University of Surrey

Test tubes in the lab Research in the ATI Dance Research

Dynamics and control of satellite constellations and formations in low earth orbit.

Kormas, Tamas. (2004) Dynamics and control of satellite constellations and formations in low earth orbit. Doctoral thesis, University of Surrey (United Kingdom)..

Full text is not currently available. Please contact sriopenaccess@surrey.ac.uk, should you require it.

Abstract

The topic of this research focuses on developing analytic models, simulations and relative orbit control for multiple spacecraft in constellations or formations in Low Earth Orbits (LEO). The motivation for this research lies in the recent development and focus on describing the relative motions of spacecraft flying in LEO and also the numerous advantages proposed formation flying missions could provide. Since the complexity of modelling, the dynamics and executing control on a group of satellites is far greater than that of one satellite, this research only investigates a small number of very specific problems in this area. The focus of the approach is to develop the orbit modelling of a single satellite, to describe the relative motion of multiple satellites in neighbouring orbits, using the analytical epicycle equations. The first part of the thesis focuses on the problem of formation and constellation assembly, where inclination differences in the initial conditions causes drift in the relative phases of the satellites. After deriving an analytical model and executing firings, real world data is shown to prove the accuracy of the method. In the second part, the modelling of relative orbits of kilometre-sized satellite formations is investigated. Such formations could only be viable if accurate description and prediction of the relative orbits of the spacecraft is available. The analytic formulation also gives a better understanding of ways to establish formations and maintain them with the least fuel requirement. Finally, in the third part, the orbit acquisition, phasing and maintenance of constellations of satellites is discussed in the context of Surrey's Disaster Monitoring Constellation. The centralized control scheme allows for global optimization and fuel balancing algorithms, which can also be used for formation flying as well. The results presented show that small satellite formations and constellations benefit significantly from an analytical description. Reformulating the epicycle equations for multi-satellite applications provides satisfactory accuracy for most small satellite formation missions. Key words: spacecraft formation flying, satellite constellations, epicycle.

Item Type: Thesis (Doctoral)
Divisions : Theses
Authors :
NameEmailORCID
Kormas, Tamas.UNSPECIFIEDUNSPECIFIED
Date : 2004
Contributors :
ContributionNameEmailORCID
http://www.loc.gov/loc.terms/relators/THSUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Depositing User : EPrints Services
Date Deposited : 09 Nov 2017 12:17
Last Modified : 09 Nov 2017 14:46
URI: http://epubs.surrey.ac.uk/id/eprint/844273

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year


Information about this web site

© The University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom.
+44 (0)1483 300800