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Abstract 

This thesis proposes dynamical models for natural phenomena. The models are in

vestigated analytically for stability criteria and numerically to determine their evo

lution over time. The first phenomenon we consider is the population dynamics of 

predator-prey systems, although in this case the predators are small parasites rather 

than large carnivores. The systems are modelled using delay differential equations, 

but many different approaches are used within this framework, mainly focusing on 

the different ways of modelling man's effect on the parasites, whether this should be 

done discretely or continuously in time and whether it should occur only at particu

lar points in space or time. Secondly we look at the small scale dynamics of granular 

media, in the form of aeolian sand ripples. Reaction-diffusion equations are used 

to model the evolution of these ripples over time. We are particularly interested in 

creating three dimensional models which incorportate the idea of a shadow zone. A 

shadow zone is an area of the sand bed which is shielded from the incoming wind 

by a higher altitude area of the bed. 

In Chapter 1 we propose stage-structured population models for species the adult 

members of which are subject to culling, with a view to understanding the culling 

regimes that are likely to result in eradication of the species. A purely time

dependent model is proposed in which culling occurs at particular discrete times, 

not necessarily equally spaced. Then a reaction-diffusion model is proposed for a 

situation in which the adults can diffuse; in this model the culling is continuous in 

time but occurs only at particular discrete points in space. Such a model might 

be appropriate for pheromone trapping of insects. For both models conditions are 

obtained that are sufficient for species eradication. 

In Chapter 2 we propose various stage-structured population models for blowfly 

strike with the aim of understanding the population dynamics that result in extinc-
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tion of the blowflies or co-existence of the species. The models include a purely time 

dependent model, a distributed delay model and a reaction-diffusion model in which 

the mature blowflies are allowed to move about. We also provide results of numer

ical simulations of so1ne of these models which show various aspects of the model, 

including initial conditions for the asymptotic stability of the co-existence steady 

state and the existence of a threshold value of trapping, above which extinction of 

the blowfly species will occur. 

In Chapter 3 we propose models for blowfly strike that use discrete, rather than 

continuous diffusion in order to simulate the blowflies travelling between a number 

of fanns that contain independent populations of sheep. Models are proposed for 

both a discrete and an infinite number of farms and conditions are found for extinc

tion of the blowflies. 

Chapters 5 and 6 of this thesis focus on developing three-dimensional models of ae

olian sand ripples which incorporate fully three-dimensional shadowing of the sand 

bed. Linear stability analyses of these models analytically determine the preferred 

wavenumbers and growth rates of the ripples. Numerical simulations in Chapter 7 

show the evolution of ripples from a perturbed flat bed and illustrate the differences 

due to the presence of our shadow zone. The effect of gusting during ripple evolution 

is also investigated showing the instability of the ripple pattern under large changes 

in the angle of impact and wind direction. It is also shown that a gradual change 

in wind direction over time will break up an ordered ripple pattern and eventually 

lead to a new pattern with the crests perpendicular to the final wind direction. Con

tinuing changes in wind direction will lead to disorder or lower amplitude ripples 

depending on the frequency and magnitude of the gusts. 
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1 
Extinction criteria in stage-structured 

population models with impulsive culling 

1.1 Introduction 

Many species are subjected to so1ne form of culling. Often this is for reasons of pest 

control and the aim of culling in this case might well be the localised eradication of 

the pest. In other situations, culling may be more to do with 1nanage1nent of num

bers to protect habitats or other species but not necessarily complete eradication. 

Unlike natural1nortality which one might reasonably suppose to occur contin

uously, the mortality attributable to culling is often 1nore likely to take place at 

certain times only. Sometimes these thnes may be prescribed by Law, as in the 

case of game birds and wildfowl shooting in the UK which takes place in prescribed 

seasons lasting a few months only. Also, where animals such as deer (the adults 

of which have no natural predators in the UK or Ireland) are culled for habitat 

protection, culling often occurs at certain times of the year only. In the UK, bad

gers, which are believed to spread tuberculosis to cattle, are subjected to culling by 

trapping and shooting, but again there are restrictions on the timing of the culls in 

an attempt to reduce the proble1n of badger cubs being orphaned and starving to 

death. Crop spraying as a way to control insect pests is also a 1nethod of control 

likely to be happening at certain discrete times ( so1netimes chosen to coincide with 

critical stages in the insects' development). 

One might also envisage situations where so1ne fonn of culling takes place con

tinuously in time but only at discrete points in space. A good example would be 

the trapping system used in Australia to control the blowfly Lucilia cuprina which 

is a substantial nuisance to sheep fanners. Fe1nale flies lay their eggs in a sheep's 

fleece. The eggs hatch into larvae which feed on the sheep's da1naged skin, creating 

a wound that can attract other flies. The larva and pupa stages may total around 

14 days [27]. One approach to controlling the fly populations is by using pesticides, 

but this raises concerns regarding pesticide residue on the wool as well as environ-
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1nental and occupational health and safety. An alternative is to trap the blowflies 

using specially designed translucent buckets fixed to trees at about the height at 

which the blowflies work. Entrance cones allow blowflies to enter but not leave the 

buckets, which contain a chemical attractant which smells like the blowflies food 

sources - rotting fleece, carcasses, urine and faeces. Manufacturers of the buckets 

offer advice regarding where they should be placed. The second model of the present 

Chapter, which we study in Section 1.3, proposes a possible model for such trapping 

of blowflies continuously in time but only at discrete points in a one dimensional 

space. The traps in our model do not have to be equally spaced apart, and neither 

do they all have to be equally effective. 

The use of impulsive differential equations as models of pest control seems to 

be a relatively undeveloped application area. Liu et al [41], motivated by the topic 

of pest control, proposed and studied a Latka Volterra predator prey model with 

impulsive effects (but no delay). Their model exhibits complex dynamics including 

quasiperiodicity and chaos. Models of vaccination are another obvious application 

area (Hui and Chen [34]). However, impulsive differential equations, as a topic in 

its own right, has received some attention. See, for example, Wu (66] or the book 

by Gopalsamy (22]. There are a number of papers giving conditions for existence 

of periodic solutions and oscillation properties more generally, but this is not our 

interest in this thesis. 

Section 1.2 of this Chapter analyses a purely time dependent model for culling 

that occurs at particular discrete times only, while Section 1.3 analyses a reaction 

diffusion model incorporating culling that is continuous in time but discrete in space. 

1.2 Culling at discrete times 

In this section we propose a model for a stage structured population with two stages: 

immature and mature, in which births and naturally occurring deaths occur con

tinuously but culling or trapping occurs only at certain particular times, namely at 

times ti with 0 < t 1 < t2 < · · · < ti < · · · and tj -7 oo as j -7 oo. At the cull 

which occurs at time tj a proportion bj of the adult population is culled, causing a 

sharp decrease in the population and consequently a discontinuity in the evolution 

at time ti. 

Let u( t, a) be the density of individuals at time t of age a, and assume that an 

individual becomes mature on reaching the age r. We will assume that the total 
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number of mature adults Um ( t), defined by 

um(t) = ["' u(t, a) da 

obeys an evolution equation of the form 

00 

�u�~�(�t�)� = u(t, r)- d(um(t))- L: bjum(ti-)o(t- tj), (1.2.1) 
j=l 

where u(t, r) is those of age exactly r and therefore represents adult recruitment; 

See after (1.2.6) for an explanation of the other terms. It will be assu1ned that 

the im1natures are governed by the standard McKendrick-von Foerster model for an 

age-structured population, which can be found on Page 29 of Murray (1989) [46], 

namely au au 
at + aa = -j.tU, t > 0, 0 <a< T (1.2.2) 

with J.t > 0 constant, the initial condition 

u(O, a)= u0(a) �~� 0, �a�~� 0, (1.2.3) 

and we also assume that the birth rate u( t, 0) is a function of the total number of 

adults, so that 

u(t, 0) = b( Um(t) ). (1.2.4) 

The solution of (1.2.2) subject to (1.2.3) and (1.2.4) is 

{ 

u0(a- t) exp( -J.tt), 
u(t, a)= 

b(um(t-a)) exp(-J.ta), t > a. 

t<a 
(1.2.5) 

From this expression we see that if t > T then 

u(t, r) = exp( -J.tr)b(um(t-r)) 

whereas if t < r then u(t,r) = u0(r- t)exp(-J.tt). Insertion of these expressions 

for u(t, r) into (1.2.1) yields one nonautono1nous evolution equation valid for times 

t E (0, r) and another autonomous delay equation valid for all times larger than r. 

It is common practice in the literature on these types of models to consider only the 

latter equation, but to consider it for all times t > 0 with prescribed initial data on 

[-r, 0]. This is what we shall do in this thesis (model (1.2.6) below). This practice 

does raise certain issues related to initial data, an issue which is discussed in detail 
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in Bocharov and Hadeler [10]. Strictly speaking, the initial data is prescribed at 

timet= 0 only and is just the function u0(a). One should proceed by first solving 

equation (1.2.1) with u(t, r) = u0(r-t) exp( -pJ) fort in the interval (0, r), and then 

by solving the delay equation in (1.2.6) below for times t > r. One can understand 

from this procedure that only certain initial data for problem (1.2.6) below is actually 

related to the original problem. However, since this thesis is concerned mainly with 

the linearised equations, we do not feel this will be too much of a concern. 

Our model thus takes the form 
00 

�u�~�(�t�)� - e-Jl:rb(um(t-r))- d(um(t))-L bjum(tj-)8(t- tj), t > 0 
j=l 

um(t) - ¢(t) �~� 0 for t E [-r, 0); Um(O) = �u�~� > 0, (1.2.6) 

where p, > 0 represents juvenile mortality, um(t) is the total number of adults at 

timet, um(tj-) is the population just before the impulsive cull at time tj, r is the 

maturation time, bj is the proportion of the mature species trapped or culled at 

time tj and 8 denotes the Dirac delta function. In this model b( Um ( t)) is a function 

representing the birth rate of the immature species, and d( Um ( t)) represents the 

natural death rate of the mature species. The �e�-�~�t�r�b�(�u�m�(�t�- r)) term is the rate at 

which immature individuals become mature, known as the maturation rate. This 

term incorporates the delay r and is essentially the birth rate r time units ago, 

corrected to allow for juvenile mortality. 

In the present section we will assume the following: 

bjE[0,1] 

b(O) = 0, 

d(O) = 0, 

for all j = 1, 2, 3, ... , 

b'(O) > 0, b(um) > 0 Vum > 0, 

dE C1 [0, oo), d(um) > 0 Vum > 0. 

(1.2.7) 

Note that if we integrate the delay equation in (1.2.6) from tj- to tj+, we obtain 

As a consequence, model (1.2.6) can be reformulated as 

�u�~�(�t�)� - e-p.rb(um(t-r))- d(um(t)), t =/= tj 

Um(tj+) - (1- bj)um(tj-) 

Um(t) - ¢(t) �~� 0 for t E [-r, 0); Um(O) = �u�~� > 0. 
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The two formulations (1.2.6) and (1.2.8) of the model are both useful. For most of 

the analysis in this section we shall be concerned only with linearised versions of 

these models near the zero solution. The Laplace transfonn provides a powerful tool 

for the investigation of these linearised models, but one has to take careful note of 

the fact that the solution um(t) of either (1.2.6) or the alternative formulation (1.2.8) 

will, in general, be discontinuous at the times tj. The well known formula 

.C{u'(t)} = sU-u(O) (1.2.9) 

for the Laplace transfonn of the derivative of a function, assumes the function u(t) 

to be continuous for all t > 0. Here, U is the Laplace transform of u and s is the 

transform variable. For a function u( t) which is continuous except for discontinuous 

jumps at the thnes t = tj the corresponding formula is 

00 

.C{u'(t)} = sU-u(O) + Le-st3 (u(tj-)- u(tj+)). 
j=l 

(1.2.10) 

Due care needs to be taken on this issue, otherwise there is a possibility of the dis

continuities being taken care of twice over, and if this happens incorrect results are 

produced by the analysis. Even though the solution of (1.2.6) will not be continuous, 

in the treat1nent of the linearised equation the Laplace transform of the derivative 

term needs to be calculated using the formula (1.2.9) which assumes continuity. The 

discontinuities in the solution are correctly furnished by the Laplace transfonn anal

ysis because of the presence of the Dirac delta function in (1.2.6). The alternative 

approach would be to carry out a Laplace transform analysis of the linearisation 

of (1.2.8). In this case the derivative term has to be dealt with using (1.2.10). It 

can be shown that the two approaches yield the same equation for the transformed 

state variable and are therefore equivalent. It 1nust be stressed, however, that one 

has to stick to one approach or the other. The use of (1.2.10) in a Laplace transform 

analysis of the linearised version of (1.2.6) produces incorrect results. 

1.2.1 Positivity 

Next, we shall show that solutions of (1.2.6) or (1.2.8) enjoy a positivity preserving 

property. 

Proposition 1 Assume {1.2. 7) holds, then the solution um(t) of {1.2.6), or the 
alternative formulation { 1. 2. 8), satisfies Um ( t) 2:: 0 for all t > 0. 
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Proof: The proof is by the method of steps and starts by establishing positivity for 

t E (0, 7]. First note that positivity (in fact, strict positivity) holds if all the bi are 

zero. In this case, 

�u�~�(�t�)� �~� -d(um(t)) when t E (0, 7]. 

By comparison, um(t) �~� um(t) where um(t) is the solution of 

�u�~�(�t�)� = -d(um(t)), t E (0, 'T], 

satisfying um(O) = �u�~� > 0. From the assumptions on the function d contained 

within (1.2.7), it follows by Taylor's theorem that d(um(t)) = um(t)d'(B(t)) for some 

function B(t). Therefore the above differential equation for um(t) has zero as one of 

its solutions and is also of such a form that, given initial data, we are assured of a 

unique solution. With um(O) > 0 it follows that um(t) > 0 for all t > 0 otherwise 

uniqueness is violated. Therefore um(t) > 0 for all t E (0, 7] in the case when the bj 
are all zero. From the method of steps it is clear that if the bi are zero then strict 

positivity of um(t) holds for all t > 0. 

The case when some or all of the bi are non-zero does not represent a significant 

complication. They are all in [0, 1], by (1.2.7), and so by (1.2.8) the solution is always 

reset from a non-negative value to a non-negative value at one of the times tj (note, 

however that if one or more of the bi is 1 then the solution is reset to zero at the 

corresponding time ti, so strict positivity of solutions cannot be anticipated in this 

case). From what we have already shown the solution is certainly strictly positive 

before the first impulse time t1, and at time t1 is reset to some non-negative value. 

An argument much like that described in the previous paragraph, but with initial 

time t 1 rather than 0, then assures us of the non-negativity of um(t) until the next 

time t 2 at which a resetting occurs, but then the argument just described applies 

again until the next time t3 and so on. The proof of Proposition 1 is complete. 

1.2.2 Criteria for extinction 

Linearising (1.2.6) about the steady state Urn=· 0 we get 

00 

�u�~�(�t�)� = e-Jl:rb'(O)um(t-'T)- d'(O)um(t)-L bjum(tj-)8(t- tj)· (1.2.11) 
j=l 
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Integrating from tj- to tj + yields the following alternative fonnulation for the 

linearised equation: 

(1.2.12) 

Remark: Positivity preservation, Proposition 1, also holds for the linearised prob

lein (1.2.12). 

The case when e-JLrb'(O) < d'(O) 

In this subsection we will prove linear stability of the zero solution of (1.2.8) under 

the condition e-JLTb'(O) < d'(O). The ecological interpretation of this condition is 

that, at low densities, adult recruitment is insufficient to outweigh naturally oc

curring deaths. Our result confirms that, as we would anticipate, under these cir

cuinstances the population will still go extinct when hnpulsive trapping or culling 

is introduced whatever the intensity and however frequent or infrequent the culling 

occurs. 

Theorem 1.2.1 Let {1.2. 1} hold and assume additionally that 

e-p.rb' (0) < d' (0). (1.2.13) 

Then the solution um(t) of the linearised problem {1.2.12} satisfies um(t) --+ 0 as 
t--+ 00. 

Proof. Applying the Laplace transform: 

.C{ u(t)} =lYe' u(t)e-st dt 

to (1.2.12), using formula (1.2.10) to take care of the anticipated discontinuities in 

the solution as explained earlier, and also noting that the Laplace transform of the 

delay term can be written as 

.C{ e -J>r b' ( 0 )Urn ( t - T)} = e -J>r b' ( 0) (1: Um ('11) e �-�s�(�~�+�r�)� d77 + e -s-ru) 
where U = U(s) is the Laplace transform of um(t), equation (1.2.12) beco1nes 

00 

[s- e-P.Tb'(O)e-sr + d'(O)]U = Um(O)-L e-st3 (um(tj-)- Um(tj+ )) 
j=l 

+ �e�-�~�' �7 �b�'�(�O�)� 1: �U�m�(�1�J�)�e�- "�<�~�+�r�)� d77. 
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Using the impulse condition from (1.2.12) to substitute in for um(ti+) we get 

[s- e-Jirb'(O)e-sr + d'(O)]U = 

u,(O) + e-l'rb'(O) 1: �u�m�(�'�l�)�e�- "�C�~�+�r�)�d�'�l�l�- �~� e-•t;b;um(tr ). (1.2.14) 

Now define y(t) by 

y'(t) - e-Jirb'(O)y(t-7)- d'(O)y(t), 

y(t) - 0 for t E [-7, 0); y(O) = 1, 

t>O (1.2.15) 

the continuous analogy of equation (1.2.12) without impulses. It is easy to show 

(similarly to the proof of Proposition 1) that y(t) > 0 for all t > 0. 

Applying the Laplace transform to (1.2.15), and letting Y = Y(s) = .C{y(t)}, · 
gives 

sY-1 = e-l'rl/(0) [1: y(,;)e-•(Hrld,; + e-•ry] - d'(O)Y 

so that, since y(t) = 0 fort E [-7, 0), 

Y= 1 
S + d'(O) - e-Jirb'(O)e-sr 

and so 

t - .c-1 { 1 } y( ) - S + d'(O)- e-Jire-srb'(O) . 

(1.2.16) 

(1.2.17) 

From this it is easy to see that y(t) �~� 0 as t �~� oo. To deduce this conclusion it 

suffices (by the inversion formula for Laplace transforms) to show that all the poles 

of the function Y (i.e. the zeros of the denominator of (1.2.16)) are strictly in the 

left half of the complex plane. For a contradiction, assume a zero 8 exists satisfying 

Res;:::.: 0. Then 

so that 8 lies in the closed disk in the complex plane centred at -d'(O) and of radius 

e-Jirb'(O). But condition (1.2.13) implies that this disk is entirely within the open 

left half of the complex plane, and this contradicts Re 8 2:: 0. Thus y(t) �~� 0 as 

�t�~� 00. 
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The denominator of the right hand side of (1.2.16) appears on the left hand side 

of (1.2.14). Dividing by this quantity and taking inverse Laplace transforms gives 

(1.2.18) 
j=l 

where H ( t - tj) is the Heaviside function. In this calculation we have used the 

convolution theormn for the Laplace transform. 

Our intention is to deduce from this that um ( t) ----+ 0 as t ----+ oo under condi

tion (1.2.13). We already know that y(t) -t 0 under this condition. The second 

term in the expression (1.2.18) for um(t) also tends to zero as t -t oo. This is 

because it is the inverse Laplace transform of a ratio in which the nu1nerator is an 

analytic function of s while the deno1ninator has all of its zeros in Re s < 0 as has 

already been shown. 

Fro1n non-negativity of um(t) fort> 0, and strict positivity of y(t), we know the 

sign of the last term in the expression (1.2.18) for um(t), and so we can write 

1 { e-wrb'(O) �f�~�r� Um('Tf)e-s(ry+r)d'f/} 
0 �~� Um(t) �~� Um(O)y(t) + c- 8 + d'(O) _ e-JLTb'(O)e-sr ' 

Hence um(t) -t 0 as t -too. 

The case when e-JLrb'(O) > d'(O) 

In this subsection we shall show that the zero solution of (1.2.8) can be asymptot

ically linearly stable (i.e. the population will be driven to extinction) in the case 

when adult recruitment outweighs deaths at low densities, if �c�~�l�l�i�n�g� occurs in suf

ficient measure and with sufficient frequency in the sense to be described below. 
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Note that from the alternative formulation of the original model (1.2.8) if the b/s 

are close to 1 then it means that aggressive culling is taking place and a large ma

jority of the mature species population is wiped out at each time tj. We can also see 

that even if the bi's were exactly equal to 1 and all the mature species were wiped 

out, this would not necessarily cause extinction, because immatures conceived at a 

previous time may mature at a later date. However it is reasonable to speculate 

that if the bi 's are close enough to 1 and culling takes place, sufficiently frequently 

in some sense, then the population would be driven to extinction. 

For reasons that will become clear later, we need to understand the properties 

of the function ¢( t) defined by 

¢'(t) = e-JLrb'(O)¢(t-r) - e-JLrb'(O)¢(t) 
(1.2.19) 

¢(t) = 0, t E [-r, 0), ¢(0) = 1. 

Proposition 2 The solution ¢(t) of {1.2.19) is strictly positive for all t > 0 and 
satisfies 

lim ¢(t) = 
1 

. 
t-too 1 + e-JLrb'(O)r 

(1.2.20) 

Consequently, the quantity¢* := �i�n�f�t�~�o� ¢(t) satisfies¢* > 0. 

Proof. Strict positivity of ¢( t) for t > 0 follows from arguments similar to those 

in the first part of the proof of Proposition 1. Strict positivity together with (1.2.20) 

immediately yields the last statement in the Proposition, that¢* > 0. Therefore, it 

remains to prove only (1.2.20). Taking the Laplace transform of (1.2.19) and letting 

<I>= <I>(s) denote the Laplace transform of¢, we obtain 

�s�~�- 1 = e-Wb'(O) [1: �<�P�(�~�)�e�- "�(�{�+�r�)�d�~� + �e�- "�r�~�]� - �e�-�J�L�r�b�'�(�O�)�~�.� 

Since ¢(t) = 0 fortE [-r, 0), 

<I>= 1 
s-e-sre-JLrb'(O) + e-JLrb'(O) 

so that 

(1.2.21) 
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in which the integral is the standard Bro1nwich integral. The quantity (j in (1.2.21) 

can be taken as any real number which strictly exceeds the supremum of the real 

parts of the zeros of the denominator in the integrand. In this case we can take 

any real (j > 0 as we now explain. Evaluation of the integral (1.2.21) will be via 

Cauchy's residue theore1n, which requires us to identify the poles of the integrand, 

i.e. the zeros of its denominator. By inspection, one of these is clearly s = 0. We 

clahn that the equation s- e-sre-JL7 b'(O) + e-f.LTb'(O) = 0 has no roots satisfying 

Res ;::: 0 other than the root s = 0. Indeed, if Res 2: 0, then 

so that sis in the closed disk inC with centre -e-JL7 b'(O) and radius e-JLrb'(O). But 

this disk contains no points s with Res ;::: 0 apart fron1 s = 0. Therefore the poles 

of the integrand in (1.2.21) consist of the pole at s = 0 (which is easily checked to 

be shnple) together with the remaining zeros of the integrand's deno1ninator, all of 

which satisfy Res< 0. Evaluation of (1.2.21) by Cauchy's residue theorem gives an 

expression of the fonn 

(1.2.22) 

where Pis the set of all roots of s-e-sre-JL7 b'(O) +e-f.L7 b'(O) = 0. But we know that 

the roots of this equation are s = 0 together with other roots, all of which satisfy 

Res< 0. It is well known that for a function f(s) of the forn1 f(s) = h(s)/k(s) with 

h(s) and k(s) analytic functions of s, h(a) -::/= 0, k(a) = 0 and k'(a) f 0, that the 

residue of f(s) at the shnple poles= a is given by res {f(s); s =a}= h(a)/k'(a). 
Applying this formula to the calculation of the residue at any s E P with Res < 0 

yields that the residue is an exponentially decaying function oft. Therefore 

¢(t) = { 
�e�~� } res b ( ) b' (O) , s = 0 + exponentially decaying tenns in t 

8- e-STe-f.LT I 0 + e-f.LT , 
1 

b ( ) + exponentially decaying terms in t 1 + e-f.LT I 0 'T 

and so (1.2.20) holds. The proof of Proposition 2 is complete. 

Remark: Although we are assured of the strict positivity of the quantity ¢* 

defined in the statement of Proposition 2 we point out that ¢* is not necessarily 

equal to the lhnit in (1.2.20). It can be shown that the convergence to the limit 

in (1.2.20) will be non-1nonotone if e-f.Lrb' (O)T is sufficiently large, 
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Our next main result, Theorem 1.2.2 below, presents some conditions under 

which extinction of the population is predicted. Even though the problem under 

consideration is the linearised problem (1.2.12), analysis thereof is difficult. Our 

method of analysis involves the use of the Euler-Maclaurin summation formula [1], 

a technique for converting sums to integrals or vice versa. We can only retain certain 

terms in the use of this formula (those that do not involve the Bernoulli numbers) 

and as the result the following theorem must be interpreted in an approximate 

sense. Nevertheless, it is quite insightful as we will discuss later. We draw the 

readers attention to the function t( ·) referred to in the statement of Theorem 1.2.2 

below. This function is not uniquely defined, but a sensible choice would be one 

that is piecewise linear but smoothed at the integers so as to be differentiable. 

The function t( ·) tells us something about the spacing of the impulse times ti (for 

example if its derivative t' is very small then the impulse times are rather close 

together; under these circumstances we might expect that extinction would be more 

likely and this is what Theorem 1.2.2 indeed predicts). Condition (1.2.23) in the 

theorem essentially states the impulses must occur sufficiently close together in some 

sense depending on the proportion of the species that is removed at each impulse and 

also, not surprisingly, on the per capita natural death rate and adult recruitment 

rate at low densities. 

Theorem 1.2.2 Let {1.2.7} hold, and let t(e) : [O,oo) ---4 [O,oo) be a strictly 
monotonically increasing differentiable function with the property that t( i) = ti, 
i = 1, 2, 3, ... and t(O) = 0. If 

e-J.Lrb' (0) > d' (0) 

and 
(1.2.23) 

then the solution um(t) of the linearised problem {1.2.12/ satisfies um(t) �~� 0 as t ---4 

oo according to an analysis based on the Euler-Maclaurin approximation ( 1. 2. 29} 
below. 

