniques have demonstrated additional currents that may fall outside this basic classification. Some brief notes on the major cardiac K⁺ currents, their role in the cardiac AP, and their functional importance follow.

Transient outward K⁺ (Ito1) currents. When first described, the transient outward currents (Ito1) were attributed to 2 distinct channels, one blocked by 4-aminopyridine (4-AP) and unaffected by extracellular Ca²⁺ (Ito1) and the other not blocked by 4-AP but sensitive to Ca²⁺ (Ito2).⁶ Ito drives the initial rapid repolarization phase of the AP. Regions with shorter APDs, such as the epicardium, right ventricle, and septum, have higher Ito expression. It was later discovered that Ito2 is a Cl⁻ rather than a K⁺ current.¹⁵ Further characterizations subdivided Ito1 into fast (Itof) and slow (Itos) currents (Figure 3). Itof predominates in the atria, whereas both Itof and Itos occur in the ventricles.¹⁶ While Itos requires longer recovery times, its classification as “slow” is relative only to Itof. Thus, both Itof and Itos channels activate and inactivate rapidly in comparison to the corresponding processes in other K⁺ channels.¹² Due to differences in the biophysical properties of Itof and Itos, the existence of molecular heterogeneity between these 2 channels has been previously suggested.¹⁵

Ultrarapid delayed rectifier currents (Ikur). In addition to Ito, the ultrarapid delayed rectified K⁺ current (Ikur) plays a role in the initial rapid phase 1 AP repolarization. Ikur activates rapidly in under 10 milliseconds at voltages in the plateau range and deactivates slowly over the course of the AP.¹⁷-¹⁹ Ikur is the predominant delayed rectifier current for the atria and thus results in the shorter APD seen in the atria compared to the ventricles.¹⁰,¹⁶,¹⁷,¹⁹ Where Ikur is present, its channels are not evenly distributed over the myocyte surface but instead found at high densities in the intercalated disk.⁶ This pattern of distribution is often disrupted after cardiac ischemic damage.¹⁰ The selective presence of Ikur in the atria makes it an interesting target for atria selective therapy, whereby inhibition of Ikur would prolong the APD in the atria but not the ventricles.⁴

Rapid delayed rectifier K⁺ currents (IKr). The voltage-gated rapid delayed rectifier outward K⁺ current (IKr) is critical to phase 3 repolarization. It shows a relatively rapid activation with depolarization. However, its inactivation rate is around 10 times faster than its activation rate due to voltage-dependent C-type inactivation. This renders it relatively nonconducting in phases 1 and 2 of the cardiac AP.²²,²⁴ Thus, although termed a delayed rectifier current, it also shows an inward rectification property at positive potentials.²²,²⁴ However, with the end of phases 1 and 2, as the membrane potential becomes negative to 0 mV, IKr becomes activated once again, but the deactivation during this phase is much slower. This results in a large outward K⁺ efflux during phase 3 repolarization.²,¹⁰ IKr is found in both human atria and ventricles but is differentially expressed with higher levels in the left atrium and ventricular endocardium.¹⁶

Slowly activating delayed rectifier K⁺ current (IKs). Cardiac repolarization is also influenced by a third, slowly activating delayed rectifier K⁺ current (IKs). IKs slowly activates at potentials positive to −20 mV. Unlike IKr, IKs barely inactivates and consequently accumulates over phase 2 repolarization, significantly influencing phase 3 repolarization.² This feature of IKs is particularly important during atrial and ventricular APs of long duration. It is also involved in APD shortening during physiological increases in heart rate. An increase in heart rate thus reduces the time required for IKs inactivation. In consequence, more IKs accumulates, leading to a steeper drop in the
repolarization rate. Blocking I_{Ks} results in an APD prolongation at increased heart rates. Inhibition of I_{Ks} will increase the vulnerable window for reactivation of voltage-gated Ca$^{2+}$ channels, thereby increasing the risk of arrhythmic trigger events. I_{Ks} is found in all cardiac cell types, but its expression is significantly reduced in the mid-myocardial wall; this accounts for the long APD seen in this region.

