University of Surrey

Test tubes in the lab Research in the ATI Dance Research

Modelling of flow and colloids in porous media.

Humby, Steven John. (1999) Modelling of flow and colloids in porous media. Doctoral thesis, University of Surrey (United Kingdom)..

[img]
Preview
Text
10148682.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (6MB) | Preview

Abstract

Porous media and transport within them play technically important roles in many of our industries. However, classical mean field engineering descriptions used to model the complex interactions between the porous medium and the fluids and colloids within it are not completely satisfactory. The design capability of the engineering community would be greatly enhanced if these models could be more clearly linked to the mesoscopic details of the fluid/suspension/porous solid systems. This would allow cheaper, yet quicker, and more innovative design and optimization of systems involving fluid/suspension flow in porous media. Modern techniques for the explicit mesoscopic modelling of porous media, and fluid and colloid transport within them, have developed to a point where their combination in a single simulation tool can be contemplated. However, at present, no such tool exists. The aim of this study was to design and test a comprehensive simulation tool that could accurately model the transport phenomena of any given fluid and colloidal system within any given porous medium at a mesoscopic level. Lattice gas automata (LGA) modelling techniques for fluid and colloid transport, and the Joshi/Quiblier/Adler (JQA) statistical method for reconstructing porous media, were uniquely combined to achieve this. The results of simulations were compared to measurements obtained using an experimental apparatus. The objectives of the study were to: 1) determine a priori the permeability of porous media, and; 2) simulate deposition phenomena observed experimentally. The study showed that permeabilities predicted using the simulation tool were lower than those determined experimentally. Several causes for this were identified, all of which can be addressed in the short-term. Simulated changes in fluid velocity and particle concentration were found to alter the rate and pattern of deposition in a manner consistent with experimental results. Furthermore, the tool provided a rich description of fundamental physical phenomena at the pore scale level. These preliminary findings indicate that the combination of these models provide the basis for further development leading to a mesoscopic modelling tool capable of predicting fluid and colloid transport in porous media.

Item Type: Thesis (Doctoral)
Divisions : Theses
Authors :
NameEmailORCID
Humby, Steven John.
Date : 1999
Contributors :
ContributionNameEmailORCID
http://www.loc.gov/loc.terms/relators/THS
Depositing User : EPrints Services
Date Deposited : 09 Nov 2017 12:17
Last Modified : 20 Jun 2018 11:27
URI: http://epubs.surrey.ac.uk/id/eprint/844200

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year


Information about this web site

© The University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom.
+44 (0)1483 300800