Proof. It will be convenient to rewrite (1.2.12) in the form 

�u�~�(�t�)� - e-J.Lrb'(O)um(t-r)- e-J.Lrb'(O)um(t) + (e-J.Lrb'(O)-d'(O))um(t), t-/= tj 

Um(tj+) - (1- bj)um(tj-). (1.2.24) 
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Taking Laplace transforms of (1.2.24) and using formula (1.2.10) gives 

(s- e-JJ.Te-STb'(O) + e-JJ.Tb'(O))U = u,.(O) + e-JJ.Te-STb'(O) 1: e-•eu.n(e) �d�~� 
00 

+ (e-J.Lrb'(O)-d'(O))U- Lbjum(tj-)e-st;. 
j=1 

Using (1.2.21) and taking inverse Laplace transforms of (1.2.25) we get 

um(t) = f(t) + _c-1{ (e-J.Lrb'(O)-d'(O))U } 
S-e-J.LTe-srb'(Q) + e-J.LTb'(O) 

- �~� b;um(t;-).c-1{ s- �e�-�I�'�T�e�-�s�T�e�b�~�;�~�)� + e-f'Tb'(O)} 

- f(t) + �V�~�'�T�b�'�(�O�)�- d'(O)) l tj>(t- s)um(s) ds 

- �~� b;u.n(t;-) l tj>(t- s)8(s-t;) ds 

- f(t) + (e-JJ.Tb'(O)-d'(O)) l tj>(t- s)u,.(s) ds 

00 

- L bjum(tj-)¢(t- tj)H(t- tj) 
j=1 

where we recall that ¢(t) is defined by (1.2.19), and where 

If we substitute t = ti- into (1.2.26) and let 

we obtain, noting that ¢(t) is continuous, 

U; = /; + (e-f'Tb'(O)-d'(O)) [' tf>(ti- s)u,.(s)ds-f. b;u;¢(t.- t;) 
0 j=1 

(1.2.25) 

(1.2.26) 

(1.2.27) 

i i-1 

- 1; + (e-f'Tb'(o)-d'(o)) 1 t/>(t(i)- t(e))u.n(t(e))t'(e) de-L b;u;tf>(ti- t;), 
0 j=1 

(1.2.28) 

having made the substitution s = t( c;) in the integral term. 
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We now convert the integral in the above expression into a sum. This will be 

achieved by using the Euler-Maclaurin summation formula, one version of which is 

r h(k) dk = I:hk+ h(O) + h(n)- r h'(k) (k- [k]- �~�)� dk, 
lo k=1 2 Jo 2 

(1.2.29) 

where hk = h(k) and [k] is the greatest integer ::; k. This formula can be found, 

after some adaptation of notation, in the book by Apostol [8]. In our analysis we 

shall drop the integral term involving h'(k) in the right hand side of (1.2.29), but we 

shall discuss later the situation in which the resulting approximate formula might 

fail. 

Applying the truncated form of (1.2.29) to (1.2.28), we get 

ut = J; + (e-JLTb'(O) _ d'(O)) ( �~� ¢(t; _ t;)u;t'(j) + �¢�(�t�;�)�u�m�(�O�)�t�'�(�O�~� + ¢(0)u;t'(i)) 

i-1 

-L biui¢(ti- tj)· (1.2.30) 
j=1 

We now claim that the function f(t) defined by (1.2.27) above tends to a strictly 

positive limit C > 0 as t �~� oo (so that also fi �~� C as i -t oo ). By Proposition 2, 

¢(t) certainly approaches a strictly positive limit. The second term in the expression 

for f ( t) does so as well, as can be shown similarly to a contour integral argument 

discussed earlier where the singularities were the same: a simple pole at the origin 

and various other poles all with strictly negative real part. By the inversion formula 

for Laplace transforms and Cauchy's residue theorem, 

Thus 

.c-1{ e-1-Lrb'(O)e-sr �f�~�r� �e�-�s�e�u�m�(�~�)� �d�~�}� 
s-e-1-Lre-srb'(O) + e-1-Lrb'(O) 

{ 
e-1-Lrb'(O)est e-sr �f�~�r� �e�-�s�e�u�m�(�~�)� �d�~� } 

- res , s = 0 s-e-1-Lre-srb'(O) + e-1-LTb'(O) 

+ exponentially decreasing terms in t. 

r .c-1{ e-1-LTb'(O)e-sr �f�~�r� e-seum(e) de} e-1-LTb'(O) �I�~�r� Um(e) de 
�t�.�:�!�~� S-e-1-Lre-srb'(O) + e-1-Lrb'(O) = 1 + re-1-LTb'(O) . 

Hence f(t) tends to a limit as t �~� oo. Writing (1.2.30) a different way, and recalling 
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that ¢(0) = 1, 

U; ( l _ ...:.....( e_-J.L_T b_' (,;........;0 )_;_d_' (.:..._0 ):.....:....) t___;1 
�(�~�i�)� ) 

i-1 

- L ui¢(ti- ti) [(e-p.rb'(O)- d'(O)) t'(j)- bj] 
j=1 

+ fi + �~�(� e-p.rb' (0) - d' (0) )¢(ti)um(O)t' (0). 

Since fi and ¢(ti) both approach lilnits as i -t oo, there exists C* such that the 

totality of the last two terms in the above expression is bounded above by C* for 

all i. Using this fact, and also adding A �I�:�~�:�i� Uj to both sides, 

( 
(e-J.Lrb'(O)-d'(O))t'(i)) i- 1 

u· 1- +A "'u· 
t 2 L.t J 

j=l 
i-1 

< Lui {A+ ¢(ti- tj) [(e-p.rb'(O)- d'(O)) t'(j)- bj]} + C*, 
j=1 

with A > 0 to be chosen. Recall that ¢(t) �~� ¢* > 0, where ¢* is defined in the 

statmnent of Proposition 2, and note also that the hypotheses of the Theorem imply 

that (e-J.Lrb'(O)-d'(O)) t'(j)- bi < 0 for each j. Hence 

which we should like to be negative for all j. Therefore we choose any A > 0 such 

that 

A::;¢* �~�n�N�f� {bj- (e-p.rb'(O)-d'(O)) t'(j)}, 
JE 

which is possible because the infhnum is strictly positive by hypothesis. It is easy 

to see that A chosen like this satisfies A < 1. Thus with this choice of A we have 

U· 1 - +A"" u. < c . ( 
( e-J.Lrb' (0) - d' (O))t' ( i)) i-

1 * 
t 2 L....tJ-

j=1 

Finally note that (e-J.Lrb'(O)-d'(O))t'(i) < bi ::; 1 for each i. Hence 

!u·+A"'u·<u· 1- e - 'l +A"'u·<C*. 
i-1 ( ( -p.rb'(O) d'(O))t'( ')) i-1 

2t L.tJ- 2 2 L....tJ-
j=l j=l 

Since this holds for all i, and since ui �~� 0, we can deduce that �1�:�~ �1� Uj < oo, which 

hnplies that ui -t 0 as i -t oo. The proof is complete. 
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1.3 Culling at discrete points in space 

Up to now we have examined a purely time dependent model in which the culling 

occurs at specific times only. The present section will examine a reaction-diffusion 

model for the situation in which the adults (but not the juveniles) can move around 

in a random way and where culling occurs continuously in time but only at specific 

points Xj in a one dimensional infinite spatial domain x E ( -oo, oo). The equation 

we will analyse is 

00 

- L Bjum(Xj, t)c5(x- Xj), 
j=-oo (1.3.1) 

um(x, t) - ¢(x, t) 2:: 0 for (x, t) E ( -oo, oo) X ( -r, 0] 

with¢(·, t) E L 2 for each t E [-r, 0] and um(x, 0) :f=. 0. 

Model (1.3.1) is only appropriate if the juvenile members do not diffuse. This 

is because we are using the same derivation for the adult recruitment term 

e-p:rb(um(x, t- r)) as was used to derive model (1.2.6). However if the juveniles 

diffuse then a diffusion term would have to be added to (1.2.2) with the consequence 

that the solution of the latter would no longer be (1.2.5). Thus, our model (1.3.1) 

is strictly only for the case when the adults diffuse. Fortunately, this assumption 

is quite realistic in many species: For example in many insect species the juveniles 

are larvae and move very little or not at all. Locust larvae attach themselves to tree 

roots and do not move at all, whereas adult locusts can move great distances. The 

blowfly lucilia cuprina larvae live in sheep and might move a little in the sense of 

being carried about by their host sheep within a farm, but it is only the adults that 

can move great distances and thereby transfer infestations from farm to farm. 

The quantities Bj, j = 0, ±1, ±2, ... in (1.3.1) have a somewhat different ecolog

ical interpretation to the corresponding quantities bi in model (1.2.6). The quantity 

Bi is not the proportion removed at Xj but rather is a measure of the culling ef

fort at that location (as will become clear in the next paragraph) and can be any 

nonnegative number. It is reasonable to anticipate that if the Bj are large then the 

population would become extinct if either the Xj are sufficiently close together or the 

diffusivity D is sufficiently large. This is because in the limiting case when the Bj 

are all infinite, one can imagine that the problem effectively would decompose into 
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infinitely many uncoupled problems each consisting of the partial differential equa

tion in (1.3.1) on the finite domain consisting of the interval between two adjacent 

culling locations, subject to homogeneous Dirichlet boundary conditions. 

The positioning of the delta function in (1.3.1) is such that the solution um(x, t) 
will be continuous in x but its derivative 8um/8x will not. If we integrate (1.3.1) 

fron1 Xj- to xi+ the result is 

(1.3.2) 

Keeping in mind that the Laplacian representation for diffusion comes about from 

using the formula J = -D8um/8x for the flux J(x, t) (defined as the net rate at 

which individuals cross x in the positive x direction) then, if we hnagine the domain 

to be broken up into subdo1nains defined by the culling locations, equation (1.3.2) 

has the interpretation that individuals that leave the subdo1nain [xj, Xj+l] at Xj do 

so either by being culled at Xj, or by entering the adjacent subdo1nain [xi-1> xi]· 

The culling effort at Xj is Bj and the culling yield at this location is Bjum(Xj, t) per 

unit time, i.e. proportional to the density at Xj· This leads us to �e�x�p�~�c�t� that (1.3.1) 

should have a positivity preserving property, which is what we shall prove next. 

For the analysis of the present section, Assu1nption (1.2. 7) will be replaced by the 

following: 

· · · < X-2 < X-1 < Xo < X1 < X2 < ' ' · 

with Xn ---7 oo and X-n ---7 -oo as n ---7 oo, 

Bj 2:: 0 for all j = 0, ±1, ±2, ... , (1.3.3) 

b(O) = 0, b'(O) > 0, b(um) > 0 Vum > 0, 

d(O) = 0, dE 0 1 [0, oo), d'(O) > 0, d(um) > 0 Vum > 0. 

Proposition 3 Let {1.3.3} hold. Then all solutions of {1.3.1} which decay to zero 
as lxl ---7 oo for all t 2:: 0, remain non-negative for all t > 0. 

Proof. Let us 1nake a 0 1 extension to the definition of the death function to Um < 0 

by defining d(um) = d'(O)um when Um < 0. Then d E C1(R). Let us first prove 

non-negativity of um(x, t) fortE (0, r] only. The proof is by contradiction. Suppose 

Um goes negative on this time interval. Since um(±oo, t) = 0, um(x, t) must then 

attain a negative global minhnu1n on the set (x, t) E ( -oo, oo) x (0, r]. Let us first 

consider the possibility that the minhnum is attained at a point ( x*, t*) where x* is 
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not one of the culling sites Xj. Then x* is in some open interval throughout which 

the delta function in (1.3.1) is inactive. Thus, um(x*, t*) < 0, Um,xx(x*, t*);::: 0 and 

Um,t ( x*, t*) :5 0 (noting that the minimum could be at a point with t* = T). Since 

t* - T :5 0 the adult recruitment term in (1.3.1) is non-negative at (x*, t*). Using 

our extension of the death function to Um < 0 it follows that 

�8�~�m� (x*, t*) = �D�~�(�x�*�,� t*) +e-JlT b(um(x*, t*- 7)) -d'(O) �~� 
�~� ;:;:o ;:;:o <O 

which is a contradiction. Now suppose that the negative global minimum is attained 

at a point ( x*, t*) where x* is one of the Xj. The delta function is active and the 

above argument fails. As a function of x, the function um(x, t) must now show cusp 

like behaviour, with um(x*, t*) < 0, Um,x(x*-, t*) ::; 0 and Um,x(x*+, t*) ;::: 0 (if, for 

example, the second of these were violated then, for x just larger than x*, um(x, t*) 

would be below Um(x*, t*) contradicting (x*, t*) being the global minimum). Using 

this information in (1.3.2) at timet* gives 

D (Bum) (Bum) ( * *) -
8 

-D -
8 

=Bjum x ,t , 
X x*+ X x*- '-v-" 

"-----..--" "-----..--" <0 
;?:0 �~�0� 

a contradiction. Thus um(x, t) ;::: 0 for times t E (0, r). By the method of steps, 

um(x, t) ;::: 0 for all t > 0 and the proof is complete. 

The linearisation of (1.3.1) about the zero �s�o�~�u�t�i�o�n� is 

Bum( ) mx,t 
00 

- I: Bjum(Xj, t)8(x- Xj)· (1.3.4) 
j=-oo 

We will prove the following theorem giving conditions under which it is predicted 

that extinction will result. The quantity Binf embodies information on the spacing 

of the culling locations. The analysis uses the Euler-Maclaurin summation formula 

and therefore has to be interpreted in an approximate sense. 

Theorem 1.3.1 Let {1.3.3} hold. Let X(e) : R �~� R be a strictly monotonically 
increasing differentiable function with the property that X (j) = Xj for each j E Z, 
and let B(e) : R �~� [0, oo) be the piecewise linear function such that B(j) = Bi for 
all j E Z. If 

(1.3.5) 
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where 

. { B(y)} 
Binf = �t�~�~� X'(y) , 

then, provided the derivative of the �f�u�n�c�t�i�o�n�~� -t �B�(�~�)�u�~�(�X�(�~�)�,� t) is not too high, 
the solution um(x, t) of the linearised problem {1.3.4} satisfies um(x, t) -t 0 in L2 as 
t -t oo, according to an analysis based on the Euler-Maclaurin summation formula. 

Proof. First note the following alternative formula for Binf: 

(1.3.6) 

We multiply (1.3.4) by um(x, t) and then integrate with respect to x over ( -oo, oo). 

The Laplacian term will be dealt with via integration by parts, but we 1nust note 

carefully the effect of the discontinuities in the spatial derivative of Um. In fact 

oo joo (a )2 
- - �j�~�o�o� Bju;,(xj, t) - D -oo ;;; dx 

since a telescoping series is involved. Therefore (1.3.4) becomes 

00 

-d'(O)IIum(t)ll 2
- 2 L Bju:n(xj, t) (1.3.7) 

j=-oo 

where 
1 

llum(t)ll = llu.n(·, t)ll = (L: u;,(x, t) dx) 
2

• 
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For compactness of notation, where um(x, t) appears under a norm we shall write it 

simply as um(t). Our aim to show convergence of um(x, t) to zero in L 2, i.e. that 

llum(t)ll -t 0 as t -too. From (1.3.7) it follows that 

d 
llum(t) II dt llum(t)ll < e-P.Tb'(O) llum(t)llllum(t- r) II - d'(O)IIum(t)ll2 

00 

- 2 L �B�i�u�~�(�x�i�,� t), (1.3.8) 
j=-oo 

where we used the Cauchy-Schwarz inequality on the delay term. 

Euler-Maclaurin summation can be used to approximate the last term in (1.3.8) 

as 

which, on making the substitution y = X (e), becomes 

1: B(X-1(y))u;,(y, t)(X-1)'(y) dy 

> inf {B(X-1(y))(X-1)'(y)} llum(t)ll 2 

yER 

- Bin£llum(t)ll 2 

(1.3.9) 

(1.3.10) 

by the alternative formula (1.3.6) for Binf· Using this estimate in (1.3.8) and dividing 

through by llum(t)ll we get 

!llu.n(t)ll S e-JLTb'(O)IIu,.(t- r)ll- (d'(O) + 2B;ur) llum(t)ll- (1.3.11) 

Fro1n this, we can conclude (using similar methods to those discussed earlier) that 

llum(t) II ---7 0 as t -+ oo if 

(1.3.12) 

which holds by hypothesis. The proof is complete. 

Let us discuss the situations in which the Euler Maclaurin summation as used 

here might lose its ability to predict accurate results. Essentially, we are assuming 

that the derivative of the function e -t �B�(�e�)�u�~�(�X�(�e�)�,� t) is not too high, and one 

situation in which this assumption might lose its validity is if the culling is aggressive 

but the culling sites are spaced a long way apart. Very aggressive culling would 

result in the population being effectively zero at the actual culling sites, but if these 

are a long way apart (or if there is very low diffusion) there is no reason why the 
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species should not survive within at least some of the (now decoupled) subdomains 

[xj, Xj+l], essentially since individuals would be unlikely to wander into a culling 

site. This can be investigated by solving (1.3.4) (without the sum1nation term) on 

the domain x E (xi, Xj+I) subject to hotnogeneous Dirichlet boundary conditions. 

'Trial solutions of the form 

{ 
n1r (x - x ·) } um(x, t) = e>-.t sin 3 , 
Xj+l- Xj 

n=1,2,3, ... 

exist whenever 

(1.3.13) 

which is another transcendental equation for .X that can be tackled using similar 

ideas to those presented earlier. Specifically it is possible to show that if 

e-J.Lrb' (0) < d' (0) + D1r
2 

(xi+! - Xj) 2 

then all roots .X of (1.3.13) satisfy ReA < 0 for every n = 1, 2, 3, ... , giving a 

condition for extinction of the species inhabiting [xi, Xj+I], in this case of intensive 

culling at sites spaced a long way apart. This condition says that, at low densities, 

adult recruittnent is not sufficient to offset deaths together with losses at the ends 

of the do1nain where culling is occurring. If the above condition is reversed then one 

can show that equation (1.3.13) (with n = 1) has a real positive root .X, so that the 

species can survive in the subdomain [xi, Xj+ 1]. 

1.4 Discussion 

For the purely thne dependent 1nodel the 1nost hnportant result we have proved 

concerning (1.2.8), is Theorem 1.2.2 which addresses the situation when, at low 

densities, adult recruitment outweighs natural mortality. In this situation condi

tion (1.2.23) essentially describes culling reghnes that will result in extinction. The 

condition involves the proportions bj removed at the cull thnes ti and a function 

t(e) the derivative of which can be viewed as a measure of the spacing of the cull 

times tj. 

From condition (1.2.23) one can 1nake several inferences. If the culling effort 

is very small, i.e. at each cull only a small proportion bi of the individuals are 

retnoved (which could still vary from cull to cull) then no 1natter how s1nall this 

effort is, provided inf jEN bi > 0 then extinction can still result if the culling occurs 
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sufficiently frequently in the sense that t' (j) is sufficiently small for each j. A period 

of more aggressive culling (i.e. larger bj for several consecutive j) can result in 

extinction even when the culls are less frequent. An obvious particular case is that 

in which the culls are equally spaced in time, i.e. tj = jT for j = 1, 2, 3, ... and 

some constant T > 0, and the same proportion b* removed at each cull. In this case 

the only obvious choice for the function t(c;) is t(c;) = Tc; and so condition (1.2.23) 

can be put in the form 
e-JL,-b'(O) < d'(O) + b* 

T 
which says that, at low densities, the per capita death rate plus the proportion culled 

per unit time is too high to be compensated for by adult recruitment. Thus, the 

condition makes sense and is what we would expect in this particular case of a fixed 

proportion being culled at equally spaced culling times. 

Condition (1.2.23) fails if even just one of the bj is zero, i.e. there is a "cull", 

which we might call a zero cull, at which no animals are killed. However, provided 

only a finite number of the bj are zero, there will exist a time beyond which all culls 

are "proper" culls (i.e. culls with bj > 0), and one could shift the origin of time 

appropriately, so that in condition (1.2.23) the infimum would be taken starting 

at the first proper cull having no subsequent zero culls. More interesting, is the 

possibility of infinitely many zero culls. Mathematically, the most obvious solution 

is to remove them by relabelling the sequence tj (i.e. passing to a subsequence of 

the original). This would, however, have the effect of changing the interpolating 

function t(c;) and in particular of increasing its derivative, so that (1.2.23) would be 

less likely to hold. The outcome is that the population is less likely to be driven to 

extinction as expected. 

For the model of Section 1.3, which attempts to study culling continuously in 

time but at discrete points in space, one can draw inferences analogous to those above 

for the time dependent model. The condition in Theorem 1.3.1 predicts extinction 

if the culling effort as described by the function B(y) is sufficiently large in a sense 

that also involves the spacing apart of the culling sites (as described by the function 

X (y)) as we would anticipate. If the culling sites are close together then X will have 

a small derivative and so Binf is more likely to be large enough to satisfy (1.3.5). 
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2 
Population dynamics of the parasitic 

relationship between blowflies and sheep 

2.1 Introduction 

A 1najor problem for farmers in Australasia is the phenomenon of blowfly strikes, 

or myiasis. The blowfly lays its eggs on a susceptible host, usually a farmer's sheep. 

They are attracted by areas of wool which are damp or dirty, specifically due to 

faeces. Once hatched the larvae then feed off the host causing a lesion to form. 

This may in turn attract other blowflies to lay their eggs on the same host. If this 

process is allowed to continue uncontrolled then it can be fatal to the host. Over 90 

per cent of blowfly strikes on sheep are by the so-called Australian Sheep Blowfly or 

Lucilia cuprina and occur in the wanner months of the year. If susceptible sheep 

are present then only a small number of blowflies, around 7-10 per hectare, [31), are 

required for Myiasis to occur and be a considerable problmn for the farmer. The 

blowflies progeny feed in damp or lu1npy fleece, in or around wounds and lesions 

or in faeces. The female uses her enhanced sense of s1nell to pick out a sheep with 

these problems who will make a suitable host. An .adult female blowfly will lay, on 

average, 200 eggs at a time. They have a life span of about one 1nonth and produce 

two or three batches of eggs in this time, although a batch from an older fly may 

not contain as many eggs [31]. The eggs hatch in around 12 hours and the new 

born larvae are about 1mm long. The larvae 1noult twice, once about 18 hours after 

hatching and then again at around 36 hours. After 1noulting a second time the larvae 

feed and grow at an increased rate for about a day until they are fully fed, which 

tends to be about 3-4 days after hatching, at which point they are around 12Inm 

long. The fully grown larvae leave the host, burrow into the nearby soil and pupate. 

In ideal conditions they emerge as adult blowflies after about 2 weeks. Blowfly 

larvae are diapausal: if the tmnperature of the soil is not wann enough, below about 

15°, [31), the larvae enter a state where development is suspended and physiological 

activity is dilninished. This is called overwintering. During this time the larvae are 
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susceptible to attacks by ants and minute wasps, natural disasters such as water 

logging, excess cold and trampling by sheep, all of which reduce the overwintering 

population. When the soil temperature warms up again the overwintering larvae 

begin to develop until eventually, in mid to late spring, they emerge as mature 

blowflies. 

Myiasis is not instantly fatal, but if left unattended the host has increased 

risk of being struck again by more blowflies. The smell produced by the larvae 

feeding on the sheep can attract other species such as the Green Hairy Mag

got Blowfly Chrysomya rufifacies and the Small Green Hairy Maggot Blowfly 

Chrysomya varipes, who will also lay their eggs on the sheep (31]. The larvae of 

these species can go deeper into the skin of the sheep causing severe damage and 

even death. 

There are many different ways of controlling blowfly strikes. Some involve control 

of the blowfly population, such as the trapping and pesticides discussed in Chapter 

1 while others involve treating the sheep. Removing the wool from the sheep is one 

of the most effective methods as the wool can easily get soiled and start to smell 

thus attracting the blowflies. This can be done by shearing, crutching (the specific 

removal of wool from around the tail and between the rear legs) and/ or mulesing. 

Mulesing involves removing large areas of skin from around the tail of the sheep to 

prevent wool growth, thus making the sheep less attractive to blowflies. However 

this process is very painful for the sheep and research has shown that the wound 

created by mulesing itself is highly susceptible to blowfly strike [15]. A combination 

of these methods can be very effective. Blowfly strikes are most virulent at early 

spring and late autumn. Shearing just before one period and crutching before the 

other is thought to be an effective control method (32). Farmers can also time the 

birth of sheep (lambing) to occur just after shearing or crutching, to minimise the 

risk of soiled wool due to the birthing process (32]. 

Unfortunately some methods can have serious side effects. For example if the sheep 

are being treated by chemicals this can have an adverse effect on the wool, leaving 

residues [32). Tighter environmental controls by governments in recent years has led 

to restrictions being placed on the marketing and processing of wool with residues. 

Myiasis is also a problem in England, primarily due to the Greenbottle, Lucilia 

sericata. The life-cycle of the Greenbottle from egg to adult takes about 3-5 weeks, 

with 3 or 4 generations per year, [33]. Blowfly strikes affect more than 80% of En

glish and Welsh farms and up to a million sheep are struck each year. Upland farms 
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are 1nore likely to suffer and the problmn is worse in the south. Myiasis is a seasonal 

problmn. The first cases of blowfly strikes are often reported in May or June and 

persist until about late September. The exact times and the severity of the strikes 

are dependent on many factors including temperature and rainfall and thus vary 

every year, [33]. 

One of the main variables that governs the severity of a blowfly strike is the sus

ceptibility of the host. Wall et al. [63] defined two main criteria for increased 

susceptibility: a) the humidity of the wool, b) the contamination of the wool with 

faeces. The hu1nidity of the wool depends on the length of the wool and the amount 

of rain. If a sheep has been soaked to the skin it can develop fleecerot and if it 

happens a second tilne there is a risk of severe skin infla1nmation, which can cause 

sertun to enter the fleece fro1n the skin which is highly attractive to blowflies, [31). 
It was found by French et al. [21) that a gravid female of the species Lucilia cuprina 

was three times 1nore active in the presence of wet sheep than dry sheep. In their 

1nodel Wall et al. determine that in order for eggs to survive the relative humidity 

of the wool must be above 65%. If it is above 80% then all the eggs survived. They 

determined that the probability of survival between these two values follows a linear 

relationship. If the host gets diarrhoea then this increases the risk of faecal contam

ination. Diarrhoea in sheep is often caused by parasitic nematode burdens, whose 

population in a host is deemed to be dependent on the faecal consistency of the 

host. The length of the wool is also a factor as the longer it is the 1nore likely it is 

that faeces will stick to it. Wall et al. gave scores for different wool lengths between 

0 and 1 (a newborn sheep having a score of 0). Thus they constructed a faecal 

contamination index (FCI) (wool length 1nultiplied by level of faecal consistency) 

which could be calculated as a measure of the likelihood of faecal contamination. 