Inward rectifier K$^+$ current (I_{K1}). The inward rectifier K$^+$ current (I_{K1}) functions over a narrow membrane potential range. Its rectifying property results in a marked reduction in I_{K1} conductance at positive, depolarized, membrane potentials and an increase in I_{K1} at negative membrane potentials, with the effect of stabilizing the membrane resting potential close to the K$^+$ equilibrium potential (E_K). The channel mediating I_{K1} does not show voltage-dependent gating and does not possess a voltage sensor. Nevertheless, I_{K1} modulation associated with movement of Mg$^{2+}$ and polyamines results in an indirect sensitivity to voltage. Between phase 0 and phase 2 of the AP, the membrane potential is more positive than -20 mV, and at this potential, there is no conductance of I_{K1} as the channel is inhibited by Mg$^{2+}$ and polyamines. The resulting marked inward rectification property limits the outward current at these positive potentials. This in turn minimizes the inward depolarizing current, which confers energetic efficiency for AP generation as it minimizes changes to ionic gradients that would need to be restored. As the potential returns to more negative values (typically around -40 mV), the inhibition by Mg$^{2+}$ and polyamines is reversed. I_{K1} conductance then resumes and this contributes to phase 3 cardiac repolarization. I_{K1} occurs in both atria and ventricles and is thereby involved in setting their resting membrane potentials. Channels conducting I_{K1} are expressed in greater density in the ventricles, making the ventricles less susceptible to pacemaker influence.

Acetylcholine-activated K$^+$ current (I_{KACH}). The inwardly rectifying acetylcholine (ACh)-activated K$^+$ current (I_{KACH}) is regulated by G proteins rather than voltage gating. Cardiac parasympathetic nerve endings release ACh, thereby activating M2 muscarinic receptors. This reduces the depolarizing effect of the pacemaker current (I_{f}), reducing firing rates of pacemaker cells and in turn reducing heart rate. Acetylcholine also opens muscarinic-sensitive I_{KACH} channels allowing the inward rectification of K$^+$. The inward rectifying current shortens the AP and hyperpolarizes the membrane potential. Membrane hyperpolarization reduces the rate at which the sinoatrial and atrioventricular (AV) nodes drive pacemaker depolarization in addition to reducing AV conduction velocity. I_{KACH} is thought to be specific to the atria, but there has been a suggestion that it may exist both in the atria and ventricle, but with densities 6 times greater in the atria than the ventricles.

ATP-activated K$^+$ current (I_{KATP}). The ATP-activated K$^+$ current (I_{KATP}) occurs at both the sarcolemmal (sarc-K_{ATP}) and mitochondrial inner membrane (mito-K_{ATP}) of cardiomyocytes. The sarc-K_{ATP} channels are highly expressed in cardiomyocytes and are composed of $K_{r}6.2$ and SUR2A subunits. There may also be contributions from $K_{r}6.1$ and SUR1. In contrast, although the subunits of mito-K_{ATP} channels have been difficult to identify due to the challenge of isolating pure...
mitochondrial membrane fractions, ROMK2 pore-forming subunits and SUR2 regulatory subunits have been suggested to contribute.46,47

Both channels are controlled by ATP and are thus directly responsive to the cell’s metabolic status, thereby influencing cell membrane potential.48-51 I_{KATP} is inhibited by physiological intracellular ATP levels, but this reverses with ATP depletion. Thus, under normal energetic circumstances, there is limited I_{KATP} current. However, under both physiological and pathological conditions that reduce ATP, there is increased I_{KATP} current that is essential for adaptation to stress. For example, compared to wild-type controls, mice lacking K_c,2-containing K_{ATP} channels perform less well in acute treadmill exercise testing.38 The increased I_{KATP} has a cardioprotective role in ischemia by shortening the cardiac AP, thus limiting calcium influx into the cytosol.39-41 Specifically, studies have suggested that mito-K_{ATP} rather than sarco-K_{ATP} channel opening has an energy-modulating property that confers cardioprotection in ischemic hearts.42,43

In some situations, the I_{KATP}-mediated AP shortening and corresponding heterogeneities in repolarization can create a substrate for cardiac reentry arrhythmia. In other situations, K_{ATP} channel openers have been described to have antiarrhythmic effects,44-48 and evidence suggests that activation and block of K_{ATP} can be pro- or antiarrhythmic depending on the arrhythmogenic mechanism in different animal models.49 For example, selective sarcolemma K_{ATP} channel blockers, such as HMR 1883, confer antiarrhythmic effects in the short term,50 although this could be metabolically disadvantageous in the long term due to the abolished adaptive response to stresses. Finally, it is important to note that the channel involved in the conductance of I_{KATP} is also thought to be involved in the regulation of smooth muscle tone and insulin secretion in pancreatic β-cells.51

