University of Surrey

Test tubes in the lab Research in the ATI Dance Research

2D and 3D relaxation oscillators for fluoroscopy image enhancement.

King, Robert James. (2005) 2D and 3D relaxation oscillators for fluoroscopy image enhancement. Doctoral thesis, University of Surrey (United Kingdom)..

Full text is not currently available. Please contact sriopenaccess@surrey.ac.uk, should you require it.

Abstract

X-ray fluoroscopy is an important tool in modern medicine and is used ever more frequently, particularly in the field of interventional neuroradiology. The health risks associated with X-rays are well known, and there is an impetus to reduce the levels of X-ray exposure to both patients and staff. This dose reduction effort must take place on many levels, from improvements in machine hardware to improved clinical techniques. The digital nature of modern X-ray fluoroscopy allows software methods to take a vital role in reducing X-ray exposure. The reduction of image noise and the enhancement of the appearance of vessels can aid the analysis of the data by eye and act as a prerequisite for further processing. Much of the work in the literature has focused on the reduction of image noise through the use of filters, be they spatial, frequency, temporal or a combination of the three. This thesis examines the effect of two different approaches to digital subtraction angiogram enhancement. The first method described is a nonlinear data fusion technique whereby individual frames in an angiogram sequence are regarded as separate 'sensors'. Each sensor votes for a certain intensity value at each pixel location. The fusion system takes account not only of the votes polled but also the neighbourhood surrounding each pixel to best estimate the true level of X-ray absorption. The second enhancement method models pixels as relaxation oscillators, with period determined by pixel intensity. A coupled network is constructed, first in two dimensions incorporating spatial information within the image, then in three dimensions, incorporating temporal information too. As the network evolves, neighbouring pixels with similar values become synchronous with one another, grouping together into homogeneous regions. This synchrony is manifest in the output as reduced noise and a more coherent structure to image regions.

Item Type: Thesis (Doctoral)
Divisions : Theses
Authors :
NameEmailORCID
King, Robert James.UNSPECIFIEDUNSPECIFIED
Date : 2005
Contributors :
ContributionNameEmailORCID
http://www.loc.gov/loc.terms/relators/THSUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Depositing User : EPrints Services
Date Deposited : 09 Nov 2017 12:15
Last Modified : 09 Nov 2017 14:43
URI: http://epubs.surrey.ac.uk/id/eprint/843662

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year


Information about this web site

© The University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom.
+44 (0)1483 300800