Wall et al. then calculated the susceptibility of a host to blowfly strike by using 

the logistic regression equation 

(2.1.1) 

where a, {31, {32 are constants, x1 represents faecal conta1nination and x2 wool huinid

ity. R is the probability of susceptibility and is equal to the proportion of susceptible 

hosts over the proportion of non-susceptible hosts. 

Infected sheep are more susceptible to blowfly strike, so to 1nodel this aggregation 

Wall et al. [63] used a negative binomial distribution generated by the parameters 

m and k, where m is the average number of batches of eggs laid on an individual 
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host and 1/ k is a measure of the degree of aggregation. 

This data along with other factors was used by Wall et al., [63] to construct 

a comprehensive simulation model of blowfly strikes by Lucilia sericata based on 

previous versions [61, 62]. Their model was based on data collected on blowfly 

strikes on lamb and ewes on 370 farms in four regions: south-east England, south

west England, central England and Wales. They found that their model explained 

a significant proportion of the variance in the lamb strikes in all regions and ewe 

strikes in three of the four regions. The model also predicted the onset of strikes 

at the start of the season to within a week in three of the regions, in the fourth 

region the model was accurate to within three weeks. The model was thought to be 

useful in assessing the effectiveness of new control techniques and changes to existing 

practices on the frequency of blowfly strike. However the model was thought to be 

useful in predicting seasonal blowfly strikes pattern only if the weather projections 

are accurate. The model is accurate on a regional basis but was not thought to be 

used on a farm by farm basis especially if a particular farms methods differ from 

the established norm. 

2.1.1 Delay 

In many systems the evolution of a process is dependent on the past history of that 

process, or at least some part of it, at some previous time. The particular example 

we look at in this thesis is the case of the maturation of blowflies. The evolution of 

a population of blowflies is dependent on when their larvae mature. In a simple case 

you could say that larvae born at time t will, if they are not killed, mature at some 

timet+;, where Tis the time from when an egg is laid to when the larvae emerges 

from its cocoon as a mature blowfly. Therefore, when working out the change in 

mature blowfly population at time t you will need a term that is dependent on the 

number of eggs laid at time t - r. This is known as a time delay and occurs in some 

fonn in many systems both man made and in nature, over many different areas 

including physics, biology and chemistry. Other examples of systems that involve 

time delays are the way the body balances its levels of glucose and insulin (when 

this fails it leads to Diabetes), reforestation and models of immigration. It is said 

that any mathematical model that does not take time delays into account in these 

types of systems is only a first approximation to the true situation, [37). Differential 

equations without delay do not accommodate this fact and so for these systems we 
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need to use delay differential equations (DDE's). 

2.1.2 Previous models 

There has been extensive work undertaken on 1nodelling populations of blowflies 

and due to the importance of the 1naturation rate a lot of these involve DDE's. 

Many of these models are based on the experhnental data of Nicholson [47]. In 1957 

Nicholson gathered data on laboratory cultures of the Australian sheep blowflies 

Lucilia cuprina over a period of 2 years. In these experhnents the populations were 

controlled by the a1nount of food allowed. Data was gathered in the case where the 

mature blowflies food was controlled and also when the food supply to the larva 

was controlled. He follnd that there was a periodic oscillation of the population of 

around 35-40 days. Nicholson's data showed that in each adult population cycle 

there were actually two peaks in reproductive activity, after an initial increase the 

population actually starts to die off, before a second increase is observed. This is 

known as a 'second burst'. Nicholson's Blowfly data has been used to derive 1nodels 

for blowfly populations. An early attempt to 1nodel the data by May [42], used the 

delayed logistic equation 

dum(t) = () (l- um(t-r)) 
dt rum t K , 

where Um ( t) is the population of blowflies, K is a constant depending on the available 

food, T the 1naturation delay and r the intrinsic rate of population increase. This 

1nodel provided reasonable accuracy when compared to Nicholson's data and showed 

that the main factor in the population dyna1nics was the effect of high fertility 

co1nbined with long maturation rate. However it computed the delay to be 9 days 

while observations of the experhnental data found that the delay should be 14.8±0.4 

days [27]. May's model also failed to pick up the 'second burst' pheno1nenon observed 

in Nicholson's data. 

A 1nore sophisticated model developed in the early 1980's by Gurney, Blythe and 

Nisbet, [27] did pick up the 'second burst' pheno1nenon. This 1nodel took the form 

dum(t) 
dt = b(um(t-r))- dum(t), (2.1.2) 

where um(t) is the population of adult blowflies at thne t, T is the 1naturation 

delay, which here is the thne it takes for the larvae to mature into adult blowflies, 

d is a positive constant to represent death rate and b(um(t-r)) is a function to 
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represent the maturation rate. Nicholson's data shows that when the mature blowfly 

population gets too high egg production effectively stops. This· is because as the 

population of blowflies increases it becomes harder for them to find the amount 

of food they need. When this happens they need to use all the energy from their 

diminished food intake for their own maintenance and so are unable to produce any 

eggs. Using this observation Gurney et al. reasoned that realistically the maturation 

rate function needed to have the property b( um) �~� 0 as Um became either very large 

or very small. They also felt that b( um) should have only a single maximum value 

at some population that would be determined by the amount of available food. 

Therefore they proposed the use of the function 

(2.1.3) 

to model the maturation rate, where 1/A is the size of the population at which 

the tnaximum birth rate is achieved and P is a positive constant that models 

the maximum per capita egg production rate. Numerical simulations of this 

model showed a good qualitative fit to the data from (4 7]. Their simulations gave 

the 'second burst' phenomenon when the minimum population size of the adult 

blowflies was small in comparison with 1/ A. If the minimum population size was 

large compared to 1/A then a smooth oscillatory solution was observed. They 

deduced that the fluctuations observed were due to the combined effect of the long 

maturation rate with the single humped total reproduction curve. 

More general models for a population that undergoes two life stages with a 

discrete time delay to represent the maturation rate have been investigated. These 

types of populations include mammalian and some amphibious animals as well as 

blowflies. One such model was proposed by Aiello and Freedman, [2]. Their model 

consisted of two DDE's, one for the mature species and one for the immature 

dui(t) 
dt 

dum(t) 
dt 

(2.1.4) 

where ui(t) and um(t) are respectively the populations of the immature and mature 

species at time t, J-L is the natural death rate of the immature species, a the birth 

rate of the immature species and d the natural death rate of the mature species. A 

logistic death rate for the mature population was assumed along with a linear death 
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rate for the innnature. The birth rate of the hnmatures was also assumed to be 

linear. 

With positive initial conditions Aiello and Freedman [2] found that the positive 

equilibrium solution of (2.1.4), namely 

(
a2 a ) 

�( �u�~� u* ) = -e-11:'(1 - e-p:r) -e-p:r 
t' m dj..L , d ' (2.1.5) 

would be globally asy1nptotically stable. It is interesting to note that this. equilib-

rium depends on the 1naturation delay, r. This is due to the fact that not all larvae 

will mature, as some will inevitably die, leading to a smaller than otherwise antic

ipated 1nature blowfly population. This being the case it is not uncomtnon for the 

steady state of a system to depend on the delay. They found this model did not give 

the periodic oscillations observed by Nicholson [47) and reproduced in the model by 

Gurney et al. [27]. A reaction-diffusion extension of the systmn (2.1.4) was later 

proposed by Gourley and Kuang [23]. As the hnmature species are now allowed to 

1nove around each individual1nay mature at a point in space different from where 

it was born. Thus the maturation rate term needed to be remodelled to account for 

this. Of course in some cases the hntnature population may not diffuse, for example 

if they are larvae as in the case of blowflies. To simplify their 1nodel Gourley and 

K uang decided to assu1ne that the motion of the species would be a random walk 

which would be 1nodelled using Fickian diffusion. On an infinite domain their model 

took the form 
8ui(x, t) 

at 
8um(x, t) 

at 

D;fl.u;(x, t) + aum(x, t) - f.tU;(x, t) - ae-p.r L: q(x - y)um(Y, t- T)dy, 

- Dmfl.Um(X, t) + ae-p.r L: q(x-y)um(Y, t- T)dy- �d�u�~�(�x�,� t), (2.1.6) 

where Di, Dm are the diffusivities of the ilnmature and 1nature species respectively 

and q(y) is the probability density function associated with the movement of the 

immature species. This is taken to be a Normal distribution with mean x and 

variance 4Dir and takes the form 
1 q(y) = e-y2

j4DiT. 

-/41f Dir 
(2.1.7) 

In the limiting case when Di �~� 0 we regain the maturation tenn in (2.1.4). 

Linear stability of the non-zero equilibrium 

Perturbing about the non-zero equilibrium by setting ui(x, t) - u; + 
�~�(�x�,� t), um(x, t) = u:n + v(x, t), where ui and u:n are given by (2.1.5), and linearising 
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(2.1.6) gives 

�a�~�(�x�,� t) 
8t 

8v(x, t) 
at 

- Dtf:.f.(x, t) + av(x, t)- p,f;,(x, t)- ae-"r 1: q(x-y)v(y, t- r)dy 

- Dmt:.v(x, t) + ae-"r 1: q(x- y)v(y, t- r)dy- 2du;,.v(x, t). 

Now looking for solutions of the form �~�(�x�,� t) = c1eut+ikx, v(x, t) = c2eut+ikx we find 

that we get 

O'Ct e"t+ikx - - ( k2 D; + J.!) Ct eut+ikx + CiC2eut+ikx - Cte -I'T L: q( X - y )c2eu(t-r}+iky dy 

ac2eut+ikx - -k2 Dmc2eut+ik:r: + ete-I'T L: q(x-y)c2e<T(t-r}+ikYdy-2du;,.c2eut+ikx. 

(2.1.8) 

The main problem here is the maturation term which involves an integral, so let us 

look at that on its own. Using the relationship (2.1. 7) we get 

After some algebra (2.1.9) can be written as 

((x + 2ikDtr)- y)
2

} dy. 
4Dtr 

(2.1.9) 

However the term in the integral is now a normal distribution with mean x + 
2ikDiT and variance 4DiT and thus is equal to 1. So we are just left with 

�c �2 �a�e�_�~�-�'�,�.� eut+ikxe-u,. e-k2
Di,.. Now we can substitute this into our linearised equations, 

(2.1.8), and cancel the eut+ikx terms to get 

ac1 - -k2 Dicl + acz - p,c1 - �c�z�a�e�_�~�-�'�,�.� e-u,-e-k
2 
Di,-, 

O"Cz - -k2 Dmc2 + �c�2�a�e�_�~�-�'�,�.� e-uT e-k
2
Di,-- �2�d�u�~�c �2 �,� 

which can be put into matrix form 

The roots, a, of this dispersion relation are -(J.L + k2 Di) together with the roots of 

a+ k2 Dm + �2�d�u�~�- �a�e�_�~�-�'�,�.� e-u,-e-k
2
Di,- = 0. Standard analysis (see (23]) showed that 
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these roots would all be in the left half of the complex plane and thus the equilibrium 

( u;, u:n) would be linearly stable, independent of the delay and diffusion. 

The model (2.1.6) does not make sense on a finite domain as it does not account 

for interactions with the boundary. On a finite spatial domain, which in the one 

dimensional case can be taken to be 0 :::; x :::; 1r without loss of generality, with 

hotnogeneous Neumann boundary conditions the function q(x -y) must be replaced 

by 

(2.1.10) 

which is the solution to the heat equation on a finite domain 

subject to 

aQ 
-=0 at x=O 1r ax , and Q(x, y, 0) = 8(x- y). 

For the finite domain x E [0, 1r] the second equation of (2.1.6) would be replaced by 

aum(x, t) 
at 

8
2
um(x, t) - J.Lr 11T Q( ) ( ) 2 ( ) - Dm ax2 +ae 

0 
x,y,T Urn y,t-r dy-dum x,t, 

(2.1.11) 

for x E [0, 1r], t > 0, where Q(x, y, t) is given by (2.1.10), with boundary conditions 

Bum( ) Bum( ) ax 0) t = ax 1f) t = 0, t > 0, (2.1.12) 

and initial conditions 

um(x, t) = ¢(x, t) for (x, t) E [0, 1r] x [-r, 0]. (2.1.13) 

Gourley and Kuang, [23] were able to prove that (2.1.11), subject to (2.1.12) and 

(2.1.13) has a unique positive solution and also that the equilibrirun e-J.Lra/d is 

globally asytnptotically stable if a, d > 0, J.-L, ,- 2:: 0 and the initial function ¢ is 

Holder continuous in [0, 1r] x [-r, 0], non negative and¢¢ 0, [23]. 

Previously we have assutned that the populations of the blowflies and the sheep 

will exist in the satne finite area. However in reality the sheep will be confined to the 

field they are in while the blowflies have no such restrictions. For exa1nple consider 
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a farm which has five fields of sheep. Each field effectively has a different population 

of sheep all of which are independent of each other. However it is reasonable to 

assume that there would only be one population of blowflies that prey on all the 

fields of sheep. It is clear that if the blowflies in one field were to run out of sheep 

they could quite easily move to one of the other fields that has more sheep. In fact 

it is well known that blowflies from the surrounding area will be attracted to fields 

that have a large population of susceptible sheep, [33). It may therefore be of use 

to construct a model for myiasis where the blowfly population can exist in a large 

space (e.g. a farm) but the sheep are restricted to finite areas within this larger 

space (e.g. fields). Other models have previously been developed using these ideas, 

for example Cantrell and Cosner, [14] who constructed a model for the predation 

of aphids living on fireweed patches by ladybirds. They assumed that the aphids 

would live on independent patches of fireweed. For ease of computation they decided 

that each patch, n, would be a square with sides of length ln, as it was shown that 

any shape of patch would give results that were qualitatively similar. Instead of 

modelling the number of aphids they modelled the density, such that the density of 

aphids in a given fireweed patch was v(x, y). Then they assume that a population of 

ladybirds exist in the air above the patches. Ladybirds can immigrate to any of the 

patches, with equal probability as they are capable of flying relatively long distances, 

to prey on the aphids and then leave again. Thus to model a system of N square 

patches with sides of length ln and area An = �l�~� they needed N state variables 

vn(x, y, t) to denote the density of the aphids in each patch, N state variables, Pn(t) 

to denote the number of ladybirds in each patch and a final state variable P A ( t) to 

denote the number of ladybirds in the air. It is important to remember that while 

the aphids are modelled in terms of densities the ladybirds are modelled in terms of 

actual numbers. So their model had the form 

dPn 
dt 

8vn 
at - Dflvn + TVn ( 1- �~�)� - CVn ( f;) 

for x,y E !1 

Vn(X, y, t) = 0 on an, 

(2.1.14) 

(2.1.15) 

where In represents the per capita immigration rate of ladybirds to patch n, En 

the per capita emigration rate of ladybirds from patch nand D, r, K, care positive 

constants. Here n = (0, ln) X (0, ln) and an is the boundary. They also constructed 
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more sophisticated models where they assu1ned a finite population of predators 

and also where they included the idea that ladybirds will aggregate on patches 

with higher aphid densities. Their results showed that it may be possible to have 

an inverse relationship between patch size and prey density that would be due 

to the presence of predators. The model also predicted 1naximum patch sizes, 

as well as minhnum patch sizes, for the continued existence of the prey popu

lation, which were not found when using reaction-diffusion models for the prey alone. 

2.2 A simple model of blowfly strikes 

In this section we propose a model for blowfly strikes. Our 1nodel uses as a basis 

previous 1nodels, such as [27] and [23], to describe the relationship between hnmature 

blowflies ui(t) and mature blowflies um(t) and also includes their parasitic effect on 

a host population, N ( t). Our 1nodel takes the fonn 

�u�~�(�t�)� - b(um(t))N(t)-f.liUi(t)- e-ILiTb(um(t-r))N(t- r) 

�u�~�(�t�)� - �e�-�~�L�i�T�b�(�u�m�(�t�- r))N(t- r)- d(um(t))- f.LTUm(t) 

N'(t) - rN(t)(l- N(t))- �~�s�N�(�t�)�u�m�(�t�)�,� 

subject to the initial conditions 

(2.2.1) 

(2.2.2) 

(2.2.3) 

ui(O) = ui,O 2:: 0, um(s) = ¢m(s) 2:: 0, N(s) = ¢N(s) 2:: 0, s E [-7, 0], 

(2.2.4) 

where f.li, f.LT, "(8 , r are all positive constants and we define 

1 ( ) dum 
Um t = dt' N'(t) = �d�d�~�·� 

In this model b(um(t))N(t) represents the birth rate of blowflies, which is some 

function of the 1nature blowflies multiplied by the number of hosts, N(t) at timet, 

so if no hosts were present then the birth rate would be zero. The d(um(t)) tenn 

represents the natural death rate of 1nature blowflies and is so1ne increasing function 
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of Um ( t). We make the following assumptions about these variables 

b(O) = 0, bE 0 1(0, oo), b(um) > 0 for all Um > 0 

b( um) is increasing in Um up to a value umax, 

with b( umax) = bmax, after which it is decreasing. 

d(O) = 0, dE 0 1[0, oo), d(um) is strictly increasing in Um 

d(um) > 0 for all Um > 0. 

(2.2.5) 

We also note b( um) qualitatively resembles the function Pume-Aum, for some con

stants PandA, see Figure 2.1 and that (2.2.5) implies that d(um) > 0 for all Um > 0, 

The f.tTUm ( t) term represents the death rate of mature blowflies due to trapping. 

Trapping is the term used to describe man's attempts at controlling the popula

tion. For example a farmer will lay out buckets in his field containing poisonous 

chemicals to attract and kill the blowflies, as described in Chapter 1. The f.tiui(t) 

term represents the natural death rate of immature blowflies and is linear. The 

e-JLiTb(um(t-T))N(t-T) term is the rate at which immature blowflies become ma

ture blowflies, known as the maturation rate. This term incorporates the delay, T, 

because at time t, only blowflies born at time t - T will mature. So the maturation 

rate at time t is related to the birth rate at time t - T. However some of the imma

ture blowflies will die during the larval phase and because we have a linear death 

rate the juvenile mortality is accounted for by the factor e-JLiT. 

It is assumed that the host population follow a logistic growth pattern, rN(t)(l

N ( t) /I<), in our model, however, the equation has been normalised to remove the 

carrying capacity, K. The hosts death rate is modelled by the term 'YsN(t)um(t) 

and is taken as proportional to the number of mature blowflies and to the host 

population. It could be argued that this term should instead be 'YsN(t)ui(t) or per

haps "f8 N(t)um(t-T), since it is really the larval flies that cause the sheep to die. 

Later we shall present some numerical simulations which investigate what happens 

if the sheep mortality term is taken as one of these alternative expressions. From 

an analytical point of view, we are concerned mainly with finding conditions which 

ensure the blowflies are eradicated, and our theorems on eradication can be proved 

even with these alternative expressions. The choice 'YsN(t)um(t) has the advantage 

of partially decoupling the system. 

Notice that (2.2.2) and (2.2.3) do not depend at all on ui(t) and so we can solve 

them independently of (2.2.1). Thus we can just look at (2.2.2) and (2.2.3) when 
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u(x,t) 

Figure 2.1: A qualitative graph of the function b(u(x, t)). 

analysing our system. 

2.2.1 Positivity and Boundedness 

Proposition 4 Suppose {2.2.5) holds for the system {2.2.1,2.2.2,2.2.3) subject to 
{2.2.4) and also that ¢m(O), ¢N(O) > 0 and 

u;(O) = 1: b(um(s))N(s)e"'8ds, (2.2.6) 

then ui(t), Um(t), N(t) > 0 for all t > 0 

Remark: Equation (2.2.6) is a compatability condition. Such compatability con

ditions on the initial data are very com1nonly required in stage structured models. 

The compatability condition is very easy to interpret ecologically. Individuals that 

are mature at time 0 must have been born at some time s E [-r, 0]. Look at a 

typical thne interval from s to s + ds with s E [-r, 0] and ds infinitesimal. Then 

b(um(s))N(s)ds births will have occured during this time interval and each such in

dividual has to re1nain alive fro1n its birth times< 0 until thne 0. The probability 

of this happening is eJ.Lis. 

Proof: To prove positivity of the solution to our system we first look at (2.2.3) and 

see that it can be written as 

N'(t) = N(t) [r(l- N(t)) -{' 8Um(t)] = N(t)f(N(t), um(t)), 
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where f(N(t), um(t)) = r(l- N(t)) - {sUm(t). We can recast this as an integral 

equation: 

N'(t) 
N(t) -

ln (N(t)) -
N(O) 

N(t) 

f(N(t), Um(t)) 

1' f(N(s),um(s))ds 

N(O) exp ([ f(N(s),um(s))ds). 

Making the assumption that N(O) = ¢N(O) > 0 we see that N(t) > 0 for all t > 0. 

Now we look at (2.2.2) to prove positivity of um(t). Our initial conditions show 

that ¢m(s) 2:: 0 and ¢N(s) 2:: 0 for s E [-r, 0]. We �s�h�a�~�l� also use the further 

assutnption from the Proposition that ¢N(O), ¢m(O) > 0. First we shall prove that 

um(t) is positive fortE [O,r]. We see that on this interval um(t-r) = ¢m(t-r) �~� 0 

and N(t-r) = ¢N(t-r) 2:: 0, since t-r E [-r, 0]. So e-J.Lirb(um(t-r))N(t-r) �~� 0. 

Thus 

for all t E [0, r]. 

Therefore we can say that um(t) 2:: ilm(t) where ilm(t) is the solution of 

subject to um(s) = ¢m(s) 2:: 0 on s E [-r, 0]. We can write d(um(t)) as 

d(um(t)) = d(O) + ilm(t)d'(O) + �O�(�u�~�)� = ilm(t)d'(O) + �O�(�u�~�)�,� because d(O) = 0. 

Therefore the above equation has a factor of ilm ( t) in its right hand side. 

Thus by the same method as used for positivity of N(t) we conclude that 

um(t) > 0 for all t E [0, r]. Because um(t) 2: um(t) we conclude that um(t) > 0 

for all t E [0, r]. 
Fort E [r, 2r] we can change the origin of time toT and see that um(t) is positive 

by the above argument. Thus um(t) is positive for all t > 0, by the method of steps. 

To show positivity of ui(t) we note that the solution to (2.2.1) subject to (2.2.6) 

is 

ui(t) = lt b(um(s))N(s)e-J.Li(t-s)ds, 
t-r 
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which, given that um(t) and N(t) are positive implies that ui(t) must also· be 

positive and thus the proof is co1nplete. 

Proposition 5 Suppose {2.2.5} holds for the system (2.2.1,2.2.2,2.2.3} subject to 
(2.2.4}, then ui(t), um(t), N(t) are bounded. 

Proof: To prove that N(t) is bounded we note that, by positivity of N(t) and um(t), 

N'(t) :s; rN(t)(l- N(t)), 

which implies that 

lhnsup N(t) < 1. 
�t�~�o�o� 

Hence N(t) is bounded for all thne. 

Now we wish to show that um(t) is bounded. First we note that because d(um(t)) is 

an increasing function and non-negative for all values of um(t) 2:: 0, equation (2.2.2) 

can be written as 

We know that b(um(t)) has a maxhnu1n value at b(umax) which we will call bmax 
and we have shown that N(t) is bounded and so will have a maximum value, Nmax. 

Thus we get 

(2.2.7) 

So we can say that um(t) is bounded above by the solution Y(t) to the equation 

Y'(t) + J.LrY(t) = e-J.LiTbmax Nmax, (2.2.8) 

subject to the initial condition Y(O) = um(O). This equation can be solved using 

the integrating factor �e�~�-�t�r�t� to give 
bmax Nmax 

Y(t) = e-J.Lir (1- e-J.Lrt) + Y(O)e-JLrt. 
/-tT 

So because um(t) ::; Y(t) and um(O) = Y(O) we have that 

Um(t) 
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and so um(t) is bounded. 

We can now see that the equation for the immature blowflies (2.2.1) satisfies 

which has the same structure as (2.2. 7) and so it is clear, by following the same 

n1ethod as for the mature blowflies, that ui(t) is bounded and the proof is complete. 

2.2.2 Existence of equilibrium solutions 

Looking for equilibrium solutions of our system (2.2.1,2.2.2,2.2.3) we remember that 

we do not need to consider (2.2.1). Therefore we set all derivatives to zero in (2.2.2) 

and (2.2.3) and also set um(t-r) = um(t) and N(t-r) = N(t) to get the equations 

e-J.LiTb(um)N-d(um)-JlTUm - 0 

rN(l- N)- ry8 Num - 0. 

(2.2.9) 

(2.2.10) 

We can see by inspection that Um = 0 is a solution of (2.2.9). Putting this into 

(2.2.10) we get rN(1- N) = 0, so we have two equilibrium solutions (urn, N) = 

(0, 0), (0, 1). 

For an equilibrium with um, N > 0 to exist it must satisfy 

e-P.iTb(um)N - d(um) + JlTUm 

r(1 - N) - 1sUm· 

(2.2.11) 

(2.2.12) 

We can rearrange (2.2.12) to get N = (1- �~�u�m�)�.� Putting this into (2.2.11) we get 

e-J.I.iTb(um) ( 1- �~�8 �U�m�)� = d(um) + JlTUm. 

Noting that �~�u�m� �~� 0 we can see that in order for an equilibrium solution with 

Um > 0 to exist it is necessary that 

at the equilibrium. Thus one way to ensure that such an equilibrium does not exist 

is to impose the following condition 

(2.2.13) 

It is reasonable to conjecture that if the above inequality holds then the blowfly 

population will be eradicated and this is what we will prove later, in Theorem 8. 
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2.2.3 Linear Stability 

We want to see if the equilibrhun solutions are going to be locally stable or unsta

ble. To do this we shall conduct a linearised stability analysis. First we perturb 

(2.2.2,2.2.3) about the equilibrium points (u:n, N*), so we set Um(t) = u;n + e(t) 
and N(t) = N* + rJ(t), where �~�(�t�)� and 77(t) are small. Then we Taylor expand the 

functions b and d, linearise and rearrange the equations to give 

�~�'�(�t�)� - e-JjiT (b(u';J'r/(t- T) + e(t-T)b'(u';JN*)- �~�(�t�)�d�'�(�u�'�:�n�)�- �J�.�L�T�~�(�t�)� 

r/(t) - r'fl(t) (1- 2N*) _,s (u':n'rl(t) + e(t)N*), 

where at this stage ( u:n, N*) denotes any equilibrium. Now we look for solutions of 

the form e(t) = c1eut, 77(t) = c2eut. Putting this into the above equations gives 

c1a - e-JjiT (c2b(u':n)e-ur + c1e-urb'(u';JN*) - c1d'(u':n)- C1J.LT 

c2a - c2r (1 - 2N*) - Is ( c2u':n + c1N*) , 

which can be put into matrix fonn 

(2.2.14) 

For non-trivial solutions the determinant of the coefficient matrix 1nust be zero. 