Other K^+ channel families: Ca^{2+}-activated K^+ current (I_{KCa}), 2-pore domain K^+ current (I_{K2p}), and hyperpolarization-activated cyclic nucleotide-gated channels. Recently, several further currents have been characterized. The Ca^{2+}-activated K^+ current, also known as the small conductance Ca^{2+}-activated K^+ (SK) current (I_{KCa}), and the 2-pore domain K^+ current (I_{K2p}) have attracted considerable physiological and pharmacological interest. I_{KCa} was initially thought to not exist in the human heart.51 However, subsequent studies demonstrated the presence of I_{KCa} with a higher density in the atria than the ventricle. Various subtypes of Ca^{2+}-activated K^+ channels exist in different tissues; the channel subtype conducting the cardiac I_{KCa} is the SK channel.51,52 In neuronal cell, SK channels that are involved in modulating the tonic firing frequency and activation of these channels cause membrane hyperpolarization, thus limiting neuronal AP firing frequency.51 In contrast, cardiac SK channels and consequently I_{KCa} are involved in late AP repolarization, controlling the resting membrane potential in human atria.52 I_{KCa} appears to not play physiologically significant roles in the ventricle.52 I_{KCa} is accordingly of particular pharmacological interest for atrial fibrillation (AF) therapy. Thus, I_{KCa} occurs during late repolarization, when the atrial AP is susceptible to irregular or abnormal excitation such as that resulting from early afterdepolarizations (EADs).51

I_{K2p} contributes to the background current, the resting membrane potential, and cellular excitability. The channel involved in the conductance of this current has no voltage dependence, but its activity is modulated by lipids, particularly fatty acids, pH, drugs, particularly local and inhalation anesthetics, and membrane stretch.53,54 These mediators act upon the channel via secondary messenger phosphorylation.55 I_{K2p} is a background current that persists through all phases of the cardiac AP. It thus stabilizes the membrane potential toward E_m. I_{K2p} may also prevent the occurrence of EADs, and it may be involved in fine-tuning of Na$^+$ channel availability for phase 0 depolarization.56 The current has been found to occur selectively in the atria and AV node, thereby making it a target for drug development.57-59 Although not entirely new but only recently well characterized, the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel is instrumental in conducting the inward funny current (I_f) in the heart. The channel is activated by the hyperpolarization of the membrane and is additionally stimulated by intracellular cyclic nucleotides.60,61 The generation of I_f is attributable to the inward permeability of both Na$^+$ and K$^+$ and occurs at threshold close to the resting membrane potential.62 Although the HCN channel under physiological circumstances conducts both Na$^+$ and K$^+$, the primary sequence of the HCN pore region suggests that it is primarily related to a selective potassium channel.63 In certain pathological conditions such as AF and myocardial infarction, I_f is increased unusually outside the pacemaker cells, leading to increased propensity to arrhythmia. Thus, targeting the I_f in such pathological conditions has proven to be therapeutically advantageous.64

Cardiac K^+ Channel as Targets for Drug Development

Although there have been significant recent advances in the development and use of cardiovascular devices and procedures directed at arrhythmic conditions, antiarrhythmic drugs continue to be important whether by themselves or as adjunct therapy to such interventions. These include situations involving acute management of potentially fatal arrhythmic events, particularly where such procedures are contraindicated. Yet progress in antiarrhythmic drug development has been relatively limited. This likely reflects a lack of understanding of cardiac arrhythmic mechanisms. However, recent developments of our understanding of the role of the ion channels in normal AP generation have led to a specific interest into ion channels and their associated currents whose abnormal activity potentially leads to arrhythmia. This would encourage interest in the development of cardiac ion channel activator or blockers directed at modulating the cardiac AP or its refractory period. Introduction of drugs acting specifically on ion channels would optimize the efficacy of therapeutic actions.
on arrhythmogenic tendency, while minimizing problems arising from potential cardiac and extracardiac toxicity. K⁺ channels play a vital role in cardiac AP repolarization and thus naturally form potential targets for the development of ion channel-specific antiarrhythmic therapy, such as for AF. However, a limitation of this approach is that arrhythmic conditions, such as AF, are heterogeneous and the efficacy of targeting ion channels varies according to the cause and extent of the arrhythmia.

