University of Surrey

Test tubes in the lab Research in the ATI Dance Research

Silicon implant profile control by co-implantation.

Gwilliam, Russell. (1991) Silicon implant profile control by co-implantation. Doctoral thesis, University of Surrey (United Kingdom)..

Full text is not currently available. Please contact sriopenaccess@surrey.ac.uk, should you require it.

Abstract

This thesis reports the development of two rapid thermal annealing systems, one based on resistive heating of graphite strips, the second on heating from incoherent lamp radiation. Electrical activation studies of silicon implanted gallium arsenide has been used to compare the systems with those available commercially. It has been shown that commercial systems can yield temperature measurement errors in excess of 50° C. Furthermore, the systems have been used to investigate the electrical activation of silicon implants co-implanted with other ions into gallium arsenide, with a view to either, improving the activation of the silicon for high doses, or modifying the carrier profile shape for low doses. A factor of two improvement in the electrical activation of high dose silicon implants has been achieved by the co-implantation of phosphorus, with a reduction in the annealing temperature required to achieve a given activity also being observed. An alternative processing methodology is also proposed for through- nitride implantation. Phosphorus implants have also been used to "pre-amorphise" substrates to prevent ion channelling. Providing the damage is maintained below a certain level, improvements in profile shape can be obtained. Other compensation techniques using boron and carbon implants have also been investigated. Boron has been demonstrated to provide improved carrier activation for low implant doses, with thermally stable profile modification capability as the dose is increased. The electrical activation of single carbon implants (40% maximum) is below the level of compensation of silicon implants (approximately 90%) co-implanted with carbon. This in turn means carbon is excellent for profile modification as no p-type layer is created beyond the donor implant.

Item Type: Thesis (Doctoral)
Divisions : Theses
Authors :
NameEmailORCID
Gwilliam, Russell.UNSPECIFIEDUNSPECIFIED
Date : 1991
Contributors :
ContributionNameEmailORCID
http://www.loc.gov/loc.terms/relators/THSUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Depositing User : EPrints Services
Date Deposited : 09 Nov 2017 12:18
Last Modified : 09 Nov 2017 14:48
URI: http://epubs.surrey.ac.uk/id/eprint/844545

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year


Information about this web site

© The University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom.
+44 (0)1483 300800