Theorem 6 Let (2.2.5} hold. Then the equilibrium solution (ui, u:n, N*) = (0, 0, 0) 
of the system (2.2.1,2.2.2,2.2.3} is linearly unstable. 

Pr.oof: Note that if um(t) -+ 0 and N(t) -+ any lhnit (not necessarily zero) then 

(2.2.1) implies ui(t) -+ 0. Therefore we can focus on (2.2.2) and (2.2.3) only. For the 

equilibrium point (urn, N) = (0, 0), remembering that b(O) = d(O) = 0 the matrix 

becomes 

The detenninant of this matrix is 

(a + d' ( 0) + J.LT) (a - r) . 
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To be stable both roots must be in the left half of the complex plane. We see that 

the roots are a = r and 0' = -(d'(O) + J-lT ). However as r is positive this root 

will be in the right half of the complex plane and thus the equilibrium solution 

( u;, u:n, N*) = (0, 0, 0) is linearly unstable. 

Theorem 7 Suppose for the system (2.2.1,2.2.2,2.2.3} that (2.2.5} holds and also 
that 

e-JJ.i'T"b' (0) < d' (0) + J-lT, 

then the equilibrium point (ui, u:n, N*) = (0, 0, 1) is asymptotically linearly stable. 

Proof: Again note that if um(t) ---+ 0 and N(t) ---+ 1 then ui(t) ---+ 0. So we focus 

on (2.2.2) and (2.2.3) only. For the equilibrium point (urn, N) = (0, 1) we find that 

(2.2.14) becomes 

( a- �e�-�~�;�T� �e�-�u�T�/�1�~ �8�0�)� + d'(O) + �~�T� a: r ) ( :: ) = O. 

From this we obtain the eigenvalue equation: 

This time we have that one of the roots is 0' = -r, which will be in the left half of 

the complex plane. For this equilibrium point to be linearly stable we now need to 

show that the other roots will also all be in the left half of the complex plane. For 

a contradiction, let us assume that there exists a root a- such that �R�e�a�-�~� 0. Then 

18- + d'(O) + J-lTI - e-JJ.iTb'(O)Ie-arl 

so that since Re a- 2:: 0 

_ e-JJ.iTb'(O)Ie-(Rea+ilma)rl 

_ e-JJ.iTb' (O) le-{Rea)r e-i(Ima)r I 

- e-JJ.irb' (O)e-{Rea)r, 

Therefore a- is in the disk of radius e-JJ.iTb'(O) centred at -d'(O)- J-lT· If we choose 

the radius of this disk such that the whole disk is in {Rea- < 0} then we have a 

contradiction. This will be the case if 

(2.2.15) 
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which holds by hypothesis and so the equilibrium point (ui, u':n, N*) = (0, 0, 1) is 

linearly stable. 

2.2.4 Global Stability of the equilibrium point ( ui, u:n, N*) == 
(0, 0, 1) 

We have shown that the equilibriu1n point (u;, u':n, N*) = (0, 0, 1) is locally stable 

in the situation when it is the only equilibrium (other than (0, 0, 0)). Let us now 

prove that it is globally stable under these circumstances. 

Theorem 8 Suppose for the system (2.2.1,2.2.2,2.2.3) that (2.2.5) holds and also 
that 

(2.2.16) 

and that ¢N(O) > 0. Then the equilibrium point ( u;, u':n, N*) = (0, 0, 1) is globally 
asymptotically stable. 

Proof: First note that if um(t) = 0 then the result is trivial. We already know that 

lim supt-+oo N(t) =::; 1. Let E > 0 be arbitrary. Then there exists T > 0 such that for 

t ;=:: T, N(t) < 1 +E. So when t;::: T + r, N(t- r) < 1 +E. Thus (2.2.2) becomes 

(2.2.17) 

As we know b(um(t)) :::; bmax we get 

(2.2.18) 

We first clahn that um(t) is not eventually monotonically increasing. Suppose the 

contrary. Then since Um(t) is bounded there exists£> 0 with Um(t) ----7 east ----7 00. 

Letting t----? oo and then E----+ 0 in (2.2.17) we get 

which, as £ > 0, contradicts inequality (2.2.16) in the hypothesis of the Theorem. 

Now if we assu1ne that Um ( t) is �~�v�e�n�t�u�a�l�l�y� 1nonotonically decreasing then as we 
\ 

know that um(t) ;::: 0 it must event-ually approach a limit, £11 as t ----+ oo. We want 

that lhnit to be 0. By the above analysis we get a contradiction if £1 > 0, so £1 1nust 

be equal to 0. 

This just leaves the case where um(t) is neither eventually monotonically increas

ing nor eventually 1nonotonically decreasing. In this case there exists a sequence of 
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times tk �~� oo such that �u�~�(�t�k�)� = 0 and um(tk) �~� £2 as k �~� oo, where £2 = 

lim sup t-oo Um ( t). So again we want to show that £2 = 0 (if lim SUP t-oo Um ( t) = 0 

then it follows that liminft-oo um(t) = 0, as Um(t) �~� 0, and so we have that 

um(t) �~� 0 as t �~� oo ). Using (2.2.17) at t = tb assuming k is sufficiently large 

that tk �~� T + r, we get 

0 = �u�~�(�t�k�)� < e-Jl.irb(um(tk-r))(1 +E)- d(um(tk))-f.-1/rUm(tk) (2.2.19) 

< e-J1.irbmax(1 +E)- d(um(tk))-f.-1/rUm(tk)· (2.2.20) 

If we let k �~� oo and then let E �~� 0 we conclude that £2 satisfies 

(2.2.21) 

Recall that bmax = b( umax), where umax > 0. We claim that £2 < umax. For 

a contradiction let us assume that £2 �~� umax. The left hand side of (2.2.21) is 

constant and the right hand side is increasing as a function of £2• Therefore 

(2.2.22) 

However since umax > 0 this contradicts condition (2.2.16) in our theorem. So we 

must have that £2 < umax. 

We have shown that £2 = limsupt-oo um(t) < umax, we now want to show that in 

fact £2 = 0. Let E2 > 0 be such that £2 + E2 ::; umax. Then there exists a T2 > 0 such 

that for all t �~� T2 we have 

We shall in fact assume that T2 is sufficiently large that additionally 

N(t) ::; 1 + E2. 

Next let k be sufficiently large that tk - T �~� T2. Then um(tk - r) ::; £2 + E2 and 

N(tk-r):::; 1+E2. As b(um) is increasing for all values up to umax and £2+E2 ::; umax 

we have that when k is sufficiently large such that tk - r �~� T2 , 

Therefore, putting into (2.2.2) and assuming tk- r �~� T2, we get 
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letting k --+ oo 

Since this holds for all sufficiently s1nall c2 > 0, we have 

which contradicts the hypothesis of our theorem unless £2 = 0. Thus we have that 

limsupum(t) = 0, 
t-'>OO 

i.e. um(t) --+ 0 as t --+ oo. 

We now want to show that N(t) --> 1 as t--+ oo. Let €3 > 0. There exists a T3 > 0 

such that fort> T3 ,_um(t) < c:3• Then fort> T3 

rN(t)(1- N(t))- 'YsE3N(t) :::; N'(t) :::; rN(t)(1- N(t)) . (2.2.23) 

Fro1n the right hand side of ( 2. 2. 23), lim su Pt--+oo N ( t) :::; 1 and from the left hand 

side liminft--+oo N(t) �~� 1- 'Ys€3/r (using that N(O) = ¢N(O) > 0). This is true for 

all €3 > 0, hence lim inf t_,.00 N ( t) �~� 1 and we conclude that limt_,.00 N ( t) = 1. 

Now we look at (2.2.1) to show that ui(t)--+ 0 as t--> oo. Let c:4 be arbitrary. Since 

N(t) --> 1 and um(t) --> 0, 

b(um(t))N(t)-�e�-�~�-�t�i�r�b�(�u�m�(�t�- r))N(t- r)--> 0 ast--+ oo. 

Therefore there exists a T4 > 0 such that when t > T4 

Therefore when t > T4 

(2.2.24) 

From the right hand side of (2.2.24), lhnsupt--+oo ui(t) ::; c4/ f..ti and from the left hand 

side, lhninft_,.00 ui(t) 2:: -€4/ f..ti· This is true for all c4 > 0. Therefore 

0 :::; lim inf ui(t) :::; lim sup ui(t) :::; 0. 
t--+oo t--+oo 

Hence lhnt_,.00 ui(t) = 0. 

So ui(t) --> 0, um(t) --+ 0 and N(t) --+ 1 as t --> oo, thus the proof is co1nplete. 

Remark: If in equation (2.2.3), ry8 N(t)um(t) is replaced by 'YsN(t)ui(t) or 

'Y 8 N ( t )um ( t- r) then Theormn 8 still holds, but in the proof for the case 'Y 8 N ( t )ui ( t) 
we have to show ui--+ 0 and then N(t) --+ 1, rather than vice versa. 
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2.3 Numerical simulations 

To investigate system (2.2.1,2.2.2,2.2.3) further we wrote a computer programme, 

in Fortran, to numerically simulate the evolution of the system over time. For the 

simulation we needed to specify our functions, so we chose b(um) = Pume-Aum, as 

in [27], and d(um) =Cum, for some real numbers A, 0, P, which we could-vary as 

appropriate. The time stepping was carried out using the Adams-Bashforth method. 

The Adams-Bashforth method is an explicit linear multi-step method (i.e. it uses 

previous points such as ht_1 , ht_2 , ••• , ht-n to calculate ht+l! instead of just ht. This 

method can be adapted to use as many previous points as you like. We use the 

second order Adams-Bashforth method which just uses one previous point, ht-l· 

This has the form 

(2.3.1) 

where dt is the time step. A large time step can cause numerical instabilities but 

as our model· did not involve more complicated variables such as diffusion we were 

able to set dt = 1. Theorem 8 showed that we would expect global stability of 

the equilibrium state (ui, Um, N) = (0, 0, 1) if the condition �e�-�J�J�.�i�'�~�"�b�(�u�m�)� :=:; d(um) + 
JLTUm, for all Um > 0 was satisfied. So for our initial simulation we used the 

values A= 5, 0 = 0.1, J.li = 0.01, J.tT = 0.01, Is= 0.1, r = 1, P = 0.1 and T = 5 to 

satisfy this condition. Setting T = 5 means that at iteration t of our programme, 

immature blowflies from iteration t- 5 would mature (in this case, as dt = 1, 1 

iteration corresponds to 1 day). While it is known that the maturation time of an 

im1nature blowfly of the species Lucilia cuprina is about 15 days [27] we envisage 

that our model may be applied to other species which have different maturation 

rates. As expected over time the populations approached the equilibrium state 

(ui, Um, N) = (0, 0, 1), see Figure 2.2. The sheep population tends to 1 fairly quickly 

and the mature blowfly population tends to zero over time, note the scale of the 

immature blowfly population is very small. 

Next we investigated the situation when the condition for global stability of the 

steady state (0, 0, 1) was not initially satisfied. We found that this would be the case 

if we changed the value of P from 0.1 to 0.2, as seen in Figure 2.3. In this case the 

condition was satisfied to start off with, but not after 68 iterations, which resulted 

in the populations settling down to a different equilibrium (u;, u:n, N*), where the 

blowflies and sheep coexist. By increasing the value of P further we started to 
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Figure 2.2: Graph to show the asymptotic global stability of the equilibriu1n solution 
(ui, um, N) = (0, 0, 1), when P = 0.1, T = 5 and dt = 1. Parameter values used are 
A= 5, C = 0.1, J-Li = 0.01, J-LT = 0.01, 'Ys = 0.1, r = 1. 

get oscillations in our populations. These oscillations decayed exponentially. The 

larger the value of P the longer it took for the oscillations to die away and when 

P = 9 they still have not after 1000 days, see Figure 2.3. We see that the eventual 

equilibrium populations of the hnmature and mature blowflies are proportional to 

P. Next we set P = 10 and looked at the effect of increasing the delay, 1. Figure 

2.4 shows us that for small values ofT our system tends to an equilibrium solution 

with non-zero populations for all species. We see that as the delay is increased the 

eventual equilibrium population of the immature and mature blowflies increases. 

We also see that the size of the oscillations of the populations increase with T, 

but still decays exponentially over time. However for T �~� 5 the oscillations do 

not appear to decay and we have a periodic solution. Looking at the graph when 

T = 50 (Figure 2.5 d) we can see that in the period before any of the immature 

blowflies mature, t <50, the mature blowfly population decreases tending, to zero, 

and the sheep population increases, tending to 1. The immature blowfly population 

increases accordingly. However at the 50th iteration the immature blowflies will 

start to mature causing the 1nature blowfly population to increase and the sheep to 

decrease. At this point there is a sharp increase in the nu1nber of births of immature 

blowflies as we suddenly have more mature blowflies and lots of sheep. However the 
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Figure 2.3: Graphs to show the asymptotic global stability of equilibrium solutions 
( u;, u:n, N*) for varying values of P with T = 5 and dt = 1. Parameter values used 
are A= 5, c = 0.1, J.li = 0.01, J.lT = 0.01, rs = 0.1, r = 1. 

increase of mature blowflies soon causes a decrease in the sheep population and so 

the birth rate of the mature blowflies decreases as does the birth rate of the immature 

blowflies. At iteration 100 there is a sharp increase in the mature blowflies as the 

immature blowflies from the 50th iteration mature. This causes a sharp decrease in 

the sheep population and therefore also in the immature blowfly population, which 

decrease to zero. Now we are back in a similar situation to what we had at the 

start. The mature blowflies decrease, tending to zero, the sheep increase, tending 

to one, and the immature blowflies increase accordingly. The whole process repeats 

itself in a similar manner, over and over. We see that the population of the mature 

blowflies have the 'second burst' feature observed in Nicholson's blowfly data, [47] 

and reproduced by the model of Gurney, Blythe and Nisbet, [27]. However we see 

that the immature population exhibits two types of oscillation, one shorter one that 

shows the 'second burst' phenomenon and a larger one that only appears to have 

one burst. 

Figure 2.6 illustrates with an example when T = 90 that for large values of 

T there is a period of instability at the start of the simulation where the popula

tions oscillate wildly. However the populations eventually settle down to a stable 

oscillating pattern. 
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Figure 2.4: Graphs to show the solution of the system settling down to equilibrium 
populations for small values ofT when P = 10 and dt = 1. Parameter values used 
are A= 5, C = 0.1, J.li = 0.01, J.tr = 0.01, Is= 0.1, r = 1. 
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Figure 2.5: Graphs to show the solution of the system tending to a periodic solution 
for larger values ofT when P = 10 and dt = 1. Parameter values used are A = 
5, C = 0.1, J.li = 0.01, J.tr = 0.01, Is= 0.1, r = 1. 
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Figure 2.6: Graphs to show the periodic solution of the system when r = 90, P = 10 
and dt = 1. Parameter values used are A = 5, C = 0.1, J.-ti = 0.01, J.-tr = 0.01, Is = 
0.1, r = 1. Here the data was plotted every 10 iterations, so on the x axis, 1 
corresponds to 10000 iterations. 
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Figure 2.7: Graphs to show the global stability of the equilibrium solution (u:n, N*), 
when using the quadratic death rate term d( um) = �C�u�~�,� with P = 10, r = 5 and 
dt = 1. Parameter values used are A= 5, C = 0.1, J.-ti = 0.01, J.-tr = 0.01, Is = 0.1, 
r = 1. 
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Next we looked at the effect of 1naking d( um) a quadratic term by setting it equal 

to �C�u�~�,� (2. 7). We saw that the quadratic death term caused the solutions to settle 

down to an equilibrium value more quickly. 

2.3.1 Realistic values for Myiasis 

Here we attempt to use parameter values that reflect previous observations. Much 

work has been done on investigating blowfly populations and it is reasonable to 

assume that the maturation rate of the larvae in Nicholson's experhnents with un

lhnited food supply, [47] will be comparable with the 1naturation rate of the larvae 

living on sheep. Gurney, Blythe and Nisbet found this delay to be 14.8 ± 0.4 days, 

[27], thus it is reasonable for us to use the value of r = 15 days in our simula

tions. They also infer from Nicholson's data that the value of Pis between 7.4 and 

11.4 eggs per day, However observational evidence suggests that blowflies lay eggs 

in batches of around 200 and lay 2 to 3 batches in their lifethne which is about a 

month, [31]. Even a conservative estimate of 500 eggs in 30 days gives a value of 

16.667 for P which is outside the range suggested by Gurney et al.. Examination of 

Nicholso:n's data suggests that the population of mature blowflies which 1naximises 

the nutnber of eggs laid is very small compared to the peaks observed and thus we 

set A= 10. This just leaves us with the death rates of the species. Gurney et al. 

approximate Cr in different cases and find it to be fairly constant at around 3, [27]. 

They also claim that this value is in good agreement with an independent estimate. 

Thus as we set r = 15 we derive a value for C of 0.2. 

As we are working on a scale of days the natural death rate of sheep will be 

negligible, so their death rate will be proportional to the rate of fatality of myiasis. 

It is well known that there is a large degree of aggregation in the laying of eggs and 

as a result only a few sheep in a flock would be expected to actually be infected. 

Wardhaugh and Dallwitz [64] collected data on the prevalence of myiasis on 25 farms 

around Canberra in the late 1970's. They examined the sheep at 3 times during 

the year. Their data was analysed by Fenton et al., [20] who found that over the 

course of the 1978/79 season 0.91% of sheep were infected and in the 1979/80 season 

2.16% of sheep were infected. Therefore we set the death rate of the sheep, Is to be 

0.02 although it is clear that farmers will check their sheep often and re1nove any 

infestations they find thus reducing the death rate further. 

Figure 2.8 shows two graphs from the same shnulation. The first graph shows 
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Figure 2.8: difference between viewing egg populations and whole larvae popula
tions, eggs seem to give a clearer picture. Parameter values are J-li = 0.01, J-lT = 
0, 'Ys = 0.1, r = 1, A= 10, C = 0.2, P = 500/30, Tdt = 15. 
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Figure 2.9: shows difference in evolution depending on how the death of sheep 
is modelled; a) 'YsN(t)um(t), b) 'YsN(t)um(t - r), c) 'YsN(t)ui(t). The bold line 
represents the eggs, the dotted line represents mature blowflies and dashed line 
represents sheep. Paran1eter values are J-li = 0.05, J-lT = 0, 'Ys = 0.1, r = 1, A = 
10, C = 0.2, P = 500/30, rdt = 15. 

the number of eggs laid by the blowflies with the population of sheep and mature 

blowflies while the second graph shows the immature population with the sheep and 

1nature blowfly population. This graph is not as illuminating as the large population 

of hnmature blowflies dwarf the other two and it is difficult to see the changes. We 

can see that the evolution of the 1nature blowflies more closely resembles the eggs 

laid than the evolution of the im1nature blowflies. It is clear to see that the 'second 

burst' phenomenon is more pronounced in the eggs than the larvae, where there is 

no significant dip in population, just an extra increase. The blowfly populations 

in the first graph rese1nble Figure 6c of the paper by Gurney et al [27] which they 

clahn provides a satisfying qualitative fit to Nicholson's blowfly data [47]. Figure 

2.9 shows that when the death rate of sheep depends on the nu1nber of 1nature 

blowflies present at timet then the sheep population decreases when there are lots 

of 1nature blowflies present. However it is the hnmature blowflies that infect the 

sheep and so we would expect the sheep population to decrease 1nore when there are 

many immature blowflies. Due to the maturation rate the 1naximun1 populations 

of immature blowflies do not coincide with the maximum population of mature 

blowflies and thus in the case of self sustained periodic limit cycles it does not seem 
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appropriate for the death rate of the sheep to depend on the mature blowflies at. time 

t. The second graph in Figure 2.9 shows the evolution when the death rate depends 

on the number of blowflies present at time t - r, this seems more appropriate as 

now the sheep population decreases when there are many immature blowflies and 

increases when there are not. By comparing with the first graph we can see that it 

is similar but the sheep population rises in the second graph where it falls in the 

first graph and vice versa. This change in the death rate of sheep does not seem to 

have affected the blowfly populations. The third graph shows the evolution when 

the death rate of the sheep depends on the immature blowflies present at time t. 
This graph does look different as there is wider variation in the sheep population 

and in the blowfly populations the first 'burst' is now larger than the second 'burst'. 

However there is a larger population of immature blowflies than mature and so to 

directly cotnpare the two cases the coefficient of the death rate of sheep �~�s� would 

need to be rescaled. Figure 2.10 shows the effect of changing the parameter r. This 

coefficient is a time scale that models the effectiveness of the response of the sheep 

population to any changes. So when r is big as in the third graph the population will 

adapt quickly and there will be little change in the population. However when r is 

small it takes longer for the population to adapt and we can see from the first graph 

that if r is small enough then the periodic solution observed in the other two graphs 

will be destroyed and the populations will settle down to a stable equilibrium. In 

Figure 2.11 we see that by increasing the death rate of the larvae, J-li, we destabilise 

our periodic solution. A small increase removes the second burst phenomenon from 

the adult blowfly population. A larger increase gives a solution with exponentially 

decreasing oscillations over time which eventually settle down to a stable equilibrium 

where the species co-exist. However if J-li is increased enough then it will cause the 

extinction of both the immature and mature blowflies and the sheep population will 

tend to the carrying capacity. 

Figures 2.12 and 2.13 show the effect of an increase in trapping, 1-LT· Note that as 

we have a linear death term for the mature blowflies increasing trapping is effectively 

just increasing the death rate of the mature blowflies. We can see from Figure 2.12 

that increasing trapping on the same scale as we increased the immature blowfly 

death rate does not have the same effect. It just destabilises the periodic solution 

causing an aperiodic complex solution similar to Figure 6d of Gurney et al. [27]. 

However the first graph of Figure 2.13, when /-LT = 1.5, shows that this instability 

just occurs at the beginning of the simulation and that it eventually settles down to 

52 



I 

0.5 r- \_ . �~� �~� . . . . 

r=0.01 

--eggs 
· · · · · · · mature 
-- - Sheep 

-

0 �~�~ �.�.�: �:�:�,�:�:� �,�_�,�.�c�:�·�:�: �· �.�:�.�.�·�:�: �· �'�-�' �·�~ �-�· �~ �·�:�c �·�· �· �· �· �·�·�· �· �· �· �·�·�· �· �·�·�· �· �·�·� ······· ·· ······ ··· ········ 

0 15 30 45 60 75 90 105 120 135 150 165 180 195 

0.5 

I 

I. 
0.5 ·. 

15 

15 

r=0.1 

30 45 60 75 90 105 120 135 150 165 180 195 
r=1 

... . . . . . .. . . .. · . -�~� ........ ---.... �- �~� -�~� ----t--�~� ----�~ �:�- -·."'" ----�~� -.-:. -
30 45 60 75 

Figure 2.10: difference in evolution depending on how much weight is given to logistic 
growth. Parameter values are f.-ti = 0.05, f.-tT = 0, '"Ys = 0.1, A = 10, C = 0.2, P = 
500/30, rdt = 15. 
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Figure 2.11: shows evolution with different death rates of larvae. Parameter values 
are J.LT = 0, Is= 0.1, r = 0.4, A= 10, C = 0.2, P = 500/30, Tdt = 15 . 
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Figure 2.12: shows evolution with different trapping rates. Parameter values are 
J.li = 0, Is = 0.1, r = 1, A= 10, C = 0.2, P = 500/30, Tdt = 15. 
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Figure 2.13: shows evolution with large trapping rates. Parameter values are /Li = 
0, (s = 0.1, r = 0.4, A= 10, G = 0.2, P = 500/30, Tdt = 15. 

a smooth periodic solution. We can see fro1n the second graph of Figure 2.13, when 

J.LT = 5 that a bigger increase in trapping will cause the populations to settle down 

to a stable equilibrium solution. A further increase causes a return to a periodic 

solution but now there are extended periods where there are no adult blowflies as 

they have all been killed off by trapping, Figure 2.13 fLT = 10. In the end we see 

that if trapping is effective enough then we will get exponential decay of the blowfly 

population eventually wiping out the population, Figure 2.13 /LT = 20. However 

trapping needs to be so effective that it wipes out the recently matured blowflies 

before they have a chance to lay eggs, otherwise those eggs will just mature later 

causing another wave of blowflies. 

These simulations show that focusing attention on re1noving the iln1nature blowflies 

is a more effective way of containing blowfly strike than attempting to trap the 

1nature blowflies, as the increase in death rate of immature blowflies needed to wipe 

out the population is significantly less than the increase needed in the death rate of 

the mature blowflies to have the sa1ne effect. However this result is for the case of 

a linear trapping term and would not hold if the term were a non-linear function. 

In our simulation we do not take into account the prospect of new plowflies co1ning 

in from outside to replace the ones that have been wiped out. However it is known 

that blowflies are attracted to areas where there are currently infected sh_eep and 

if the blowfly population is effectively wiped out there should not be a significant 
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number of infected sheep to attract outside blowflies. 
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2.4 A model with distributed delay 

Up to now we have considered the 1nodel 

�u�~�(�t�)� - b(um(t))N(t)-ftiUi(t)- e-JliTb(um(t-r))N(t- r) 

�u�~�(�t�)� - e-JliTb(um(t-r))N(t- r)- d(um(t))- ftTUm(t) 

N'(t) - rN(t)(l- N(t))- {sN(t)um(t), 

where fti, ftT, { 8 , r are all positive constants. 

(2.4.1) 

(2.4.2) 

(2.4.3) 

However this model only accounts for a discrete delay. So only larvae born at thne 

t- T will1nature at timet. However it is much 1nore likely that at each time we 

will have larvae born at a range of previous times maturing as one would not expect 

all larvae to mature at exactly the same time in their life. To incorporate this into 

our 1nodel we want to alter the 1naturation rate term, e-JliTb(um(t-r))N(t- r), so 

that larvae born at a range of different previous times will mature at time t. One 

way of doing this is to use a probability distribution for the thne taken to mature. 