This is complicated by the fact that in various physiological and pathological conditions, remodeling of K⁺ channel expression can occur, which can alter the AP and increase the risk of sudden cardiac death.¹ For example, AF is maintained and progressed partly due to electrical remodeling, mediators APD shortening.⁶⁶ Thus, in chronic AF, there is upregulation of I₁K₁, Iₖs, and IₖCaP3.1, which offsets the possible downregulation of Iₖur and Iₜo.⁶⁷⁶⁹ Nevertheless, the experimental evidence for the reduction in Iₖur during remodeling is conflicting, as some reports suggest reduced Iₖur density²⁰⁷¹ and others suggest no change.²¹²² It has been suggested that receptor-activated IₖACH (τIₖACH) mediates AF induced by vagal stimulation, while constitutive IₖACH (c IₖACH) develops in the time course of AF remodeling.⁶⁷⁷⁴

In physiological cardiac hypertrophy, induced by chronic exercise, for example, there is an increase in Iₖ density.²³ This contrasts with pathological cardiac hypertrophy caused by pressure overload where a reduced Iₖ density is noted that was attributable to cellular hypertrophy rather than gene expression changes in IₖT₁ and Iₖ₁.⁷⁶ In heart failure, AP prolongation is associated with downregulation of several genes, leading to reduced IₖT₁, Iₖs, Iₖr, and IₖK₁.⁶⁵⁷⁷⁷⁸ Considering the changes in K⁺ channel expression in remodeling is clinically important as the sensitivity and efficacy of blocking these channels will change.

Table 2 outlines selected drugs that have been experimentally proven to target different K⁺ channels, using either native cardiac myocytes or human cell line expression systems. Some of these drugs presently in clinical use have been primarily developed for other ion channels such as the Na⁺ or Ca²⁺ cardiac ion channel but have corresponding effects on K⁺ channels. Several drugs have been proposed to be selective to specific K⁺ channels, such as A935142, XEN-D0103, and XEN-D0101. However, despite promising experimental findings, many of these drugs have not progressed to clinical use. This may be attributable to limitations associated with experimental studies. Expression systems can often produce off-target effects or nonspecific interactions which may mask the true effect of these drugs. Additionally, expression systems may run the risk of either overexpressing or underexpressing the channel of interest. On the other hand, native cardiac myocytes, while more physiologically representative, may not provide the right platform for the study of specific targets. Additionally, acquisition of viable native cardiac myocytes from a minimally heterogeneous population remains a challenge, and it is widely accepted that channel functions can differ by gender and age. Consequently, while experimental studies may suggest potentially promising options to selectively target K⁺ channels, the translational capacity of such studies remains limited.

Furthermore, these activators and blockers often target more than 1 K⁺ channel species and thus are not entirely specific.¹⁰¹²² However, a large proportion of these drugs also typically target Iₖr, (known to be present in all cardiac regions) and as such do not constitute ideal candidates for targeted therapy. Nevertheless, mechanisms of cardiac arrhythmia are likely to be region dependent. Drugs that may be antiarrhythmic in some cardiac regions may potentially be pro-arrhythmic in others. Thus, the presence of atrial-specific K⁺ channels has provided focus on developing drugs that could specifically

Table 2. Selected Pharmacological Agents Affecting the Human K⁺ Channels.

