University of Surrey

Test tubes in the lab Research in the ATI Dance Research

Hydrophilic MacroRAFT-Mediated Emulsion Polymerization: Synthesis of Latexes for Cross-linked and Surfactant-Free Films

Lesage de la Haye, Jennifer, Martin-Fabiani, Ignacio, Schulz, Malin, Keddie, Joseph, D’Agosto, Franck and Lansalot, Muriel (2017) Hydrophilic MacroRAFT-Mediated Emulsion Polymerization: Synthesis of Latexes for Cross-linked and Surfactant-Free Films Macromolecules, 50 (23). pp. 9315-9328.

[img] Text
Hydrophilic MacroRAFT-Mediated Emulsion Polymerization.pdf - Accepted version Manuscript
Restricted to Repository staff only until 18 November 2018.

Download (2MB)
[img] Text
Hydrophilic MacroRAFT-Mediated Emulsion Polymerization - supporting information.pdf - Supplemental Material
Restricted to Repository staff only until 10 November 2018.

Download (1MB)

Abstract

A major drawback of conventional emulsion polymers arises from the presence of migrating low molecular weight surfactants that contribute to poor water barrier properties and low adhesion to substrates. In this paper, we demonstrate how living polymer chains obtained by reversible addition-fragmentation chain transfer (RAFT) can be used as an efficient stabilizer in emulsion polymerization, leading to the production of surfactant-free latexes, which then form crosslinked films with beneficial properties. Hydrophilic poly(methacrylic acid) (PMAA) chains obtained by RAFT performed in water are used to mediate emulsion polymerization and produce film-forming latex particles from mixtures of methyl 2 methacrylate, n-butyl acrylate and styrene. Stable dispersions of particles with sizes between 100 and 200 nm are obtained, with very low amounts of coagulum (< 0.5 wt.%). The particles are stabilized by the PMAA segment of amphiphilic block copolymers formed during the polymerization. Remarkably, low amounts of PMAA chains (from 1.5 wt.% down to 0.75 wt.%) are enough to ensure particle stabilization. Only traces of residual PMAA macroRAFT agents are detected in the final latexes, showing that most of them are successfully chain extended and anchored on the particle surface. The Tg of the final material is adjusted by the composition of the hydrophobic monomer mixture so that film formation occurs at room temperature. Conventional crosslinking strategies using additional hydrophobic co-monomers, such as 1,3-butanediol diacrylate (BuDA), diacetone acrylamide (DAAm), and (2-acetoacetoxy)ethyl methacrylate, are successfully applied to these formulations as attested by gel fractions of 100%. When particles are internally crosslinked with BuDA, chain interdiffusion between particles is restricted, and a weak and brittle film is formed. In contrast, when DAAm undergoes crosslinking during film formation, full coalescence is achieved along with the creation of a crosslinked network. The resulting film has a higher Young’s modulus and tensile strength as a result of crosslinking. This synthetic strategy advantageously yields a surfactant-free latex that can be formed into a film at room temperature with mechanical properties that can be tuned via the crosslinking density.

Item Type: Article
Divisions : Faculty of Engineering and Physical Sciences > Physics
Authors :
NameEmailORCID
Lesage de la Haye, Jennifer
Martin-Fabiani, Ignacio
Schulz, Malinm.schulz@surrey.ac.uk
Keddie, JosephJ.Keddie@surrey.ac.uk
D’Agosto, Franck
Lansalot, Muriel
Date : 17 November 2017
Identification Number : 10.1021/acs.macromol.7b01885
Copyright Disclaimer : Copyright © 2017 American Chemical Society
Uncontrolled Keywords : RAFT; Emulsion polymerization; PISA; Surfactant-free; Latex film formation; Crosslinking
Depositing User : Clive Harris
Date Deposited : 15 Nov 2017 16:13
Last Modified : 22 Mar 2018 08:57
URI: http://epubs.surrey.ac.uk/id/eprint/844930

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year


Information about this web site

© The University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom.
+44 (0)1483 300800