Let us define p( 8) by saying that, for s1nall ds, p( s )d8 is the probability that the 

1naturation time is between s and 8 + d8. Then 

l"' p(s)ds = 1. (2.4.4) 

Nate that mortality during the larval stage is accounted for by the e-Jlis term. We 

can 1nultiply the maturation rate by the probability density function, p( 8) 2:: 0, and 

then integrate over all possible 1naturatiou times so the 1naturation rate at time t 
becomes 

100 

�e�-�~�'�<�"�b�(�U�m�(�t�- s))N(t-s)p(s)ds. (2.4.5) 

Therefore the 1nodel beco1nes 

u:(t) = b(um(t))N(t)-f.tiU;(t) -100 

�e�-�~�'�< "�b�(�U�m�(�t�- s))N(t-s)p(s)ds 

(2.4.6) 

u:,.(t) - 100 

�e�-�~�'�< "�b�(�u�m�(�t�- s))N(t-s)p(s)ds-d(um(t))- fJ>TUm(t) 

(2.4. 7) 

N'(t) - rN(t)(l- N(t))- {sN(t)um(t), 

(2.4.8) 

57 



subject to the initial conditions 

ui(O) = ui,O �~� 0, um(s) = ¢m(s) �~� 0, N(s) = ¢N(s) �~� 0, for all s E [-oo, 0], 

(2.4.9) 

where J.l-i, J.LT, 'Ys, r are all positive constants. 

We would still want in this situation to have some parameter T measuring the mean 

amount of time spent in the larval stage. Some larvae will mature more quickly and 

some more slowly. One possibility for the probability density function, p( s), would 

be to use the exponential distribution with mean r, (2.4.10), although the gamma 

distribution, (2.4.11), with mean defined as T = {3/a, where a= ajT, f3 =a, with a 
\ 

defined in (2.4.11), might be more appropriate in this situation. These distributions 

are: 

p(s) 1 - s/r - -e ' 
T 
( ajr )a sa-le-as/r 

r(a) 
p(s) -

(2.4.10) 

(2.4.11) 

where r is the gamma function. As with the discrete delay model we see that (2.4.7) 

and (2.4.8) do not depend on ui(t) and can thus be solved independently of (2.4.6). 

2.4.1 Positivity and Boundedness 

Proposition 9 Suppose (2.2.5} holds for the system (2.4.6,2.4. 7,2.4.8} subject to 
the initial conditions (2.4.9} and a compatability condition similar to (2.2.6} in 
Proposition 4. Suppose also that p(s) �~� 0, (2.4.4) holds and ¢m(O), ¢N(O) > 0. 
Then ui(t), um(t), N(t) > 0 for all t > 0. 

Proof: We see that the equation for the sheep remains the same as in (2.2.3). 

Therefore positivity for the sheep can be shown the same way as in Proposition 4. 

We now claim that um(t) > 0 for all t > 0. We shall prove this by contradiction. 

Assume that there exists a first time t0 > 0 at which um(t0) = 0. Then we will have 

that um(t) > 0 for all t E (0, t0) . Since N(t) > 0 for all t > 0 we see that we can 
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write the integral in (2.4. 7) at time t = t0 as 

100 

e-"''b(um(t0 - s))N(t0 - s)p(s)ds 

rto e-JLi8 b(um(to-s))N(to-s)p(s)ds + roc e-JLi8 b(um(to-s))N(to-s)p(s)ds 
h ho 

- rto e-JLiSb(um(to-s))N(to-s)p(s)ds + roc e-JLiSb(c/Jm(to-s))cpN(to-s)p(s)ds Jo ..........___,_ ito ..........___,_ 
>0 �~�0� 

> 0. 

Evaluating (2.4. 7) at time t 0 gives 

�u�~�(�t�o�)� > -d(um(to))-J-LTUm(to) = 0. 

However, this is a contradiction because t0 is the first thne at which um(t) is zero, 

so we should have �u�~�n�(�t �0 �)� ::; 0. Thus um(t) > 0 for all t > 0. It now rmnains to 

prove that ui(t) > 0 for all t > 0. For this we note that the solution to (2.4.6) is 

u.(t) = loo (1: �p�(�~�)�d�~�)� b(um(s))N(s)e-l'<(t-s)ds, 

which, given that um(t) and N(t) are positive hnplies that ui(t) must also be 

positive and thus the proof is co1nplete 

Proposition 10 Suppose (2.2.5} holds for the system (2.4.6,2.4. 7,2.4.8} subject 
to the initial conditions {2.4.9}. Also suppose that ¢m(O), ¢N(O) > 0. Then 
ui(t), um(t), N(t) are bounded. 

Proof: Again the equation for N(t) is the same as (2.2.3) and so boundedness can 

be shown similarly to Proposition 5. 

To show boundedness of um(t) note that (2.4.7) can be written as 

u;,.(t) :::; bm= 100 

e-1'•• N(t- s)p(s)ds -tLTum(t). 

Since N(t) is bounded we can write 

�u�~�(�t�)� S bmax supN(t) roo e-JLi8p(s)ds-J-LTUm(t). 
�t�~�o� lo 

Hence 
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where Nsup = �s�u�p�t�~�o� N(t). Hence um(t) is bounded. 

To show boundedness of ui(t) note that (2.4.6) can be written as 

�u�~�(�t�)� :::; bmax Nsup-ftiUi(t). 

Hence 
bmax Nsup 

limsupui(t):::; , 
t_,.oo 1-"i 

so ui(t) is bounded. 

2.4.2 Equilibrium solutions 

Looking for equilibrium solutions of (2.4. 7) and (2.4.8) we find that we must satisfy 

N l"' e-l'•"b(um)p(s)ds - d(um) + J.!TUm 

rN(1- N) - !sNum, 

we can see that two such solutions are (um, N) = (0, 0), (0, 1). We investigate the 

linear stability of these solutions using the same method as for the discrete delay 

case. We perturb and linearise the system (2.4.7) and (2.4.8) to get the matrix 

equation: 

( 

(J'- J0
00 e-JLise-u8 b'(u:n)N*p(s)ds + d'(u;,J + ftT 

"YsN* 

(:) =0, 

- J0
00 �e�-�J�L�i�s�e�-�u �8 �b�(�u�~�)�p�(�s�)�d�s� ) 

(J' - r (1 - 2N*) + "'fsU':n 

(2.4.12) 

where (um, N) = �(�u�~�,� N*) is the equilibrium under consideration. For non-trivial 

solutions the determinant of this matrix must be zero. 

Theorem 11 Suppose for the system (2.4.6,2.4. 1,2.4.8} that (2.2.5} holds. Then 
the equilibrium point ( u;, �u�~�,� N*) = (0, 0, 0) is linearly unstable. 

Proof: Note that if um(t) --+ 0 and N(t) --+ any limit (not necessarily zero) then 

(2.4.6) implies ui(t) --+ 0. Therefore we can focus on (2.4. 7) and (2.4.8) only. For 

the equilibrium point �(�u�~�,� N*) = (0, 0) equation (2.4.12) becomes 

( a + �d�t�~�)� + /1T a �~� r ) ( :: ) = 0, 
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giving the eigenvalue equation 

(u + d'(O) + JlT) (u- r) = 0, 

which has a root u = r > 0. Thus the zero solution is linearly unstable. 

Theorem 12 Suppose for the system {2.4.6,2.4.1,2.4.8} that {2.2.5} holds and also 
that 

b'(O) l>O �p�(�s�)�e�-�~�'�' �8 �d�s� < d'(O) + f.l/r, 

then the equilibrium point (ui, u':n, N*) = (0, 0, 1) is linearly stable. 

Proof: Again note that if um(t) �~� 0 and N(t) --+ 1 then ui(t) �~� 0. So we focus 

on (2.4.7) and (2.4.8) only. For the equilibrium point (u':rt, N*) = (0, 1) we find that 

(2.4.12) becomes 

( u-Jt �e�-�1�L�i "�e�-�u �8 �b�'�(�:�~�p�(�s�)�d�s� + d'(O) + f.1/r CT: r ) ( :: ) = O, 

giving the eigenvalue equation: 

(u -100 

e-IL••e-u'b'(O)p(s)ds + d'(O) + f.1/r) (u + r) = 0. 

This time we have that one of the roots is u = -r < 0. For this equilibrium point 

to be linearly stable we now need to show that the other roots will also be in the 

left half of the complex plane. For a contradiction, let us assu1ne that there exists 

a root 8- in the right hand side of the complex plane. Then 

ID- + d'(O) + J.LTI - 1100 

�e�-�~�L�< "�e�-�"�"�b�'�(�O�)�p�(�s�)�d�s�l� 

< b'(O) 1oo p(s) I e-lL<• lle-(Re(iT)+iim(&))sl ds 

- b'(O) 1oo p(s)e-IL•• le-Re(lt)sl ds 

< b'(O) 100 

p(s)e-IL<•ds. . (2.4.13) 

Therefore a- is in the disk of radius b'(O) J0
00 p(s)e-f.Li8ds centred at -d'(O)- Jlr· If 

we choose the radius of this disk such that the whole disk is in {ReB- < 0} then we 

have a contradiction. This will be the case if 

b'(O) 100 

�p�(�s�)�e�-�~�'�'�"�d�s� < d'(O) + f.l/r, 
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which holds by hypothesis. Therefore the equilibrium point (uf, �u�~�,� N*) = (0, 0, 1) 

will be linearly stable. 

Corollary 1 Suppose for the system (2.4.6,2.4. 7,2.4.8} that (2.2.5} holds and also 
that 

p(s) - rca) (2.4.15) 

a:Pb' (0) 
(a+ J.ti)P < d' (0) + J."T, (2.4.16) 

then the equilibrium point (ui, �u�~�,� N*) = (0, 0, 1) is linearly stable 

Proof: It is reasonable to assume that the distribution of maturation rates will 

follow a gamma distribution. The general form of the gamma distribution is given 

by (2.4.15) for some positive constants a:, (3. So substituting (2.4.15) into the left 

hand side of inequality (2.4.14) gives 

Making the substitution s = (a+ J.ti)s we get 

b' (O)aP { 00 
Afj-1 -SdA 

r((3) (a+ J.ti)P Jo s e s. 

We see that our integral is just the definition of the Gamma function: r(/3) 

fo00 sP-le-8ds. Thus inequality (2.4.14) becomes 

b' (O)a:P 
( )P < d' (0) + J.tT, 
0: + l"i 

(2.4.17) 

which holds by hypothesis. We have shown that the equilibrium point 

( uf, u:'n, N*) = (0, 0, 1) is linearly stable and the proof is complete. 

We can see further that if we take p( s) to be the particular Gamma distri

bution (2.4.11) as suggested previously, with a = 2, then we get the condition 

4b1 (0) I 

(2 )2 < d (0) + J."T· + J."iT 

If we chose the exponential distribution (2.4.10), which is just a special case of the 

gamma distribution with a= 1/r, f3 = 1, then we have 

b' (0) I 

(1 ) < d (0) + 1-"T· + j.t(T 
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For sufficiently stnall J-t(T, i.e. if the death rate of the immature species is small 

compared to the delay, we can 1nake the approximation (1 + J-ti'T) ::::::: e1-wr and our 

inequality becomes 

which is the condition in Theorem 7 for linear stability in the discrete delay case. 

Theorem 13 Suppose {2.2.5) holds for the system {2.4-.6,2.4-. 1,2.4-.8) subject to the 
initial conditions {2.4-.9) and also that p(s) = 0 for all s �~� r, for some T > 0. Also 
assume that 

d(u,.) + Jl.TUm > b(um) 1T e-l't•p(s)ds for all Um > 0, (2.4.18) 

then the equilibrium point ( ui, u:n, N*) = ( 0, 0, 1) is globally asymptotically stable. 

Remark: It is reasonable to assu1ne that p( s) = 0 for all s �~� 7, for some T > 0 

(i.e. p( s) has compact support) as we would expect there to be an upper limit on 

how long it takes for a larva to develop. 

Proof: First we note that if um(t) = 0 then the result is trivial. Under the conditions 

in the Theoretn (2.4.7) becomes 

u;,.(t) = [ �e�-�~�'�< "�b�(�u�m�(�t�- s))N(t- s)p(s)ds-d(um(t)) - Jl.TUm(t). 

From positivity of N(t) and um(t), N'(t) �~� rN(t)(1 - N(t)) and therefore 

lhnsupt-oo N(t) �~� 1. Let € > 0 be arbitrary. Then there exists T > 0 such 

that fort �~� T, N(t) < 1 + €. So when t �~� T + r, N(t- s) < 1 + € for all s �~� T. 

Thus (2.4. 7) becomes 

u;,.(t) :::; [ �e�-�~�'�'�'�b�(�u�m�(�t�- s))(l + E)p(s)ds-d(um(t))-Jl.TUm(t).(2.4.19) 

We first clahn that Urn ( t) is not eventually 1nonotonically increasing. Assume the 

contrary then, as we know that Um ( t) is bounded there exists a £ > 0 such that 

Um(t) ----+east----+ 00. Thus letting t----+ 00 in (2.4.19) we get 

Now letting E ----+ 0 we get 

d(£) + Jl.Tf < b(£) 1T e-l'<•p(s)ds, 
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which, as .e > 0 contradicts the hypothesis (2.4.18) in the Theorem. 

Now if we assume that Um ( t) is eventually monotonically decreasing then as we know 

that um(t) �~� 0 it must eventually approach a limit, £1, as t �~� oo. We want that 

limit to be 0. By the above analysis we get a contradiction if £1 > 0, so £1 must be 

equal to 0. 

This just leaves the case where um(t) is neither eventually monotonically increasing 

nor eventually monotonically decreasing. In this case there exists a sequence of 

times tk �~� oo such that �u�~�(�t�k�)� = 0 and um(tk) ---7 £2 as k �~� oo, where £2 = 
limsupt-oo um(t). So again it is sufficient to show that £2 = 0. Using (2.4.19) at 

t = tk, assuming k is sufficiently large that tk �~� T + r, we get 

0 = u:,.(tk) �~� [ e-p;•b(Um(tk-s))(l + E}p(s)ds-d(Um(tk))-JUrUm(tk). 

(2.4.21) 

< bmax(l +E) 17 

�e�-�~�'�'�'�p�(�s�)�d�s�- d(Um(tk))-!J.TUm(tk)· 

If we let k ---7 oo and then let E �~� 0 we conclude that 

d(£2) + JUr£2 �~� bmax 17 

�e�-�~�'�'�'�p�(�s�)�d�s�.� 

(2.4.22) 

(2.4.23) 

Recall that bmax = b(umax), where umax > 0. We claim that £2 < umax. For a 

contradiction let us assume that £2 �~� umax. The right hand side of (2.4.23) is 

constant and the left hand side is increasing as a function of £2. Therefore 

d(um""') + JUrUmax �~� b(um=) 17 

e-p;•p(s)ds. (2.4.24) 

However since umax > 0 this contradicts condition (2.4.18) in our theorem. So we 

must have that £2 < umax. 

We have shown that £2 = limsupt-oo um(t) < umax, we now want to show that in 

fact £2 = 0. Let E2 > 0 be such that £2 + E2 :::; umax. Then there exists a T2 > 0 such 

that for all t �~� T2 we have 

um(t) < £2 + E2 and 

N(t) < 1 + E2. 

Next let k be sufficiently large that tk - r �~� T2. Then um(tk-s) :::; £2 + E2 and 

N(tk -r) :::; 1 + E2 for all s:::; r. As b(um) is increasing for all values up to umax and 

£2 + E2 :::; umax we have that when k is sufficiently large such that tk- r �~� T2, 
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Therefore, putting into (2.4.7) and assuming tk- T 2: T2, we get 

Letting k -t oo 

0 < 17 

e-'"''b(£2 + E2){l + E2)p(s)ds- d(€2)- J.Vr€2, 

b( f!2 + E2) ( 1 + E2) 1T e -IL<•p( 8 )ds > d( f!2) + J.Vrf!2 · 

Since this holds for all sufficiently s1nall E2 > 0, we have 

which contradicts the hypothesis of our theormn unless £2 = 0. Thus we have that 

limsupum(t) = 0, 
�t�~�o�c� 

i.e. um(t) �~� 0 as t -too. 

Proof that N(t) �~� 1 and ui(t) �~� 0 now follows similar to Theormn 8. Thus 

we conclude that the equilibriu1n solution (ui, u:n, N*) = (0, 0, 1) will be globally 

asy1nptotically stable and the proof is complete .. 

2.5 A reaction-diffusion extension 

We now look at the case where we allow the individuals to 1nove about in space. The 

populations ui(t), um(t), N(t) become population densities ui(x, t), um(x, t), N(x, t) 
respectively and we include Fickian diffusion for the species via the Laplacian terms 

Ditlui, Dmtlum, Dntl.Un where Di, Dm, Dn 2: 0 are the diffusivities associated with 

the larvae, the mature blowflies and the sheep respectively. It is biologically reason

able to assume that larvae do not 1nove about, [23], and so they would not diffuse. 

In our case the blowflies lay their eggs on the sheep and it is well known that sheep 

will, in general, move about. However if we think of our domain as a continuu1n of 

fields then it would be reasonable to assume that the sheep will not leave the field 

they are in and thus they would have a s1nall diffusion rate. Hence the immature 

blowflies will also have a s1nall diffusion rate and thus mature in approxhnately the 

same place they were born. This allows us to use the same maturation rate as be

fore. When they are big enough the larvae drop off the sheep and burrow into the 
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ground where they pupate. For this reason we do not consider the sheep and the 

hnmature blowflies to have exactly the same rate of diffusion. The mature blowflies 

on the other hand would travel from farm to farm and so we expect a larger rate of 

diffusion for them. In this case our equations (2.2.1,2.2.2,2.2.3) become 

aui 
at(x, t) - Dib:.ui(x, t) + b(um(x, t))N(x, t) - J-liui(x, t) 

-e-P.iTb(um(x, t- r))N(x, t- r) (2.5.1) 

Bum( ) 8t x,t - Dmb:.um(x, t)- d(um(x, t))- J-lTUm(x, t) + e-P.iTb(um(x, t- r))N(x, t- r) 

(2.5.2) 

�D�n�~�N�(�x�,� t) + rN(x, t)(1- N(x, t))- �~�s�N�(�x�,� t)um(x, t), 

(2.5.3) 

where (x, t) En X (0, oo). We will consider both homogeneous Dirichlet boundary 

conditions 

Ui = 0, Um = 0, N = 0, on r =an X (O,oo) (2.5.4) 

and homogeneous Neumann boundary conditions 

V'ui · n = 0, Y'um · n = 0, V'N · n = 0, on r-an X (0, oo). (2.5.5) 

Note that in system (2.5.1,2.5.2,2.5.3) above the delay only appears in the variables 

Um and N and not ui. Therefore the initial data takes the form 

Ui(X, 0) - uw(x) 2:: 0 X E f2 

Um(X, s) - Umo(x, s) 2:: 0 (x, s) E f! X [-T, 0] 

N(x, s) - No(x, s) 2:: 0 (x, s) E f! X [-T, 0], 

where n c Rn(n 2:: 1) is a bounded domain with smooth boundary an. Here 

Di, Dn, Dm, J-li, J-lT, r, �~�s� are positive constants and Di, Dn are very small compared 

to Dm. Existence and uniqueness results for systems of this form can be found in 

Wu (1996) Chapter 2 [67] 

If we wish to include a larger diffusion of sheep this will affect our model because 

now we have a case where larvae born in one place may move around (being carried 

about by the sheep) and mature in a different place. So the maturation rate at 

position x is no longer dependent on the number of eggs laid at position x at time 

t - r. Instead it will depend on the number of larvae that are at position x at time 
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t. We explain how to construct a reaction-diffusion model which properly takes this 

into account on an infinite and one dimensional spatial do1nain. The rate of egg 

laying at position y at thne t- r is b(um(Y, t- r))N(y, t- r) . The number that 

are still alive at timet is e-Jl.i7 b(um(Y, t- r))N(y, t- r). Now we assume that the 

1novement of the larvae follows a normal distribution with mean y and variance 4DiT· 
Therefore the nu1nber of larvae born at y at timet- r who are at x at thne twill 

be q(x- y)e-Jl.iTb(um(Y, t- r))N(y, t- r) where q(y) = exp{ -y2 /4Dir }/v41rDir. 
To find out how many larvae are at position x at thne t we need to integrate over 

y E ( -oo, oo) to get the contributions from all parts of the domain. Thus on an 

infinite domain the maturation term for the case when the immatures are 1nobile is 1: q(x-y)e-11'.,.b(um(Y, t- r))N(y, t- r)dy 

and model (2.5.1,2.5.2,2.5.3) becomes 

�~�i� (x, t) - D;Ll.U;.(x, t) + b(um(x, t))N(x, t)- Jl.;U;.(x, t) -1: q(x- y)e-11'.,.b(Um(Y, t- r))N(y, t- r)dy 

8um( ) fit x,t - Dmllum(X, t)- d(um(x, t)) -1-LTUm(x, t) 

(2.5.6) 

+ 1: q(x- �y�)�e�-�~�'�'�.�,�.�b�(�U�m�(�Y�,� t- r))N(y, t- r)dy (2.5.7) 

- Dn!:lN(x, t) + rN(x, t)(l- N(x, t)) -{ 8 N(x, t)um(x, t). 

(2.5.8) 

We can extend this further for (x, t) E ( -oo, oo) x (0, oo ), to include the possibility 

that the maturation time might be a distribution (rather than the same for every 

blowfly). The number of larvae that are born at position y at thne t - 8 is propor

tional to the number of mature blowflies and sheep present at position y at thne t-8, 
b(um(Y, t- 8))N(y, t- s). The nu1nber still alive at timet will be e-Jl.isb(um(Y, t
s)) N (y, t - s). The number that will mature at time t will be the nu1nber that take 

times to mature, e-Jl.i8 b(um(Y, t- 8))N(y, t- s)p(8) and the nu1nber born at y that 

will mature at position x at thne t is e-Jl.i8 b(um(Y, t- 8))N(y, t- 8)p(8)q(x-y). 

Now to account for all births at all times before t at all points in space we integrate 

over y E ( -oo, oo) and 8 E [0, oo) to give 

l"" 1: e-l'i'b(um(Y, t- s))N(y, t- s)p(s)q(x-y)dyds, 
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which is the rate at which larvae mature at position x at time t. So a reaction

diffusion model which allows the mature and immature blowflies and the sheep to 

all move about with no restriction on the relative sizes of their diffusivities would 

be 

OUm( ) mx,t 

aN 
at(x, t) 

82ui 
- Di ox2 (x, t) + b(um(x, t))N(x, t)- f..Liui(x, t) 

-

+ 

-

roo roo e-l1i8 b(um(Y, t- s))N(y, t- s)p(s)q(x-y)dyds, 
Jo 1-oo 

(2.5.10) 
EJ2um 

Dm ox2 (x, t)- d(um(x, t))- f..LTUm(x, t) ["' 1: e-"'"b(Um(Y, t- s))N(y, t- s)p(s)q(x-y)dyds, 

(2.5.11) 
fJ2N 

Dn ax2 (x, t) + rN(x, t)(l- N(x, t))- "(8 N(x, t)um(x, t), 

(2.5.12) 

for x E ( -oo, oo ), t > 0. 

2.6 Simplified reaction-diffusion model 

For ease of calculation we first decided to look at the following simpler model which 

just models the population of the mature blowflies 

: (x, t) = Dt::.u(x, t) + e-"'.,.b(u(x, t- r))- d(u(x, t))- f.tTU(x, t), (2.6.1) 

for (x, t) En X (0, oo), with homogeneous Dirichlet boundary condition 

u=O, on r = an X (0, 00) (2.6.2) 

and initial condition 

u(x, B) = u0(x, B) �~� 0, in n X [-T, 0], (2.6.3) 

where n c Rn(n �~� 1) is a bounded domain with smooth boundary an. Here 

D, f..Li, f..LT are positive constants. 

Note that (2.6.1) is not a particular case of any of the previous models. Rather it 

is an alternative model which we might view as a reasonable approximation if there 
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is effectively an unlimited supply of host sheep. The steady states, ¢,of (2.6.1) will 

be functions of x and will satisfy 

�D�~�¢�(�x�)� + e-JliTb(¢(x))-d(¢(x))- J.LT¢(x) 0, for X E 0 
(2.6.4) 

¢(x) - 0, for X E an. 

Clearly one solution of this is ¢( x) = 0. 

2.6.1 Linear stability of the zero solution 

Theorem 14 Let (2.2.5) hold then the zero solution of (2.6.1) subject to (2.6.2) is 
linearly stable when 

and unstable when 

where .-\1 is the principal eigenvalue �o�f�-�~� on homogeneous Dirichlet boundary con
ditions. 

Proof: First let us linearise (2.6.1) about the zero solution. We set u(x, t) -
0 + v(x, t) where v(x, t) << 1 to obtain: 

: (x, t) = Df1v(x, t) + �e�-�~�'�' �7 �b�(�O� + v(x, t- r))- d(O + v(x, t))- Jl.TV(x, t). 

Now we Taylor expand the functions b and d keeping only linear terms. Remember

ing that b(O) = d(O) = 0, 

av at (x, t) - �D�~�v�(�x�,� t) + e-JliTv(x, t- r)b'(O)- v(x, t)d'(O)- J.LTV(x, t). 

(2.6.5) 

Let (>..j, <Pi) be the eigenvalues and eigenfunctions �o�f�-�~� on homogeneous Dirichlet 

boundary conditions and look for trial solutions of (2.6.5) of the form v(x, t) -
eujt¢i(x). This gives 

so that, since ¢i(x) i= 0, 
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In order for the zero solution to be linearly stable we need all the roots of the above 

equation to be in the left half of the complex plane. For a contradiction let us 

assume that there exists a root, &i, in the right hand side of the complex plane. 

Then 

which is the equation of a disk with radius e-lliTb'(O) and centred at -d'(O)- J-LT

D>.i. If" we choose the radius of the disk such that the whole disk is in {Re(8-i) < 0} 

then we have a contradiction. So if we choose 

then the zero solution is linearly stable. As Aj increases with j we see that it is 

sufficient to satisfy 

(2.6.6) 

Similar analysis shows that if we want the zero solution to be linearly unstable then 

we need 

(2.6.7) 

Indeed under the above condition it is straightforward to show that the eigenvalue 

equation with j = 1 has a real positive root, o-1. 

2.6.2 Global Stability of the zero solution 

We have looked at local stability of the zero solution of (2.6.1) and found a condition 

under which it is linearly stable, namely (2.6.6). Now we wish to see if it is globally 

stable. 

Theorem 15 Suppose for {2.6.1} that {2.2.5} holds and let >.1 be the smallest eigen
value of - �~� on homogeneous Dirichlet boundary conditions. Suppose also that 

D>.1 + d'(O) + J-LT > e-lli 7 b1(0) 

d(u) > ud'(O), 

b(u) < ub'(O), 

for all u > 0 

for all u > 0, 

(2.6.8) 

then solutions of {2.6.1} subject to {2.6.2} and {2.6.3} satisfy llu(·,t)IIL2(0)--> 0 as 
�t�~� 00. 

70 



Remark: While the proof of the theorem relies on quite a few assumptions we do 

expect that, in our case, the inequalities in the theorem are likely to be satisfied. 

