University of Surrey

Test tubes in the lab Research in the ATI Dance Research

Dimensions of meta-conceptual change learning in science education: The role of metacognition in the durability and contextual use of primary pupil's conceptions.

Georghiades, Petros. (2001) Dimensions of meta-conceptual change learning in science education: The role of metacognition in the durability and contextual use of primary pupil's conceptions. Doctoral thesis, University of Surrey (United Kingdom)..

Full text is not currently available. Please contact sriopenaccess@surrey.ac.uk, should you require it.

Abstract

The problems of pupils exhibiting limited ability to use school-learned science in contexts other than the ones in which learning takes place, and of pupils forgetting what they learn in very short time after initial instruction, are two very important problems for classroom practitioners. This thesis is a study of the way these problems can be confronted by incorporating situated metacognition in the learning environment of science, it draws upon four overlapping areas: conceptual change learning (CCL) is the broad subject area that sets the epistemological background, and metacognition, context, and durability of pupils' conceptions are the three specialised fields under scrutiny. Two important notions emerge from this study. First, is the introduction of the concept-life and decay model (CLD), which is a theoretical model for representing the nature of CCL and the impact of time on pupils' conceptions. Second, situated metacognition is advocated as a new approach to practicing metacognition by means of the metacognitive instances approach, implemented at selected points of the teaching sequence. The research presented in this thesis was implemented with Year 5 pupils in primary schools in Cyprus, studying the subject-unit 'Current electricity', and followed a quasi-experimental design. Data were collected by means of tests, interviews and classroom observation, during the main four-week intervention period of this research and at three follow-up instances, one week, two months and eight months after completion of teaching. Results showed that pupils who practiced situated metacognition in general maintained deeper understanding of taught concepts over a period of one school year, compared to their counterparts from the comparative group, and performed better in exercises requiring the use of their conceptions in different contexts. A number of implications for science education, in general, and the teaching of electricity in primary science, in particular, emerge from the outcomes of this study.

Item Type: Thesis (Doctoral)
Divisions : Theses
Authors :
NameEmailORCID
Georghiades, Petros.UNSPECIFIEDUNSPECIFIED
Date : 2001
Contributors :
ContributionNameEmailORCID
http://www.loc.gov/loc.terms/relators/THSUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Depositing User : EPrints Services
Date Deposited : 09 Nov 2017 12:18
Last Modified : 09 Nov 2017 14:47
URI: http://epubs.surrey.ac.uk/id/eprint/844425

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year


Information about this web site

© The University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom.
+44 (0)1483 300800