<table>
<thead>
<tr>
<th>Current</th>
<th>Pharmacological Agent (Expression System), Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activators</td>
<td></td>
</tr>
<tr>
<td>Iₖr</td>
<td>A-935142 (HEK),⁷⁹ ICA-105574 (HEK),⁸⁰ NS1643 (HEK),⁸¹ PD-118057 (HEK)⁸²</td>
</tr>
<tr>
<td>Iₖs</td>
<td>Ephedrine (HEK),⁸³ Tanshinone IIA (HEK)⁸⁴</td>
</tr>
<tr>
<td>IₖCaP</td>
<td>NS1619 (HEK)⁸⁵</td>
</tr>
<tr>
<td>Blockers</td>
<td></td>
</tr>
<tr>
<td>Iₜo</td>
<td>Chromanol 293B (nHVM),⁶⁶ Flecainide (nHAM)⁶⁷⁷⁸</td>
</tr>
<tr>
<td>Iₖur</td>
<td>Amiodarone (HEK),⁸⁸ Bepridil (HEK),⁸⁸ DPO-1 (nHAM),⁸⁹ M-K-0448 (nHAM),⁹⁰ NIP-142 (nHAM),⁹¹ Papaverine (nHAM),⁹₂ Pimozone (nHAM),⁹₃ Sertindole (HEK),⁹₄ XEN-D0103 (nHAM)⁹₅</td>
</tr>
<tr>
<td>IₖCa</td>
<td>Cocaine (HEK),⁹₆ Fluvoxamine (HEK),⁹₇</td>
</tr>
<tr>
<td>IₖCaP</td>
<td>Ketoconazole (HEK),⁹₈ Ketanserin (HEK),⁹₉</td>
</tr>
<tr>
<td>Activators</td>
<td></td>
</tr>
<tr>
<td>IₖCa</td>
<td>Ziprasidone (HEK)¹⁰⁰</td>
</tr>
<tr>
<td>IₖCa</td>
<td>HMR 1556 (HEK),¹⁰¹ SKF-96365 (HEK)¹⁰²</td>
</tr>
<tr>
<td>IₖCaP</td>
<td>NIP-151 (HEK),¹⁰³ U73122/U73343 (HEK)¹⁰⁴</td>
</tr>
<tr>
<td>IₖCaP</td>
<td>5-Hydroxydecanoate (HEK),¹⁰⁵ HMR 1098 (HEK)¹⁰⁵</td>
</tr>
<tr>
<td>IₖCaP</td>
<td>AVE-0118 (nHAM),¹⁰⁶ Acacetin (nHAM)¹⁰⁷</td>
</tr>
<tr>
<td>IₖCaP</td>
<td>Ambisamide (nHAM),¹⁰⁸¹⁰⁹ Aminopyridine (nHAM),¹⁰⁷ Diliazem (nHAM)¹¹⁰</td>
</tr>
<tr>
<td>IₖCaP</td>
<td>Docosahexaenoic acid (nHAM),¹¹¹ Eicosapentaenoic acid (nHAM),¹¹¹ Nifedipine (nHAM),¹¹¹ Quinidine (nHAM),¹¹¹ Raloxifene (nHAM),¹¹¹ US0488 H (nHAM),¹¹³ XEN-D0101 (nHAM),¹¹⁴ Vernakalant (RSD1235) (HEK)¹¹⁵</td>
</tr>
<tr>
<td>IₖCaP</td>
<td>Propafenone (nHAM)¹¹⁶</td>
</tr>
<tr>
<td>IₖCaP</td>
<td>Clotrimizole (nHAM)¹¹⁷</td>
</tr>
<tr>
<td>IₖCaP</td>
<td>Azimilide (nHAM)¹¹⁸</td>
</tr>
<tr>
<td>IₖCaP</td>
<td>Cisapride (HEK),¹¹⁹ Verapamil (nHAM, HEK)¹²⁰¹²¹</td>
</tr>
<tr>
<td>IₖCaP</td>
<td>Sotalol (nHAM)²¹¹³⁰</td>
</tr>
</tbody>
</table>

Abbreviations: nHAM, native human atrial myocyte; HEK, human embryonic kidney; nHVM, native human ventricular myocyte; Iₖi, inward rectifier K⁺ current; Iₖr, rapid component of the delayed rectifier K⁺ current; IₖACH, acetylcholine-activated inward rectifier K⁺ current; IₖCaP, ATP-sensitive K⁺ current; IₖCa, ultrarapid component of the delayed rectifier K⁺ current; Iₖt, transient outward K⁺ current; IₖCGC, small conductance Ca²⁺-activated K⁺ current.

*Primary Na⁺ channel blocker.