Proof: First we shall multiply (2.6.1) by u(x, t) 

au 
u(x, t) at (x, t) Du(x, �t�)�~�u�(�x�,� t) + e-J1iTu(x, t)b(u(x, t- T))- u(x, t)d(u(x, t)) 

Now we integrate the whole equation over n 

1 u(x, t) Z (x, t)dx = 1 Du(x, �t�)�~�u�(�x�,� t)dx + 1 e-J.'<.,-u(x, t)b(u(x, t- r))dx-

1 u(x, t)d(u(x, t))dx -1 J.lru2(x, t)dx. 

Using a corollary of the divergence theorem which states that In u(x, �t�)�~�u�(�x�,� t)dx = 

-In IVu(x, t) l2dx for functions satisfying ho1nogeneous Dirichlet boundary condi

tions we get 

�~� :t 1 u2(x, t)dx = -D 11\lu(x, tWdx + e-J. .. ..-L u(x, t)b(u(x, t- r))dx 

-1 u(x, t)d(u(x, t))dx- J.lT 1 u2(x, t)dx. 

As we assume that d(u(x, t)) �~� d'(O)u(x, t) and b(u(x, t)) �~� b'(O)u(x, t) in the theo

rem we get 

�~�!� 1 u2(x, t)dx :::; -D L I'Vu(x, t)l 2dx + e-l'i..-b'(O) 1 u(x, t)u(x, t- r)dx 

-d'(O) L u2(x, t)dx- J..I.T 1 u2(x, t)dx. (2.6.9) 

The Poincare inequality for functions u E WJ ( 0) satisfying u = 0 on an states that 

(2.6.10) 

where Al is the Slnallest positive eigenvalue of �-�~� on n ([57], page 112). Thus we 

get 

�~� :t L u2(x, t)dx :::; -DA1 11u(x, tWdx + e-l'i..-b'(O) L u(x, t)u(x, t- r)dx 

-d' (0) L u2(x, t)dx - J..I.T 1 u2(x, t)dx. 
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Using the Holder inequality 

1 1 L iu(x, t)iiv(x, t)idx < (L iu(x, t)iPdx) 
0 (L iv(x, t)iqdx) q (2.6.11) 

1 1 
where - + - - 1, 

p q 

with p = q = 2 we get 

�~�!� L iu(x, tWdx < -D>.t L iu(x, tWdx-d'(O) L iu(x, t)i 2dx- f.LT L iu(x, tWdx 
1 1 

+ e-!1;-rb'(O) (L iu(x, tWdx) 
2 (L iu(x, t- rWdx) 

2 

. 

The definition of the L 2(n) norm is 

1 

llu(·, t)ll = (L iu(x, tWdx) 
2 

. (2.6.12) 

Using this we get 

-d' (0) llu(·, t) 11 2
- J-LTIIu(·, t) 11 2 

d 
llu(·, t) II dt llu( ·, t) II < - (D>-.1 + d'(O) + J-LT) !lu(·, t)ll 2 + e-JLiTb'(O)IIu(·, t)llllu(·, t- 7)11 

d 
dt llu(·, t) II < - (D>.t + d'(O) + J-LT) llu(·, t)ll + e-JLiTb'(O)!Iu(·, t- 7)11. 

Now we can use the argument that states that for an inequality of the form 

d 
dt IIY(·, t)ll �~� -ally(·, t) II + 'YIIY(·, t- 7)11, 

if a > 1 2 0 then IIY(·, t)ll ---+ 0 as t ---+ oo, (see [58] Lemma 3.1 for proof). So 

because inequality (2.6.8) in the Theorem must hold we can say that llu(·, t) II ---+ 0 

as t---+ oo. Thus we have global stability of the zero solution in £ 2 and the proof is 

co1nplete. 

Remark: Inequality (2.6.8) says that natural deaths plus trapping plus migration 

out of the domain exceeds adult recruitment and as expected Theorem 15 shows 

that in this case the blowfly population becomes extinct. 

2.6.3 Linear stability of the positive steady state 

If we assume that (2.6.7) holds then we can assume that we will have a positive 

steady state, ¢(x), which satisfies (2.6.4). This follows from bifurcation theory. The 
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function ¢( x) arises as a bifurcation (at a zero eigenvalue) from the zero solution of 

(2.6.1). We will assume ¢(x) is unique. If we linearise (2.6.1) about this steady state 

by setting u(x, t) = cf>(x) + v(x, t) with v(x, t) « 1 then we find that the linearised 

problem for vis 

�~�~� (x, t) = �D�~�v�(�x�,� t)- v(x, t)d'(¢(x))- J.LTV(x, t) + e-JLirv(x, t- r)b'(cf>(x)) 

in n X (O,oo) 

v(x, t) = 0 on r. 
(2.6.13) 

Now we look for solutions of (2.6.13) of the form v(x, t) = 'lj;(x)eut which gives the 

eigenvalue problem 

�-�D�~�'�l�j�;� +(a+ d'(cf>(x)) + /-lT- e-JLire-urb'(cf>(x))) 'lj; - 0 

'lj; - 0 

in n 
on an. 

(2.6.14) 

An analogue of the well known one dimensional Sturm comparison theorem (which 

is not restricted to one dimension here) is the following 

Lemma 16 Let 

�-�D�~�'�l�j�;� + P(x)'lj; - 0 in n 
'lj; - 0 on an, 

and 

�-�D�~�¢� + Q(x)¢ - 0 in n 
1> - 0 on an. 

Suppose¢> 0 inn and P(x) > Q(x) inn. Then'l/;=0. 

(See [58] for proof). 

We first use this Lem1na to find conditions under which zero is not an eigenvalue of 

(2.6.14) and then go on to find conditions under which all eigenvalues, a, of (2.6.14) 

will have negative real part, thus proving linear stability of the positive steady state, 

cf>(x). 

Lemma 17 Suppose 

Then a= 0 is not an eigenvalue of (2.6.14}. 
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Proof: To prove this Lemma we argue by contradiction. When a = 0, (2.6.14) 

becomes 

�-�D�~�'�l�j�;� + (d'(¢(x)) + JlT- �e�-�~�J�.�i�r�b�'�(�¢�(�x�)�)�)� 'lj; - 0 

'lj; - 0 

in n 
on an, 

which we shall compare with the following, obtained from (2.6.4): 

�-�D�~�c�/�J�+� �(�d�~�)� +J.LT-e-IJ.ir¥)¢ - 0, 

¢ - 0, 

in n 
on an. 

(2.6.15) 

(2.6.16) 

We shall have the contradiction we need if 'lj; - 0 and this will follow by the Sturm 

comparison theorem if it is true that 

i.e. if 

(2.6.17) 

which holds by hypothesis 

Lemma 18 If all the eigenvalues, An of a self adjoint operator C are less than or 
equal to zero then 

(£'l/;, '1/J) �~� 0, 

where ( ·, ·) is the standard L2 in!"er product. 

Proof. Let (An, '1/Jn), n = 1, 2, 3, · · ·, be the eigenvalues/eigenfunctions of £ on 

n with homogeneous Dirichlet boundary conditions. Then C'l/Jn = AnWn· Now let 

'lj; E HJ ( n) n H 2 ( n). Then 'lj; can be expressed in terms of the Wn by an eigenfunction 

expansion 

00 

so that 

00 00 

C'lj; - L anC'l/Jn = L anAn'l/Jn· 
n=l n=l 
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(N.B, in one dimension the eigenfunctions are just sin's). We claim that the eigen

functions 'l/Jn are orthogonal. To see this, let 'l/Jn and 'l/Jm be two distinct eigenfunctions 

with corresponding eigenvalues An and Am. Then 

Therefore 

since An =f Am we 1nust have ('l/Jn, 'l/Jm) = 0, i.e. eigenfunctions associated with 

distinct eigenvalues are orthogonal. 

Since we are referring to the eigenvalues/ eigenfunctions of .C here we can drop the 

complex conjugate in the definition of .C, because the eigenvalues/eigenfunctions 

of a self-adjoint operator on homogeneous Dirichlet boundary conditions are real. 

Thus we find that 

(£1/J, 1/J) - \ �~� anAn1/Jn, f;;_ an1/Jn) 

- 1 �(�~�a�n�A�n�1�/�J�n�)� �(�~�a�n�1�/�J�n�)� dx 

because An :::; 0 for all n. This completes the proof. 

Theorem 19 Suppose 

d'(¢(x)) + JlT- e-JLiTb'(¢(x)) 

b'(¢(x)) 

> d(¢(x)) + Jlr _ e-JLiTb(¢(x)) 
¢(x) ¢(x) 

> 0 for all X E !1. 

for all X E !1 

Then all eigenvalues, a, of (2. 6.14) have negative real parts, so that the steady state 
¢( x) is linearly stable as a solution of {2. 6.1). 

Proof: Define L = Db..-jlT-d'(if>(x))+e-JLiTb'(¢(x)). As Lis self adjoint, all of its 

eigenvalues are real. Note that the eigenvalues, a, of the linearisation about ¢(x) are 

not the same as the eigenvalues, A, of the operator L. The fanner may be complex 

but the latter are real. We claim that all the eigenvalues of L �a�r�~� non-positive. 
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Suppose for a contradiction that there exists a positive eigenvalue, A, for L. Then 

there exists a non-zero function 'ljJ such that L'l/J = A'l/J. Substituting in for L we get 

Df::l.'ljJ- J.lT'lfJ- d'(¢(x))'ljJ + e-JjiTb'(¢(x))'l/J = A'ljJ, 

-Df::l.'ljJ + (A+ J.lT + d'(</>(x)) - e-JjiTb'(</>(x))) 'ljJ = 0. 

Since A> 0, A+ d'(¢(x)) + J.lT- e-JjiTb'(¢(x)) > d'(¢(x)) + J.lT- e-JjiTb'(¢(x)) for all 

X En and by hypothesis d'(¢(x)) + J.lT- e-JjiTb'(¢(x)) > �d�<�:�c�~�)�)� + J.lT- �e�-�J�j�i�T�b�~�(�~�]�>�.� 

Thus, as ¢(x) > 0, by comparing with (2.6.16) and using Lemma 16 we have that 

'ljJ = 0, which is a contradiction to the definition of an eigenfunction. Therefore we 

conclude that all eigenvalues of L must be less than or equal to zero and thus from 

Le1n1na 18 we have that (L'l/J, 'l/J) ::; 0 for all functions 'ljJ such that 'ljJ = 0 on 8rl.. 

Let 'ljJ be a solution of (2.6.14). Multiplying (2.6.14) by 'ljJ and integrating over n 
gives 

0 - l ( �-�D�f�~�:�t�/�J� + (J.LT + d'(¢(x))- �e�-�~�'�' �7 �b �1 �(�¢�(�x�)�)�)� .P) 'if; 

+ l (a- e-p,r e-urb'(¢(x)) + �e�-�~�' �1�7 �b�'�(�¢�(�x�)�)�)� 'if;'if; 

- -(L'if;, 'if;}+ l (a+ e-1'•7 b'(¢(x))(l- e-U'T}) I.PI2
. 

Let u = a + ib. Taking real and imaginary parts of the previous expression, remem

bering that ¢(x) is a function of x, gives 

-(L'if;,'if;} + l (a+ �e�-�~�'�' �7 �b�'�(�¢�(�x�)�)�(�l�- e-ar cos(br))) I.PI2dx = 0 

l (b + e-p,r e-arb'(¢(x)) sin(br))) I.PI2dx = 0. 

As b'(¢(x)) �~� 0 for all X En we find that: 

(2.6.18) 

(2.6.19) 

If a > 0 then as e-jjiTb'(¢(x))(1- e-ar cos(br)) �~� 0 the integral in (2.6.18) will be 

strictly positive. Since -(L'ljJ, 'l/J) �~� 0, (2.6.18) is violated. 

If a = 0 then b =/:. 0 (because we have shown in Lemma 17 that zero can not be an 

eigenvalue) and (2.6.19) shows that lrr can not be an integer multiple of 1r. Thus 

I cos(br)l < 1 and so the integral (2.6.18) is again positive. So we have shown that 

if b'(<f>(x)) �~� 0 for all X E f2 then all eigenvalues of (2.6.14) have strictly negative 

real parts and so the steady state, ¢( x), is linearly stable. 

The following two Theorems provide alternative sufficient conditions for stability 

of the steady state </> ( x). 
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Theorem 20 Suppose (2.2.5) holds and also that 

for all X E 0, 

then all eigenvalues, a, of (2.6.14) have negative real parts, so that the steady state, 
¢( x) is linearly stable. 

Proof: Let a �~� 0. Consider the integral of (2.6.19). Using the fact that -bT ::; 
sin ( bT) ::; br we get 

b + e-JJ.iT e-arb'(¢(x)) sin(br) > b- brlb'(¢(x))le-JJ.iT e-ar 

> b- bTib'(¢(x))le-JJ.ir 

> 0 for all x, by hypothesis. 

Thus (2.6.19) is violated. Therefore we must have a < 0 and so the steady state 

¢( x) is linearly stable. 

Remark This theore1n shows us that we can have linear stability of the steady state 

if b' ( ¢( x)) is negative at certain points x E n, but only if it is not too much negative. 

Theorem 21 Suppose (2.2.5) holds and also that 

d1(</>(x)) �~� �d�~�~�;�)�,� . for all x E !1, (2.6.20) 

W(<P(x))l ::0 �b�~�(�~�;�)�,� for all x E !1, (2.6.21) 

then all eigenvalues, a, of (2.6.14) have negative real parts, so that the steady state, 
¢( x) is linearly stable. 

Proof: The proof of this Theoren1 uses similar ideas to the previous two theorems, 

but by working with a differently defined operator L we can obtain alternative 

sufficient conditions for stability of ¢( x). 
For this theorem we shall use the operator L = D/:l.-11T- d(tf>(x)) +e-JJ.irb(tf>(x)). Again 

�~� tf>(x) t/>(x) 

Lis self adjoint and therefore all of its eigenvalues are real. Using a shnilar argutnent 

to above we find that as a + f.-LT + �d�~�~�)�)� - e-JJ.ir �b�~�(�~�~�)� > /-LT + �d�~�~�~�)� - e-JJ.ir �b�~�(�~�~�)� 

for strictly positive a all eigenvalues of L must be less than or equal to zero. Let 'lj; 

be a solution of (2.6.14). Then Inultiplying by 'lj; and integrating over n gives 

{ (-D!:l.'lj; + (f.-LT + d(¢(x)) _ e-JJ.iTb(¢(x))) ¢) ¢ + Jn ¢(x) ¢(x) 
{ (CY + d'(¢(x))- d(¢(x)) + e-P.i,.b(¢(x))-e-JJ.ire-urb'(¢(x))) 'lj;'lj; = Jn ¢(x) ¢(x) 

- -(L'l/; 'l/;) + { (a+ d'(¢(x))- d(¢(x)) - e-JJ.iT(e-urb'(¢(x))-b(¢(x)) )) 1¢12 = 0. ' ln ¢(x) ¢(x) 
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Let u = a + ib then taking real and imaginary parts of the above equation gives 

- (L'lj;,,P) 

+ { (a+ d'(¢(x))- d(¢(x)) - e-P.ir (e-ar cos(br)b'(¢(x))-b(¢(x)))) l'l/JI 2 = 0 ln ¢(x) ¢(x) 
(2.6.22) 

L (b + e-p.;r e-ar sin(ln-)b'(¢(x))) IWI2 = 0. 

(2.6.23) 

Suppose, for contradiction, that a> 0. Using (2.6.20) and (2.6.21) we find that the 

integrand in (2.6.22) can be written as 

a+ d'(¢(x))- d(¢(x)) - e-Jlir (e-ar cos(br)b'(¢(x))-b(¢(x))) 
¢(x) ¢(x) 

> a+ d'(¢(x))- d(¢(x)) - e-JliT (e-arl cos(br)llb'(¢(x))l- b(¢(x))) 
¢(x) ¢(x) 

> a+ d'(¢(x))- d(¢(x)) - e-J1irb(¢(x)) (I cos(br)l-1) 
¢(x) ¢(x) 

> a+ d'(cp(x))- d(¢(x)) 
¢(x) 

2:: a 

> 0 

and so (2.6.22) is violated. If a= 0 then we again have that b f 0, hence sin(br) f 0 

by (2.6.23) and so I cos(br)l < 1. Therefore 

a+ d'(¢(x))- d(¢(x)) - e-Jlir (e-ar cos(br)b'(¢(x))-b(¢(x))) 
¢(x) ¢(x) 

> d'(¢(x))- d(¢(x)) - e-J1iTb(¢(x)) (I cos(br)l - 1) 
¢(x) ¢(x) 

> d'(¢(x))- d(¢(x)) 
¢(x) 

> 0, 

so again (2.6.22) is violated. Thus we have proved that under conditions (2.6.20) 

and (2.6.21) all eigenvalues of (2.6.14) must have strictly negative real parts and so 

the steady state, ¢(x), is linearly stable. 

2.6.4 Global stability of the positive steady state 

First we prove positivity of solutions of equation (2.6.1). 
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Lemma 22 Suppose for the system (2.6.1,2.6.2,2.6.3} that (2.2.5} holds and also 
that 

u0(x, B) ¢ 0 and uo(x, B) �~� 0 for all x En, BE [--r, 0]. 

Then u(x, t) > 0 for all x E n, t > 0. 

Proof: First note that since uo(x, B) ¢ 0 on n X [--r, 0], there exists Bo E [--r, 0] 

such that u0 (x, B0 ) ¢ 0 as a function of x. Without loss of generality we can can 

take B0 = 0. Thus we assume henceforth that 

uo(x, 0) ¢ 0. (2.6.24) 

Let us make a 0 1 extension to the definition of the death function for the case 

where u < 0. In this .case we define d(u) = d'(O)u when u < 0. Then we have that 

dE C1(R). First we shall show that u(x, t) �~� 0 for all t > 0 and all x En. We shall 

first show this is true fort E (0, -r]. We know that u(x, t- -r) �~� 0 on this interval as 

t- T �~� 0 and u0(x, �B�)�~� 0. Therefore 

au 
at (x, t) �~� �D�~�u�(�x�,� t)- d(u(x, t))- J-LTU(x, t) on (x, t) En X (0, -r] 

(2.6.25) 

u(x, t) = 0 on an. 

To show that u(x, t) �~� 0 on n x (0, -r] we shall assume the contrary. Suppose that 

there exists a t* E (0, -r] and x* E n such that u(x*, t*) < 0. Then u(x, t) must 

attain a negative global1ninimtun on the set (x, t) E n x (0, -r]. However x* E n 
as u(x, t) = 0 on an. Furthermore u(x, 0) ;::: 0 so the global minhnmn must be 

at a point u( x**, t**) E n X ( 0, T]. As x** is in the interior of n we have that 

�~�u�(�x�*�*�,� t**) �~� 0. We also know that 8u(x**, t**)/8t:::; 0 (but not necessarily equal 

to 0 as t** could equal -r). Evaluating (2.6.25) at (x**, t**) gives a contradiction. 

Thus we conclude that u(x, t) ;::: 0 on n x [0, r]. The strong maximu1n principle says 

that for an inequality of the form 

au 
at (x, t) �~� �~�u�(�x�,� t) + h(x, t)u(x, t) on (x, t) En x (0, T], 

where h(x, t) is a bounded function, if u(x, 0) ;::: 0 for allx E n and u(x, t) �~� 0 

for x E an, t > 0 then i) u(x, t) �~� 0 for allx E n, t > 0 and ii) either u(x, t) > 
0 for allx E n,t > 0 or u(x,t) = 0 for allx E n,t < t*, for some value t*. 
However, the latter alternative violates (2.6.24), which as explained earlier can be 

assumed without loss of generality. Thus we conclude that u(x, t) > 0 on n x [0, r]. 
Proof by induction then shows that u(x, t) > 0 on n X (0, oo). 
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Theorem 23 Suppose the hypotheses of Lemma 22 hold and 

D>.1 + d' (0) + /-LT < e-J.Lirb' (0) 
b'(cp(x)) > 0 for all X E 0, 

(2.6.26) 
(2.6.27) 

where )..1 is the principal eigenvalue of -b,. on homogeneous Dirichlet boundary con
ditions. Then the solutions of {2.6.1} subject to {2.6.2} and {2.6.3} converge to the 
unique positive steady state solution, ¢(x), satisfying {2.6.4). 

Proof: Consider the eigenvalue problem 

DD,.cp(x)-d'(O)¢(x)- J.LT¢(x) + e-J.Lirb'(O)¢(x) = >.¢(x). (2.6.28) 

We can see that by inequality (2.6.26) in the theorem, which is the condition for the 

zero solution of (2.6.1) to be linearly unstable, that this will have a positive solution 

()..*, </J*). We claim that for sufficiently small E > 0, Ecp* is a lower solution of 

Db,.cp(x) + e-J.Lirb(¢(x))-d(¢(x))- JlT¢(x) = 0. 

To see this note that 

Db,.( Ecp*) + e-J.Lirb( E¢*) - d( Ecp*) - f.LTE¢* 

- DD,.(E¢*)- d'(O)E¢*- /-LTE¢* + e-J.Lirb'(O)E¢* + e-J-Lirb(E¢*) + d'(O)E</J* 

-e-J.Li7 b1 (O)Ec/J* - d( €</J*) 

- )..*€¢* + e-J.Lirb(€¢*) + d'(O)EcjJ*- e-J.Lirb'(O)Ecp*-d(E¢*) 

- (A.*+ d'(O)- e-J.LiTb'(O) + e-J-Lirb(EcjJ*)jEcp*- d(E</J*)/Ec/J*) €cp*, 

since ).. * > 0 we can choose € sufficiently small that 

which is possible because the left hand side �~� )..* as E -7 0. Thus for E small 

enough, E¢* is a lower solution of (2.6.4). We know from (2.6.27) that there is 

an upper solution ¢ = ¢max which is the value at which the function b attains its 

maximum. Let �~�(�x�,� t) be the solution of (2.6.1) with initial data €</J*. We claim that 

8y(x, t)/Bt �~� 0. Consider S = {t 2:: 0 : �8�~�(�x�,� t)/8t 2:: 0, for allx E 0}. Clearly 

0 E S since 
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because c¢* is a lower solution. We will now show (0, r) C S. For t E (0, r), let 

wh(x, t) = y(x, t +h)- y(x, t), where his sufficiently small such that t +hE (0, r] 
and 1f(x, h) -1:f(x, 0) �~� 0. Thus, as u(x, t) = uo(x, t) = E¢* for allx En, t:::; 0 we 

get 

au au 
at(x, t +h)- at(x, t) 

- �D�~�w�h�- J.tTWh-(d(1:f(x, t +h)- d(y(x, t))) 

+e-JLiT (b(1:f(x, t + h-7)- b(y(x, t- r))) 

�D�~�w�h�- J.tTWh-(d(1:f(x, t +h)- d(1:f(x, t))) + e-JLiT (b(E¢*)- b(c¢*)) 

- �D�~�w�h�- J.tTWh-(1f(x, t +h) -1:f(x, t))d'(wh(x, t)) 

- �D�~�w�h�- (ttr + d'(wh(x, t)))wh, 

by the mean value theorem. We also see that wh(x, 0) = 1f(x, h)- y(x, 0) �~� 0. Thus 

the maximum principle implies that wh(x, t) �~� 0 and hence, letting h --t 0 we get 

ay(x, t)jat �~� 0. Therefore [0, r) c S. AsS is a closed set we know that [0, r] c S 

will also hold. 

Now we show that (r, 2r) C S. Fort E (r, 27) let wh(x, t) = y(x, t +h)- 1:f(x, t), 
where his sufficiently small such that t +hE (r, 2r] and 1f(x, T +h)- y(x, r) �~� 0. 

We are assu1ning that the values of ¢(x), x En are always in the interval of values 

for which b(.) is increasing, so that b' ( ¢(x)) �~� 0 for all X E n. Thus for t E ( T, 2T) 

we get 

8u au 
- at(x, t +h)- 8t(x, t) 

- �D�~�w�h�- ttrwh- (y(x, t +h)- y(x, t))d'(wh(x, t)) 

+e-JLiT (b(y(x, t + h-r)- b(y(x, t- r))) 

- �D�~�w�h�- (f.tr + d'(wh(x, t)))wh + e-JLiTwh(x, t- r)b'(wh(x, t- 7)). 

Because t- T E (0, r) we know that wh(x, t- r) �~� 0 and thus we conclude that 

e-JLiTwh(x, t- r)b'(wh(x, t- r)) �~� 0. Therefore 

�O�~�h�(�x�,� t) �~� Dl:!.wh- (J.tT + d'(Wh(x, t)))wh, 

so, as above, we can conclude that wh(x, t) �~� 0 fortE (r, 27) and consequently that 

[r, 2r] C S. Thus by induction we get that [0, n] C S for any integer n ;=:: 0. Hence 

[0, oo) = S, i.e. 01f(x, t)/8t �~� 0 for all t 2:: 0. So we have that y(x, t) --t ¢(x) as 

t --t 00. 
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We can then do the same with the upper solution, but show that au(x, t)j8t ::; 0, 

where au(x, t)j8t is the solution of (2.6.4) with initial data¢. Thus we have that 

our solution will tend to the positive steady state ¢(x). 
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2. 7 Extension to reaction diffusion model 

We now attempt to extend the ideas of the previous section to the reaction diffusion 

model (2.5.1,2.5.2,2.5.3). Notice that (2.5.2) and (2.5.3) do not depend at all on 

ui(x, t) and so we can solve thern independently of (2.5.1). Thus we can just look 

at (2.5.2) and (2.5.3) when analysing the systmn. The steady states, ¢m(x), ¢n(x), 
of (2.5.2,2.5.3) satisfy 

�D�m�~�¢�m�(�x�)� + �e�-�~�i �7 �b�(�¢�m�(�x�)�)�¢�n�(�x�)�- d(¢m(x))-J.LT¢m(x) - 0, for xEO 

�D�n�~�¢�n�(�x�)� + r¢n(x)(l- ifln(x))- 'Ys¢n(x)¢m(x) 0, for xEO 

¢m(x) - 0, for X EaO 

ifln(x) - 0, for x E an. 
(2. 7.1) 

for the homogeneous Dirichlet proble1n. We shall in fact, also look at the spatially 

uniform steady states of the ho1nogeneous N eu1nann problern. 

2. 7.1 Equilibrium solutions 

Disregarding boundary conditions for the moment let us linearise (2.5.2,2.5.3) about 

the steady state, ( ¢m ( x), ¢n ( x)) (where ¢m and ¢n may in fact be constants) by 

setting um(x, t) = v(x, t) + ¢m(x), N(x, t) = n(x, t) + ¢n(x). We obtain 

av(x, t) 
at 

an(x, t) 
at 

- �D�m�~�(�v�(�x�,� t) + ¢m) + �e�-�~�i �7 �b�(�¢�m� + v(x, t- r)) (¢n + n(x, t- r)) 

-d(¢m + v(x, t))- J.LT(¢m + v(x, t)) 

- �D�n�~�(�n�(�x�,� t) + ¢n) + r (¢n + n(x, t)) (1- (¢n + n(x, t))) 

-'Ys(¢m + v(x, t)) (¢n + n(x, t)). 

Now we can Taylor expand the functions band d, linearise and rearrange the equa

tions to give 

av(x, t) 
at 

an(x, t) 
at 

- �D�m�~�v�(�x�,� t) + �e�-�~�i �7 �b�(�¢�m�)�n�(�x�,� t- r) + �e�-�~�i �7 �b�'�(�¢�m�)�¢�n�v�(�x�,� t- r) 

-v(x, t)d'(¢m)-J.LTV(x, t) 

(2.7.2) 

- �D�n�~�n�(�x�,� t) + rn(x, t) (1- 2¢n)- 'Ys (¢mn(x, t) + v(x, t)¢n). 
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Ignoring boundary conditions for the moment, system (2.5.2,2.5.3) has spatially 

uniform steady states, (¢:n, �¢�~�)� = (0, 0), (0, 1). However (0, 1) will not be a solution 

of the whole system on Dirichlet boundary conditions as N(x, t) = 1 for allx E 

0, t > 0 does not satisfy the boundary condition N(x, t) = 0 on an. However if 

we were to use Neumann boundary conditions then it would be satisfied and (0, 1) 

would be a steady state. In principle we could even imagine using mixed boundary 

conditions where we have for example Dirichlet boundary conditions for the blowflies 

and Neumann for the sheep. 

2.7.2 Linear stability of the zero solution 

Theorem 24 Suppose that (2.2.5} holds for the system (2.5.1,2.5.2,2.5.3} on ho
mogeneous Dirichlet boundary conditions and also that 

where ..\1 is the principal eigenvalue of -fl. on homogeneous Dirichlet boundary con
ditions. Then the zero solution is linearly stable. 

Remark: The zero solution can be stable under homogeneous Dirichlet boundary 

conditions because the individuals can leave the domain. 

Proof: Note that if um(t) �~� 0 and N(t) �~� 0 then ui(t) �~� 0. So we focus on (2.5.2) 

and (2.5.3) only. The linearised equations (2.7.2) about the zero solution become 

av(x, t) 
at 

an(x, t) 
at 

- Dmflv(x, t)- v(x, t)d'(O)- J-LTV(x, t) 

- Dnfln(x, t) + rn(x, t). (2.7.3) 

Let (.Xi, ¢i), i = 1, 2, 3, · · · be the eigenvalues and eigenfunctions of -fl on homoge

neous Dirichlet boundary conditions and look for trial solutions of the form 

Substituting into (2. 7.3) gives 

ui¢i(x)ct - -Dm..\i¢i(x)ct-d'(O)¢i(x)c1-J-LT¢i(x)cl 

ui¢i(x)c2 - -Dn.Xi¢i(x)c2 + r¢i(x)c2, 
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which can be put into n1atrix fonn 

For non-trivial solutions the detenninant of this matrix must be zero. Hence 

To be stable both roots, O"i, 1nust be in the left half of the complex plane for every 

i. We see that the roots are O"i = r- DnA.i and O"i = -(d'(O) + ttT+ DmA.i)· Thus for 

the equilibrium point (0, 0) to be stable we must satisfy the condition r < DnA.i, for 

all i. As A.i increases with i we conclude that if this inequality holds for A.1 it will 

hold for all Ai· Thus the zero solution will be linearly stable if 

which holds by hypothesis. 

2. 7.3 Linear stability of the steady state ( ¢;n, �¢�~�)� = (0, 1) on 
Neumann boundary conditions 

Theorem 25 Suppose that (2.2.5) holds for the system (2.5.1,2.5.2,2.5.3) on ho
mogeneous Neumann boundary conditions and also that 

e-JLirb'(O) < d'(O) + /LT, 

then the steady state (ui, Um, N) = (0, 0, 1) is linearly stable. 

Proof: Again note that if um(t) ----+ 0 and N(t) ----+ 1 then ui(t) ----+ 0. So we focus 

on (2.5.2) and (2.5.3) only. The linearised system (2. 7.2) about the equilibrium 

(urn, N) = (0, 1) is 

av(x, t) 
at 

an(x, t) 
at 

- �D�m�~�v�(�x�,� t) + e-JLirb'(O)v(x, t- T)- d'(O)v(x, t)- p,rv(x, t) 

- �D�n�~�n�(�x�,� t) - rn(x, t) -')'8V(x, t). (2.7.4) 

Let (A.i, ¢i), i = 0, 1, 2, 3, ···be the eigenvalues and eigenfunctions �o�f�-�~� on homo

geneous Neu1nann boundary conditions (note that A.0 = 0 with ¢0 a constant) and 

look for trial solutions of the fonn 
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Substituting into (2. 7.4) gives 

(JicPi(x)ci - -DmAicPi(x)cl + e-J.tiTb'(O)¢i(x)e-uir c1-d'(O)¢i(x)ci- JlTcPi(x)ct 

(JicPi(x)c2 - -DnAicPi(x)c2-r¢i(x)c2- 'YscPi(x)cl. 

This can be put in matrix form 

For non-trivial solutions the determinant of this matrix must be zero. 

This time we have that one root of the equation is (Ji = -(r + Dn>..i) < 0. For 

the equilibrium (um, N) = (0, 1) to be linearly stable we now need to show that the 

other roots will also be in the left half of the complex plane. For a contradiction, let 

us assume that there exists a root &i in the right hand side of the complex plane. 

Then 

so that 

Therefore &i is in the disk of radius e-J.tiTb'(O) centred at -d'(O)- /-lT- Dm)..i· So if 

we choose the radius of our disk such that the whole disk is in {Re &i < 0} �t�h�e�~� we 

have a contradiction. So we choose 

(2.7.5) 

Again this has to hold for all i. Note that )..i increases with i, so if we satisfy the 

condition for Ao it will hold for all )..i. However on Neumann boundary conditions 

Ao = 0, so if 

holds then we can conclude that the equilibrium point (ui, Um, N) - (0, 0, 1) of 

system (2.5.1,2.5.2,2.5.3) is linearly stable. 
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2. 7.4 Positivity of solutions to (2.5.1,2.5.2,2.5.3) 

Positivity of solutions can be proved similarly to the proof of Proposition 4 and the 

Laplacian tenns are handled using co1nparison theorems related to the maxhnum 

principle for parabolic operators (see Protter and Weinberg (1967) [52] or S1nith 

(1995) [56]). 

2. 7. 5 G lo hal stability of the steady state ( ¢:-n, �¢�~�)� == ( 0, 1) on 
Neumann boundary conditions 

Theorem 26 Suppose that (2.2.5} holds for system (2.5.1,2.5.2,2.5.3} on homoge
neous Neumann boundary conditions and also that 

and that 

N(x, s) �~� 0, ui(x, 0) �~� 0, um(x, s) �~� 0, s E [-r, 0], 

with N(x, 0) :;E 0. Then the steady state (ui, Um, N) = (0, 0, 1) is globally asymptoti
cally stable. 

Remark: The strategy of proof we adopt here is different fro1n that used for the 

proof of Theorem 15. Note that the Poincare inequality, in the fonn used in the 

proof of Theore1n 15, does not hold on ho1nogeneous Neu1nann boundary conditions. 

Proof: Frmn (2.5.1,2.5.2,2.5.3) we get 

aN at =::; �D�n�~�N� + rN(1- N). 

By co1nparison, N(x, t) =::; N(x, t) where N(x, t) is the solution of 

air 
DnD.N + r N(1 - N) at -

air 
0 on an an -

N(x, 0) - N(x, 0), xED. 

It is known, [13), that, since N(x, 0) ¢. 0 by hypothesis, N(x, t) -+ 1 as t -+ oo, 

unifonnly in x. This 1neans that 

�l�h�n�s�u�p�1�n�~�N�(�x�,� t) =::; 1. 
t--.oo xEn 
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Let E > 0 be arbitrary. Then there exists T > 0 such that, for all t ;:::: T and all 

X En, N(x, t) ::; 1 + €. Then for all t;:::: T + T, 

�a�;�~� ::; Dmllum(x, t)-d(um(x, t))- JVrUm(x, t)+e-!liTb(u.n(x, t-r))(l+E). (2.7.7) 

Next we make the claim that 

1!.2 := �l�i�m�s�u�p�m�~�u�m�(�x�,� t) < umax 
�t�~�o�o� xEn 

where we recall that umax is defined by (2.2.5). Suppose the contrary, i.e. that 

£2 ;:::: umax. There exists a sequence of times tk, and for each such time a corre

sponding spatial point Xk E 0 at which maxxd'i Um(X, tk) is attained, such that 

um(Xk, tk) -t £2 as k-+ oo and also such that either 8um(xk, tk)/8t = 0 for each k 

or 8um(xk, tk)/8t-+ 0 ask-+ oo. Note also that �~�u�m�(�X�k�,� tk) ::; 0 for each k; this is 

because Xk is the point at which the maximum is attained (in fact �~�u�m�(�X�k�,� tk) ::; 0 

even if Xk is on the boundary of n because the boundary conditions are homoge

neous Neumann). Assuming that k is so large that tk;::: T+T, evaluating (2.7.7) at 

(xk, tk) and using �~�u�m�(�x�k�,� tk) ::; 0 gives 

Letting k -t oo in (2. 7.8) and using the upper bound bmax gives 

This is true for all E > 0, hence 

which can be written 

Since we are supposing £2 �~� umax, and since the death function is monotone, it 

follows from the above that 

which, since umax > 0, is contrary to the hypothesis of the Theorem. Thus £2 < umax. 

88 



Let E2 > 0 be sufficiently small that 1!.2 + E2 �~� uma.x. Then there exists T2 > 0 

such that, for all t 2::. T2 and all X E n the inequalities: 

and 

both hold. Note that for all thnes t exceeding T2, Um ( x, t) is confined to the interval 

of values of Um in which b(um) is increasing. This 1neans that, when k is sufficiently 

large that tk- T > T2, 

so that if we evaluate (2.5.2) at (xk, tk) and use the above bound and the inequality 

N(x, t) �~� 1 + E2 , and recall also that Llum(xk, tk) �~� 0, we get 

a;;cxk, tk) :5 -d(um(Xk, tk))- Jl.TUm(Xk> tk) + e-J.l;Tb(£2 + €2)(1 + €2). (2.7.9) 

Letting k -t oo, 

This is true for all sufficiently stnall E2 > 0, hence 

If 1!.2 > 0 this is contrary to the hypothesis of the theorem. Hence 1!.2 = 0, i.e. 

�l�i�m�s�u�p�m�~�u�m�(�x�,� t) = 0. 
t-oo xEn 

Hence Um(x, t) �~� 0 as t �~� oo, uniformly for X E n. 
We now wish to show that N(x, t) tends uniformly to 1 as t �~� oo. We have 

already shown that lim sup t-oo maxxETI N ( x, t) �~� 1. Therefore it is now sufficient to 

show that 

lhn inf tni_g N ( x, t) 2::. 1. ( 2. 7.10) 
t-+oo xEn 

Let t:3 > 0 be arbitrary. Then there exists T3 > 0 such that, for all t > T3 and all 

XE 0, 

0 �~� Um(x, t) < E3. 
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Therefore, when t > T3 , 

aN 
Bt (x, t) �~� �D�n�~�N�(�x�,� t) + rN(x, t)(l- N(x, t)) -!8 E3N(x, t). 

So, by comparison, N(x, t) �~� N(x, t), where N(x, t) satisfies 

af.r 
at 

ail 
- 0 

8n 
on an 

N(x, T3) N(x, T3), X En, 

which is an initial value problem starting at time T3 rather than 0. Since N(x, 0) ¢ 0, 

N(x, t) > 0 for all t > 0, X E n by the strong maximum principle, and thus in 

particular N(x, T3) > 0 for all X En. Therefore it is known, [13], that we have 

A /sE3 N(x,t) -t 1--, 
r 

as t -too, uniformly for X En. Hence 

�l�i�m�i�n�f�m�i�~�N�(�x�,� t) �~� 1- /sE
3

. 
t-too xen r 

Since this holds for arbitrarily small c3 , we conclude that (2.7.10) holds. 

The proof that ui(x, t) tends uniformly to 0 is similar. 

2.8 Travelling waves in a reaction-diffusion model 
for myiasis 

Consider the reaction-diffusion system 

8ui 
at 

aum 
8t 

8N 
at 

-

-

-

D; �~�x�;� + b(u,.(x, t))N(x, t)- p,u;(x, t)- �e�-�~�' �7 �b�(�u�m�(�x�,� t- r))N(x, t- r), 

(2.8.1) 

Dm a;;:+ e-1-'Tb(um(x, t- r))N(x, t- r)- d(u,.(x, t))- JUrUm(x, t), 

(2.8.2) 
82N 

Dn Bx2 + rN(x, t)(1- N(x, t)) -1N(x, t)um(x, t), 

(2.8.3) 
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for x E ( -oo, oo), where Di and Dn are very s1nall. 

We can see that one steady state that exists is (u£, u:n_, N*) = (0, 0, 1) and that 

another steady state, if it exists, (u£, u:n,, N*) = (¢i, ¢m, ¢n) at which the blowflies 

and sheep coexist 1nust satisfy 

�D�m�~�¢�m�(�x�)� + e-JLrb(¢m(x))¢n(x)-d(¢m(x))-/-lTcPm(x) 0, 

�D�n�~�c�P�n�(�x�)� + r¢n(x)(1- cPn(x)) - 'Y¢n(x)¢m(x) - 0, 

for x E ( -oo, oo) 

for x E ( -oo, oo). 

We wish to look for a travelling-front solution to our system as travelling waves 

are an appropriate type of solution to look for when studying the invasion of a 

blowfly population into a domain. We seek a travelling wave that will move to the 

left with speed c. So to convert (2.8.1,2.8.2,2.8.3) to travelling wave fo!m we set 

ui(x, t) = I(z), um(x, t) = U(z), N(x, t) = V(z) where z = x + ct and without loss 

of generality c > 0. Thus system (2.8.1, 2.8.2,2.8.3) beco1nes 

cl'(z) = Dil"(z) + b(U(z))V(z)-�~�-�t�l�(�z�)�- e-JLrb(U(z-cr))V(z-cr) 

(2.8.4) 

cU'(z) - DmU"(z) + e-JLrb(U(z-cr))V(z-cr)- d(U(z)) - f.LTU(z), 

(2.8.5) 

cV'(z) - Dn V"(z) + rV(z)(1-V(z))-'YV(z)U(z), 

(2.8.6) 

where 1 represents differentiation with respect to z. We can see that (2.8.5) and 

(2.8.6) are independent of I(z) and so we can just look at these two equations when 

analysing system (2.8.4, 2.8.5,2.8.6). 

If we start at the steady state (0, 0, 1) and introduce some blowflies to the system 

we would expect that, at least initially, the blowfly populations would increase and 

the sheep population would decrease. We anticipate a solution such that ahead of 

the front we have I(-oo) = O,U(-oo) = O,V(-oo) = 1 and behind the front we 

have I(oo) = ¢i, U(oo) = ¢m, V(oo) = cPn· To approxhnate the solution as z-+ -oo 

we set I= J, U = U, V = 1 + V, where i, U, V are s1nall. Dropping the tilde's and 

applying to equations (2.8.5) and (2.8.6) we get 

cU'(z) = DmU"(z) + e-JLrb(U(z-cr))(1 + V(z-cr))- d(U(z))- /-lTU(z), 

(2.8.7) 

cV'(z) - Dn V"(z) - r(1 + V(z))V(z)-'Y(1 + V(z))U(z). (2.8.8) 
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Taylor expanding the birth and death functions and linearising the equations we get 

cU'(z) 

cV'(z) 

- DmU"(z) + e-p.rb'(O)U(z-cr)- d'(O)U(z)- /-lTU(z), (2.8.9) 

Dn V"(z)- rV(z)-7U(z). (2.8.10) 

Looking for solutions of the form (U, V) = (kb k2 )e>.z we get 

k1(c:A- DmA2 - e-wrb'(O)e-..\cr + d'(O) + J.lr) = 0, 

cAk2-Dn:A2k2 + rk2 + "fkl = 0. 

Looking at equation (2.8.11) we see that we have 

(2.8.11) 

(2.8.12) 

(2.8.13) 

We assume henceforth that e-P.Tb'(O) > d'(O) + /-lT because instability of the Um = 0 

state is clearly a necessary condition for a travelling wave of invasion to form. The 

graphs of the right hand side and left hand side of (2.8.13) as functions of A either 

have zero, one or two intersections. In order for the front to have U(z) ----+ 0 as 

z ----+ -oo without oscillating it is necessary for (2.8.13) to have at least one real 

positive root. The absence of any such roots indicates that U(z) would approach 0 

as z ----+ oo in an oscillatory manner and this would mean that the blowfly population 

is going negative which is biologically infeasible. It is clear that we can go from the 

situation where (2.8.13) has no real, positive roots to a situation where it does have 

such roots by varying certain parameters. This can be seen by sketching the graphs 

of the left and right hand sides of (2.8.13) as functions of A, for various different 

values of c. We can determine the minimum wave speed by finding the situation in 

which the two curves touch so that (2.8.13) has exactly one real repeated root. This 

will happen when 

c.A*- Dm(.A*) 2 - e-11-Tb'(O)e->.•cr-d'(O)- J.lT, 

c- 2DmA * -c;e-f.L7 b1 (O)e->.*cr, 

(2.8.14) 

(2.8.15) 

where :A* > 0 is the repeated root. We can multiply (2.8.14) by cr and then add 

(2.8.14) to remove the exponential term, giving the following quadratic equation in 

:A*: 

(2.8.16) 
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which can be solved to give 

A*= �2 �C�T�~�m� ( C
2
T- 2Dm ± )c4r2 + 4D;, + 4Dmc2r 2(d'(O) + Jl.T)). (2.8.17) 

As all tenus in the square root are positive it can be seen that 

.J c4r 2 + �4�D�~� + 4Dmc2r 2(d'(O) + /-LT) > ....;c:r:li = c2r and so the value of .A* which 

subtracts the square root will be negative. Therefore .A* is given by (2.8.17) tak

ing the positive square root. Substituting this value of .A* into (2.8.15) gives the 

following equation for the minimutn speed c: 

�~� ( 2Dm- J c4r2 + 4D;, + 4Dmc2r 2(d'(0) + J.tT l) = 

-crb'(O) exp { -w- �2 �~�m� (c2r- 2Dm + )c4r2 + 4D;, + 4Dmc2r2(d'(O) + J.tT))} 
(2.8.18) 

The 1naxilnum of the left hand side of (2.8.13) as a function of A is 
c2 

4Dm' 
In the case of the repeated root when the two graphs are just touching simple 

graphical considerations show that this Inaxilnutn value must be below the right 

hand side of (2.8.13) at A= 0 which is b'(O)e-p.r-d'(O)- /-LT· Therefore we get the 

inequality 
2 

_c_ < b' (O)e-p.r - d' (0) - /-LT 
4Dm 

which gives us the following inequality for the 1ninimum wavespeed c 

c < 2-/Dm(b'(O)e-p.r-d'(O)- f.tT) (2.8.19) 

Recall we assu1ned e-P.rb'(O) > d'(O) + /-LT· One conclusion to be drawn from (2.8.19) 

is that the blowflies will invade at a slower speed if their maturation delay r or 

juvenile 1nortality t-t increases. The same applies if there is an increase in trapping, 

/-lT, or adult mortality, d'(O). Conversely we can see that if the amount that the 

1nature blowflies diffuse, Dm, increases then they will invade at a faster speed. 

2.9 Numerical simulations of reaction-diffusion 
model for Myiasis 

To investigate our reaction-diffusion 1nodel (2.5.1,2.5.2,2.5.3) further we wrote a 

computer programme, in Fortran, to numerically simulate the evolution of the sys

tem over thne on the one dhnensional space x = [0, 40]. For this programme we 
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chose b( um) = Pume-Aum and d( um) = Cum, for some real numbers A, C, P, which 

we could vary as appropriate. The time stepping was carried out using the Adams

Bashforth method where, dt is the time step. Initially we set the popoulation of 

the immature blowflies to zero and the populations of the mature blowflies and the 

sheep to follow normal distributions over the spatial domain with the mean at 20, 

the centre of our space, and variance 4, so that the populations are effectively zero 

on the boundary. First we ran a simulation on homogeneous Dirichlet boundary 

conditions where we kept the parameters fixed at P = 25, r = 100, dt = 0.01, A= 

1, C = 0.9, f.ti = 1, f.tT = 0.01, 'Ys = 1, r = 1, Di = 0.01, Dm = 0.01, Dn = 0.01 and 

looked at the evolution over time, Figure 2.14. Note that in this case the time to 

1naturation of the immature blowflies is one day. While it is known that the matu

ration time of an immature blowfly of the species Lucilia cuprina is about 15 days 

we envisage that our model may be applied to other species which have different 

maturation rates. We can see from Figure 2.14 that the populations start off oscil

lating but end up settling down to equilibrium values where we have existence of 

both the blowflies and the sheep. 

We then decided to look at the effect of varying P but keeping r = 100. Figure 

2.15 shows the populations at the spatial position x = 20 against time, which is 

1neasured in days. The graphs show that the populations oscillate with decreas

ing amplitude over time until eventually reaching an equilibrium population. As 

P increases the frequency and amplitude of the oscillations. also· increase, but the 

amplitude of the oscillations still decrease over time until eventually reaching an 

equilibrium population. We can also see that as P increases the equilibrium pop

ulation for the blowflies gets larger while the sheep gets smaller. Indeed work

ing to two dechnal places the populations of the species after 1000 days when 

P = 5 are (ui, Um, N) = (0.50, 0.32, 0.68), but when P = 140 the populations 

are (ui, Um, N) = (1.49, 0.95, 0.05). 

We then looked at the effects of varying r while keeping P = 70. We found that 

increasing the delay initially caused an increase in the equilibrium solution of the 

population of immature blowflies but once r passed a threshold value it caused the 

eventual extinction of the blowfly population as can be seen from the final graph in 

Figure 2.16. This is due to the fact that the gestation period of the mature blowflies 

is so long compared to the death rate that most of the mature blowflies die before the 

immature ones mature and so the maturation does not cause a significant enough 
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Figure 2.14: Graphs to show the evolution over time of our system on homogeneous 
Dirichlet boundary conditions, when P = 25, r = 100 and dt = 0.01. Parameter 
values used are A= 1, C = 0.9, /--£i = 1, /--£T = 0.01, Is= 1, r = 1, Di = 0.01, Dm = 
0.01, Dn = 0.01. 
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Figure 2.15: Graphs of different values of P over time when, T = 100 and dt = 0.01. 
Parameter values used are A= 1, C = 0.9, J..Li = 1, J..LT = 0.01, "Ys = 1, r = 1, Di = 
0.01, Dm = 0.01, Dn = 0.01. 
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Figure 2.16: Graphs over time of different 1naturation rates, when P = 25. Parame
ter values used are A= 1, C = 0.9, fti = 1, ftT = 0.01, Is= 1, r = 1, Di = 0.01, Dm = 
0.01, Dn = 0.01. 

increase in the population to stop the mature blowflies eventually dying out. Once 

the mature blowflies have died out it follows that no more hnmatures will be born 

and thus the sheep population is free to reach its maximu1n population. 

We then attmnpted to increase the a1nount of diffusion of the 1nature blowflies 

in our model. As we are thinking of our domain as a continuum of fields we will 

not have larger diffusion of either the sheep or the immature blowflies. If we did 

wish to incorporate larger diffusion of either of these species we would need to 

change the maturation term to accommodate distributed delay. We also note that 

as the blowflies live on the sheep it is perhaps not biologically reasonable to say 

that they would diffuse at different rates, especially as once they have dropped off 

the sheep they burrow into the ground and generally do not travel a significant 

horizontal distance. When increasing the diffusion we had to be careful to avoid 

the problem of grid scale instability, which can occur if the time step is too big. 

Therefore we needed to modify our time step so that it depended on the diffusivity, 

dt = 0.1dx2 / Dm. While this solved the problem of grid scale instability it meant 

that for large diffusion our tilne step became much s1naller than before and thus we 

needed to run the simulation for longer in order to evolve the system over the same 

time period as before. 
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Figure 2.17 show that with no diffusion all three populations appear to have 

reached a spatially uniform equilibrium (except directly on the boundary). How

ever the incorporation of diffusion removes the spatial uniformity as the effect of 

the boundary conditions start to spread into the domain. We see that by increas

ing Dm the mature blowfly population now tends to zero on the boundaries from 

a greater distance, at a shallower gradient. This effects both the other species as 

well. In the top two graphs of Figure 2.17 all species obey homogeneous Dirichlet 

boundary conditions. In the bottom two graphs the mature blowflies still obey ho

mogeneous Dirichlet boundary conditions but the sheep and the immature blowflies 

obey homogeneous Neumann boundary conditions, which we consider to be more 

realistic. However we can see that the different choices of boundary conditions have 

little effect in this case. The main difference is that under homogeneous Neumann 

boundary conditions the sheep can exist on the boundary and actually achieve a 

higher population as there are no parasites to feed off and possibly kill them here. 

There are no immature blowflies at the boundary even when they obey homoge

neous Neumann boundary conditions. This is because there are no mature blowflies 

at the boundary and therefore no chance for immature blowflies to be born there. 

Therefore the only way for immature blowflies to exist on the boundary would be if 

they had come from another point in space, which will not happen in our model. 