*Primary Ca²⁺ channel blocker.
increase refractory periods, thus preventing atrial reentry arrhythmia, which is the most common mechanism for AF.123 Of ion channels specific to the atrium that might offer specific therapeutic targets, the channel conducting \(I_{\text{Kur}}\) tends to prolong repolarization and effective refractory period (ERP) without altering QT intervals.124,125 The experimental drugs AVE0118 and XEN-D101 are thought to be \(I_{\text{Kur}}\) selective blockers with both prolonging APD in atrial tissue from patients with permanent AF in common with the known \(I_{\text{Kur}}\) blocker 4-AP.106-129 However, a subsequent “first-in-human” study using the highly selective \(I_{\text{Kur}}\) blocker MK-0448 (N-(6-[(1S)-1-(4-fluorophenyl)-2,2-di(pyridine-3-1) ethyl]pyridine2yl) methane sulfonamide) did not reveal any increase in atrial ERP. This led to the conclusion that selective blocking of \(I_{\text{Kur}}\) may have limited clinical value.130 \(I_{\text{Kach}}\) channels are also atrium specific or at least predominantly occur in the atria and have minimal physiological function in the ventricle.129 Opening of the \(I_{\text{Kach}}\) channel will lead to shortening of atrial APD and thus increase the likelihood of AF. Therefore, blocking the opening of \(I_{\text{Kach}}\) channels will prevent such shortening of APD with minimal effect on ventricular APD, in turn reducing the chances of AF. Several drugs block \(I_{\text{Kach}}\), but have limited specificity. Nevertheless, selective blocking of \(I_{\text{Kach}}\) has been experimentally achieved using the compound NTC-801. The compound was found to have selective antiarrhythmic properties, achieved by prolonging the atrial ERP.131 Another potential atrial-specific therapeutic target of interest is the \(I_{\text{Kca}}\) current conducted by SK channels. The selective presence of this current in the atria has recently led to several investigative drugs being explored. NS8593 is a selective SK channel inhibitor demonstrating significant atrial antiarrhythmic effects in canine and equine experimental models. Experiments using human atrial cardiac myocytes from patients with normal sinus rhythm demonstrated reduction in \(K^+\) currents and prolongation in APD. No such changes were observed in intraventricular myocytes.52

\section*{Conclusion}

There is currently an incomplete understanding of the cellular physiological role of the various cardiac potassium currents and their interacting effects and how dysregulation of their function and expression can provide arrhythmogenic mechanisms. It is thought that the site-specific distribution of some \(K^+\) channels could allow targeted therapy to be more spatially selective. However, complex electrical remodeling events that occur in disease states may change channel expression levels to the extent that the selectivity of the drug is hindered, making even this potential therapeutic strategy challenging. Although targeting ion channels responsible for discrete parts of the cardiac AP to modulate the system towards a more physiological state has therapeutic appeal, there are inherent difficulties in developing successful drugs. This is because the ion channels targeted are functionally complex and are interdependent, thus adding a dynamic situation in which function and expression are altered depending on the cell environment. Furthermore, pathophysiological processes of arrhythmic disease may involve functional alterations in 1 or more ion channels. Such single or multiple ion channel functional abnormalities may therefore warrant corresponding use of a single or multichannel activator/blocker approach. However, this approach will only be possible if we are able to identify the specific pathophysiological process affecting individual patients (ie, is this arrhythmia disease related to a single or multichannel abnormality). Thus, although we may be able to develop single or multichannel activators/blockers, actual clinical use will be dependent on a detailed understanding of the exact arrhythmogenic mechanisms affecting individual patients, which thus far is limited. Presently, decisions to use single or multichannel activators/blockers are largely dependent on resolution of clinical signs or the actual arrhythmia rather than a therapeutic approach targeting ion channel functional abnormality. Furthermore, the availability of truly specific ion channel activators/blockers is limited as these agents tend to have off-target actions with corresponding side effects, and this limits the clinical use of selective agents. Focusing on understanding the system at a cellular physiological level through further experimental and computational modeling is needed to enable development of novel insights at a pharmacological level.

\section*{Author Contributions}

Kamalan Jeevaratnam contributed to conception and design, contributed to interpretation, drafted the manuscript, and critically revised the manuscript. Karan Raj Chadda contributed to interpretation, drafted the manuscript, and critically revised the manuscript. Christopher L-H. Huang contributed to design, contributed to interpretation, drafted the manuscript, and critically revised the manuscript. A. John Camm contributed to conception, contributed to interpretation, and critically revised manuscript. All authors gave final approval and agree to be accountable for all aspects of work ensuring integrity and accuracy.

\section*{Declaration of Conflicting Interests}

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

\section*{Funding}

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: K.J. is funded by the Fundamental Research Grant Scheme (FRGS/2/2014/SKK01/PERDANA/02/1), Ministry of Education, Malaysia and the Research Support Fund, Faculty of Health and Medical Science, University of Surrey. K.R.C. is funded by the Physiological Society, United Kingdom. C. L-H. H. is funded by the Wellcome Trust, Medical Research Council, British Heart Foundation, and McVeigh Benefaction.

\section*{ORCID iD}

Kamalan Jeevaratnam, DVM, MMedSc, PhD, MRCVS \url{http://orcid.org/0000-0002-6232-388X}

\section*{References}