In Theorem 25 we showed that under homogeneous Neumann boundary condi

tion's the steady state (um, un, N) = (0, 0, 1) would be linearly stable if e-JJ.iTb'(O) < 
d' ( 0) + /.LT. For the functions used in our numerical simulations this inequality 

becomes e-P.irdt P < C + /.LT· We can show this condition numerically. By fix

ing /.Li = 0.5, rdt = 1, C = 0.9, /.LT = 0.01 we get a condition dependent on P; 

e-0·5 P < 0.91, which gives a critical value of P = 1.5. We can see from the first 

two graphs of Figure 2.18, taken after 100 days, that when we set P = 1 we get the 

equilibrium (0, 0, 1), but when P = 2 we get an equilibrium with existence of both 

species. A linear stability analysis on mixed boundary conditions, where the ma

ture blowflies obey homogeneous Dirichlet boundary conditions but the immature 

blowflies and the sheep obey homogeneous Neumann boundary conditions, includes 

the term Dm>..1 which suggests that for parameter values which do not give stability 

of the steady state a sufficient increase of the diffusion parameter Dm should lead 

to stability. Indeed we can see from the third graph of Figure 2.18, taken after 16 

days, that the co-existence equilibrium from when P = 2 and Dm = 1 is changed to 

the (0, 0, 1) steady state when Dm = 100. 
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Figure 2.17: Graphs to show the effects of changing Dm on the populations after 
30 days. In the top two graphs all species obey homogeneous Dirichlet boundary 
conditions but in the botto1n two graphs the sheep and the immature blowflies 
obey homogeneous Neumann boundary conditions. Parameter values used are P = 
25, ;dt = 1,A = 1, C = 0.9, J-li = 1, t-tr = 0.01, Is = 1, r = 1, Di = 0, Dn = 0. 
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Figure 2.18: Graphs to show the stability conditions of the steady state 
(urn, Un, N) = (0, 0, 1) on mixed boundary conditions at t = 100, OOOdt. Param
eter values used are -rdt = 1,A = 1, 0 = 0.9, f.ti = 0.5, f.tT = 0.01, "Ys = 1, r = 1, Di = 
0.01, Dn = 0.01. 
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Figure 2.19: Graphs to show evolution with different initial conditions. Parameter 
values used are P = 2, rdt = 1,A = 1, C = 0.9, J-ii = 0.5, /-iT = 0.01, Is = 1, r = 
1, Di = 0.01, Dm = 0.01, Dn = 0.01. 

To investigate how 1nuch effect our initial conditions had we tried out different 

sorts of distributions for our initial conditions. Figure 2.19 shows three different 

initial populations and the evolutions of the species after 1000 days, when the pop

ulations had reached equilibrium. The first two graphs are from an initial normal 

distribution, as used in Figure 2.14. We then tried an exponential distribution which 

had the mean on the left hand side of the space and a relative long tail over the rest 

of the space. Finally we choose random initial conditions, where we used a random 

number function x( t) to generate a random nu1nber between 0 and 1 for every point 

in the space. Figure 2.19 shows that all three different initial conditions end up with 

the same equilibriu1n population. 

2.9.1 Spatially dependent trapping 

We think of our spatial domain as a continuum of fields, with the 1nature blowflies 

able to travel among the fields while the sheep are restricted. Thus the diffusivity 

of the sheep, and consequently the immature blowflies are very small, while the 
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diffusivity of the mature blowflies could be much bigger. One area of interest is 

to investigate what would happen if the trapping intensity varied over the space, 

for exa1nple if some farms had a more effective trapping policy than others. We 

simulated this scenario by letting the trapping coefficient, J-LT be a different value 

for x E [35, 65] than in the rest of the spatial domain. We can see the results in 

Figure 2.20. These graphs show the evolution of the number of eggs laid over time 

at specific points in space, x = 50,x = 40,x = 30,x = 20,x = 10 and x = 1. 

We started our simulation off with the populations constant in space, we set the 

sheep population equal to one, the mature blowflies equal to 0.1 and the immature 

blowflies equal to zero. The first graph in Figure 2.20 shows the evolution with no 

trapping and diffusion of mature blowflies. We see that in this case it settles down 

to a periodic solution that behaves exactly the same over the whole domain. The 

second graph shows what happens if we allow diffusion of the mature blowflies, by 

setting Dm = 10. Now we see that the system does not behave in the same way over 

the whole domain. After some initial noise up to t = 45 we see that it does settle 

down to a periodic solution. The frequency of eggs laid is higher near the edge of 

the domain at x = 10 and does not oscillate so much. In the third graph we allow 

a large amount of trapping, by setting J.LT = 5. Here we see that we have a small 

amount of eggs laid to begin with, but the number laid decrease exponentially over 

time and eventually die out causing the extinction of both immature and mature 

blowflies. Next we investigated what would happen if we allowed this amount of 

trapping in just a small portion of the domain, for x E [35, 65] but did not allow 

diffusion. As might be expected we can see from the fourth graph of Figure 2.20 

that in this case the solution behaves like the third graph for x E [35, 65] and, after 

an initial settling down period, like the first graph outside this interval, as we do 

not allow movement of species over space. Thus it seemed like it would be more 

interesting to allow diffusion so we set Dm = 10. The result can be seen in graph 

five. Here we can clearly see a difference in behaviour, the evolution no longer looks 

similar to the first or third graphs. In fact we no longer have a periodic solution. 

The introduction of diffusion has smoothed out our solution so that the number of 

eggs laid settle down to an equilibrium solution, which is different at different points 

in space. We can see that solution is lowest in the middle of our interval where we 

have a high amount of trapping, x = 50. Closer to the edge however, at x = 40 

the frequency is much higher and only just lower than at x = 20 where there is no 

trapping. We then investigated what would happen if we reversed our trapping so 
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that there was a high a1nount of trapping over most of the space but a small area 

where no trapping occurred, x E [35, 65]. We can see from the last graph of Figure 

2.20 that again a non periodic equilibrium solution is reached. The places where 

there is no trapping reach a higher equilibrium value and we can see that the further 

away we get from this interval the lower is the equilibrium solution. We also see 

that the highest population does not occur at the center of the interval, x = 50, but 

rather nearer the edge. 

�:�:�~�\�M�M�M�M� 
�o�~�~�~�~�~�~�~�~�~�~�~�-�~� 

0 45 90 135 180 225 270 315 360 405 450 495 

0.06.....----.-----.----,---.---------, 

0on=10, T=S in [35,65] else T=O 
0.8r---.-----.----,---.--------. 

0.6 

0.8r------.----.--------.----, 

-X=SO 

.. ... X=40 

om" o r .. s In [35,65] olso T=O 

- - -)(:30 

-x=20 

Om =10, T =0 In [35,65]olso T =5 

-x=IO 0.8r---.-----.----,---..------, 

0.6 

- x ... 1 

Figure 2.20: shows evolution with different trapping rates over space. Parameter 
values are J.ti = 0.1, Is = 0.1, r = 0.1, Di = 0, Dn = 0, A = 10, C = 0.2, P = 
500/30, rdt = 15. 
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2.9.2 A simulation to show overwintering 

It is well documented that when the weather gets cold enough the immature blowflies 

will overwinter. This means that instead of being in their pupa for just over a week 

they will stay in this state until the weather gets warmer. Our model does not 

account for this phenomenon. Thus we adapted our computer programme to show 

this. This involved creating a new variable to model the overwintering blowflies, 

uh ( i). We introduced a variable to keep track of the months, where month 1 was 

October and month 12 September. We claim that between October and March, 

Australian summertime, the system will evolve according to our original model but 

between April and September any immature blowflies that would mature in the sum

mer would instead overwinter. At the beginning of October overwintering blowflies 

will start to become mature blowflies. It is also known that overwintering blowflies 

may be susceptible to being eaten or dying of natural causes, so a death term must 

be included. Thus our model for the evolution of overwintering flies is 

if mE [1, 6], 

if mE [7, 12] 

(2.9.1) 

where f.Lh is the death rate of overwintering blowflies, T is the conversion rate from 

overwintering to mature blowflies and m is the month of the year as described 

above. We did not include diffusion in this model as we wanted the time step to 

be quite large so we could observe the evolution over long periods of time. The 

equations for the other species are similar to (2.5.1,2.5.2,2.5.3) except that we set 

the diffusion coefficients to zero and when mE [1, 6] the mature blowfly equation will 

have the additional term Tuh(x, t) to model the overwintering blowflies maturing. 

This set up showed that the evolution over time of our model took a similar form 

to previously during the summer months but in the winter we see that the mature 

and immature blowflies die out. During this time there is a high population of 

overwintering flies which do not feed on the sheep and so the sheep population 

reach their carrying capacity. At the beginning of the next summer we see that the 

overwintering flies become mature blowflies and our model evolves again. Figure 

2.21 shows a simulation over 3 years at the point x = 50. We see that we get 

oscillations of the populations over the summer before reaching the winter where 

the blowflies die. We can see that the population of mature blowflies at the onset 
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of winter determines the population of overwintering flies. 

Evolution of species over 2 years (and a bit} with rate of conversion of overwintering to mature· 
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Figure 2.21: Graphs to show evolution over time of the overwintering model Pa
raineter values used are rdt = 12,A = 1, C = 0.3, f.-ti = 0.01, f.-tT = 0.01, Is= 1, r = 
1, P = 500/30, J..Lh = 0.01, T = 0.9, dt = 0.1. 
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3 
Discrete models for Myiasis 

3.1 Discrete diffusion model 

In this section we attempt to construct a model for blowfly strike (or Myiasis) using 

discrete diffusion. In this case we envisage that there exist a series of patches and the 

blowflies are able to travel between them but can only travel to an adjacent patch 

during one time step. We define u = immature blowflies, U = mature blowflies 

and V =sheep. We also include a linear death term for the mature blowflies that 

includes natural death rate, d and death rate due to trapping, Tn. Thus our model 

will take the form 

dUn 
dt 

dVn 
dt 

(3.1.1) 

- e-wrb (Un(t- r)) Vn(t- r)- (d + Tn)Un + D (Un+l(t) + Un-l(t)- 2Un(t)) 

(3.1.2) 

- rVn(t)(l- Vn(t)) -!Vn(t)Un(t), 

(3.1.3) 

for n E Z := {0, ±1, ±2, · · ·}, 

where D, d, Tn, '' J.L, rand rare positive constants and with initial conditions 

Un(O) - �¢�~�(�0�)� �~� 0, nEZ, 

Un(s) - �¢�~�(�s�)�~�O�,� nE Z, s E [-r,O) 

Vn(s) - �¢�~�(�s�)� �~� 0, nE Z, s E [-r, 0]. 

(3.1.4) 

These patches could be in a long line or, perhaps more realistically, in a ring. We 

shall first consider the case of an infinite number of patches in a line. 
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3.1.1 Positivity and boundedness 

We can see that (3.1.2) and (3.1.3) do not depend on un(t) so we do not need to 

look at (3.1.1) when analysing our syste1n. We wish to prove positivity of Un(t). 

Proposition 27 Suppose for the system (3.1.1,3.1.2,3.1.3} subject to (3.1.4) and a 
compatability condition similar to (2.2.6} in Proposition 4 that Tsup < oo, l(osup < oo 
where 

Tsup supTn, 
nEZ 

�V�~�u�p� - sup Vn(O), 
nEZ 

then un(t), Un(t), Vn(t) 2:: 0 for all n E Z, t > 0. 

First we shall show that Un(t) is positive fort E (0, r]. On this interval we have that 

t - T E [ -T, 0] and thus the delayed term in (3.1.2) involves the initial data �¢�~� ( s) 

and �¢�~� ( s) which is positive by hypothesis. Thus we have 

dUn 
(it ;::: -(d + Tsup)Un(t) + D(Un+l(t) + Un-l(t)- 2Un(t)). 

Therefore Un(t) �~� Un(t) where Un satisfies 

dUn - - - -dt = -(d + Tsup)Un(t) + D(Un+l(t) + Un-l(t)- 2Un(t)), (3.1.5) 

subject to Un(s) = Un(s) �~� 0, s E [-r, 0]. 

To solve (3.1.5) we shall need to use the discrete Fourier transfonn 

1 00 

F*(t, w) = .J2ii 2::: e-inw Fn(t) 
n=-oo 

and the inverse discrete Fourier transfonn 

Fn(t) = -- einw F*(t, w)dw . 1 171" 
.J2ii -71" 

From now on we shall denote �2�:�~�=�-�o�o� by I:n · First we multiply both sides of (3.1.5) 

by e-inw / -/2ii and then su1n over n to give 

1 (d T. ) " u- ( ) -inw D " TT ( ) -inw - rn::_ + sup L....J n t e + . rn::_ L....J v n+ 1 t e 
V 27r n V 27r n 

D "' TT ( ) -inw 2D "' u- ( ) -inw + . rn::_ L...,. vn-1 t e - . rn::_ L...,. n t e . 
y27r y27r 

n n 
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Noting that we can write �2�:�~�=�-�o�o� Un+1(t)e-inw = I::=-oo Um(t)e-i(m-l)w and 

I::=-oo Un-l(t)e-inw = I::=-oo Um(t)e-i(m+l)w we apply the discrete Fourier trans

form to (3.1.5) to get 

! ti*(t,w) - -(d + Tsup)ti*(t, w) + Detwti*(t,w) + De-iw[J*(t, w)- 2Dti*(t, w) 

- ( -(d + Tsup) + D(2 cosw-2)) U*(t, w), 

which can be easily solved by separation of variables to give 

U*(t, w) = U*(O, w) exp {( -(d + Tsup) + D(2 cosw-2))t}. 

Also note that 

hence using the inverse formula for the discrete Fourier transform, we obtain 

Un(t) = . �~� 11r einw[J*(O, w)e(-(d+Tsup)+D(2cosw-2))tdw 
v 27f -7r 

_ _1_11r einwe-(d+Tsup)te2Dt(cosw-1) {-1- f 6-imw[Jm(O)} dw 
�~� -1r �~� m=-oo 

_ �2�~� 6-(d+T,.,)t f [Jm(O) [" 6i(n-m)w62Dt(cosw-1)dw 

m=-oo 7r 

1 
00 

- 11r -
2

7f e-(d+Tsup)t L Um(O) _ (cos(n-m)w + i sin(n-m)w)e2Dt(cosw-l)dw 
m=-oo 1r 

1 00 - 11r - 27f e-(d+Tsup)t L Um(O) 2 cos(n-m)we2Dt(cosw-l)dw. 
m=-oo 0 

Now we define 

f3a(l) = 2e-2"' 1" cos(lw)e2
"coswdw. 

It has been shown in the paper by Weng et. al. [65] that f3o:(l) �~� 0 and hence 

Un(t) = 2_e-(d+Tsup)t �~� Um(O)f3vt(n-m) > 0 on t E (0, T]. 
27f L..-J 

(3.1.6) 
m=-oo 

Therefore Un(t) �~� 0 (and hence Un(t) �~� 0) on t E (0, T]. We can prove positivity 

fort E (T, 2T] by following a similar method and so on to prove that Un(t) �~� 0 for 
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all t > 0 by the 1nethod of steps. 

Next we prove positivity and boundedness of Vn(t) fort > 0. We see that (3.1.3) 

can be written as 

�d�~�n� = Vn(t) [r(l- Vn(t))- fUn(t)]. 

As we assume Vn(O) 2: 0 we have Vn(t) 2: 0 for all n and all t > 0. Also since 

Un(t) �~� 0, 

�~� < rVn(t)(l- Vn(t)). 

Thus 
�e�r�t�~� (0) ert 

�~� (t) < n - ---:-----n - 1 + �~� (0) (ert - 1) - _1_ + ert - 1. 
n Vn(O) 

By hypothesis in the proposition Vn ( 0) ::; v;up, where �V�~�u�p� is some value inde

pendent of n, which we would take to be �s�u�p�n�E�z�{�V�~�(�s�)�}�,� s E [-r, 0]. Thus we 

have 
ert 

sup Vn(t) ::; 1 t 
nEZ �~� +er -1 

0 

and therefore 

lhn sup {sup Vn ( t) } ::; 1. 
t-+oo nEZ 

(3.1. 7) 

To show positivity of un(t) we note that the solution to (3.1.1), subject to a suitable 

co1npatability condition is 

Un(t) = rt b(Un(s))Vn(s)e-JL(t-s)ds, 
lt-r 

which, given that Un(t) and Vn(t) are positive implies that un(t) must also be posi

tive. The proof of Proposition 27 is complete. 

3.2 Linear stability of model 

For this section we shall treat the trapping tenn as constant in space, so we set 

Tn = T in equation (3.1.1). Looking for spatially uniform equilibrium solutions to 

the systmn (3.1.2,3.1.3) we find 

0 - e-ILrb (U*) V*- (d + T)U* 

0 - rV*(1- V*)- 'YV*U*. 
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We can see by inspection that (U*, V*) = (0, 0), (0, 1) satisfy the above equations. 

Let us investigate the possibility of an equilibrium with U* > 0 and V* > 0. Solving 

the second equation for V* we get 1 - 1U* / r = V*. Then U* is determined by: 

e-wrb (U*) ( 1- '!:u*) = (d + T)U* (3.2.1) 

and the corresponding value for V* is found from V* = 1-1U* jr, provided (3.2.1) 

has a root U* E (O,r/'Y)· The natural condition for an equilibrium with U* > 0 to 

exist is that 

e-p.rb (U) > (d + T)U for small U, 

e-p.rb (U) < (d + T)U for large U. 

(3.2.2) 

(3.2.3) 

We now perturb our equations about a steady state (U*, V*) by setting Un ( t) = U* + 
�~�n�(�t�)�,� Vn(t) = V* + '17n(t), where en(t), '17n(t) are small. Substituting into equations 

(3.1.2,3.1.3) we get 

den 
dt 

- e-p.r (b (U*) '17n(t- r) + €n(t- r)b' (U*) V*)- (d + T)en(t) 

+D (€n+l(t) + €n-l(t)- 2€n(t)) 

- T'l}n(t)(l- 2V*)- 'Y(V*en(t) + '17n(t)U*). 

Now we look for solutions of the form en(t) = c1euteine, '17n(t) = c2euteine. After 

cancellation this gives 

ac1 - e-wr (c2b (U*) e-ur + c1e-urb'(U*)V*) - (d + T)c1 + Dc1(ei0 + e-ie-2) 

ac2 - rc2(1-2V*)- 1(V*c1 + c2U*). 

Noting that ew + e-iO- 2 = 2cosB-2 = -4sin2(B/2) we put these equations into 

matrix form 

( 

a- e-p.re-u7 b'(U*)V* + d + T + 4Dsin2(B/2) 

,v* 
-e-p.r e-urb(U*) ) ( c1 ) 

u- r (1- 2V*) +'YU* c2 = O. 

For non-trivial solutions the determinant of this matrix must be zero. 

Theorem 28 Suppose that b(O) = 0 and b(U) �~� 0 for all U �~� 0 holds in system 
{3.1.1, 3.1. 2, 3.1. 3). Suppose also that Tn = T, independent of n, then the equilibrium 
point ( u*, U*, V*) = (0, 0, 0) is linearly unstable. 
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Proof: For the equilibrium point (u*, U*, V*) = (0, 0, 0), since b(O) = 0 (3.2.4) 

becon1es 

Thus one eigenvalue is a= r > 0, hence (0, 0, 0) is linearly unstable. 

Theorem 29 Suppose that b(O) = 0, b(U) �~� 0 for all U �~� 0 and b(U) is differen
tiable in system (3.1.1,3.1.2,3.1.3}. Suppose also that Tn = T, independent ofn and 
that 

e-p,rb' (0) < d + T, 

then the equilibrium point ( u*, U*, V*) = (0, 0, 1) is linearly stable. 

Proof: For the equilibrium point ( u*, U*, V*) = (0, 0, 1) we find that (3.2.4) becomes 

(a- e-we-UTb'(O) + �~� + T + 4Dsin
2

(8/2) a: r) ( :: ) = O. 

giving the eigenvalue equation 

( (]' - e-p:r e-O"Tb' (0) + d + T + 4D sin2
( e /2)) ( (]' + r) = 0 

One eigenvalue is a = -r < 0. For (0, 0, 1) to be linearly stable we now need to 

show that the eigenvalues attributable to the other factor are also in the left half of 

the complex plane. For a contradiction, let us assume that there exists an eigenvalue 

a in the right hand side of the co1nplex plane. Then 

so that 

Thus if 

(3.2.5) 

then a contradiction is reached. If this holds for e = 0 it will hold for all e. So if 

(3.2.6) 

holds then the equilibrium point (u*, U*, V*) = (0, 0, 1) is linearly stable. 
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3.3 Global stability of the steady state 
( u*, U*, V*) == (0, 0, 1) on an infinite lattice 

To prove global stability we follow a similar idea to that in the paper by Gourley 

& Wu [25). Note that we do not require Tn to be independent of n here. We define 

U(t) = �{�U�n�(�t�)�}�~�=�-�o�o�·� We use the following result from the book by K. Deimling 

(17] 

Lemma 30 Let X be a Banach space over R or C. Assume that f: [0, oo) xX --t X 
is continuous and that there exists a constant .L 2 0 such that 

lf(t, x)- f(t, y) I :=:; Llx- Yl· 

Then for any given x0 E X there exists a unique continuously differentiable function 
x : [0, oo) �~�X� such that x(t) = f(t, x(t)) fort E [0, oo) and x(O) = x0 . 

We shall take X = £2 where we define £2 to be the Hilbert space of sequences 

�{�U�n�}�~�=�-�o�o� such that �~�C�:�=�-�o�o� �U�~� < oo, with the norm 

( 

00 ) 1/2 

IIUIIta = �n�~�o�o� �u�~� 

Theorem 31 Let the initial data for {3.1.2,3.1.3} cpu, cpv : [-1, 0] �~� £2 be con
tinuous and �c�p�~�(�s�)�,� �¢�~�(�s�)� 2: 0 for each s E [-r, 0] and each n E Z. Assume that 
b(O) = 0, b(U) 2 0 for all U > 0 and further that 

then 

( e-l'rb(U) ) sup 
U2:0 (d + 7inf )U 

< 1 

Vosup:= sup Vn(O) < 00 
nEZ 

Tint := inf Tn > 0 
nEZ 

sup lb'(U)I < oo, 
U2:0 

sup Un(t) �~� 0 
nEZ 

as t --too. 

(3.3.7) 

(3.3.8) 

(3.3.9) 

(3.3.10) 

Remark: We would intuitively expect as a necessary condition for survival that 

adult recruitment rate of blowflies should be sufficient to offset the combined effects 

of natural death and trapping, on at least one of the patches. If adult recruitment is 

insufficient to offset this even with minimum trapping then we expect the species to 

have no chance of survival. Thus condition (3.3.7) is the natural condition to impose. 
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Proof: If we apply Le1n1na 30 to the coupled system (3.1.2,3.1.3) on consec

utive intervals [nr, (n + 1)r], n = 0, 1, 2, · · ·, we conclude that a solution of 

(3.1.2,3.1.3) exists such that �{�U�n�(�t�)�}�~�=�-�o�o�'� �{�V�n�(�t�)�}�~�=�-�o�o� E £2 for each t > 0. We 

see that if the supremun1 in (3.3. 7) is attained at U = 0 then (3.3. 7) becomes 

e-JLrb'(O) < d + Tinf which is the type of condition we would expect to get from a 

linearised stability analysis. It is an elementary property of real numbers that if 

a< 1 and E is small enough then a(1 +c) �~� 1. Therefore there exists an E > 0 such 

that 

and so 

for all U;::: 0. (3.3.11) 

We already know fron1 (3.1.7) that 

lhnsup {sup Vn(t)} �~� 1. 
t-oo nEZ 

WithE> 0 chosen as above there exists T > 0 such that fort 2:: T, supnEZ Vn(t) < 
1+c and so for each fixed n, Vn(t) < 1+c. So when n E Z and t �~� T+r, Vn(t-r) < 
1 +E. Thus (3.1.2) becomes, for t > T + r 

�d�~�;� < e-l'rb (Un(t- T)) (1 + €)- (d + Tn)Un + D (Un+l(t) + Un-!(t)- 2Un(t)). 

(3.3.12) 

We 1nultiply (3.3.12) by Un(t) and su1n over n E Z to give 

L dU;t(t) Un(t) < 
n n n 

+ D L Un(t)(Un+l(t) + Un-l(t)- 2Un(t)) 
n 

- L:; e-JLrb(Un(t-r))(1 + c)Un(t) 
n 

L:;(d + �T�n�)�U�~�(�t�)�- D L:;(Un(t)- Un-l(t)? 
n n 

n 
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where l:n = �2�:�~�=�-�o�o�·� However we can see that the last term on the right hand side 

will sum to zero because Un(t) -t 0 as lnl-t oo. So we have 

�~�!� L �U�~�(�t�)� + D L(Un(t)- Un-l(t)) 2 

n n 

< L e-p:rb(Un(t-r))(1 + E)Un(t)- L(d + �T�n�)�U�~�(�t�)�.� 
n n 

Using (3.3.11) and noting that Tn �~� 7inf, for all n E Z we get 

�~� :t L u;(t) + D L(Un(t)- Un-l(t)) 2 

n n 

< (d + 7inJ) L Un(t- r)Un(t)- L<d + 7inJ �)�U�~�(�t�)� 
n n 

< d + :;nf (2: �U�~�(�t�- r) + L �U�~�(�t�)�)� - (d + 7inJ) 2: �U�~�(�t�)� 
n n n 

- d\7inf �(�~�u�~�(�t�-�T�)�- �~�U�~�(�t�)�)�.� 

Integrating with respect to time from 0 to t we get 

1 rt 2 (IIU(t)JJ;2 -IIU(O)IIi2) + Jo D L(Un(s)-Un-l(s))2ds 
0 n 

::::; d + !;nf [uu(s-T)!!?>ds- d + ;nf [IIU(s)il;,ds, 

which can be rearranged to give 

iiU(t)ili• -IIU(O)II?> + (d + 1inJ) [IIU(s)ili•ds + 2D l L(Un(s)-Un-l(s)j2ds 
n 

< (d + T;nJ) [IIU(s- T)ili,ds = (d + 1inJ) 1:-r IIU(s)iliads 

< (d+7inJ) l:Uu(s)il?>ds - (d+7inJ) l>IU(s)ili•ds+(d+T;nf) [IIU(s)il;,ds 

Thus we have the inequality 

IIU(t)ili>+ 2D l L u;(s)ds::::; IIU(O)IIi>+ (d + 1inJ) l:Uu(s)il;.ds, (3.3.13) 
n 

where we define 

(3.3.14) 
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From (3.3.13) we see that IIU(t)ll.e2 remains bounded as t �~� oo and also that 

Assuming that the latter hnplies Ln �U�~�(�t�)� �~� 0 as t �~� oo, then we have 

as t �~� oo. 
n 

It is also known, [25], that sequences { �W�n�}�~�=�-�o�o� E £2 satisfy the inequality 

So by letting Wn = Un(t) �~� 0 we get 

( )

V4 
sup Un(t) ::; �v�'�2�1�1�U�(�t�)�l�l�~�t �2� L (Un(t)- Un-l(t)) 2 

, 
nEZ n 

which tends to zero as t �~� oo because IIU(t)ll£2 is bounded independently oft and 

Ln (Un(t)- Un-l(t)) 2 �~� 0 as t �~� oo. Thus the proof is co1nplete. 

3.4 Global stability of the steady 
(u*, U*, V*) == (0, 0, 1) on a finite lattice 

state 

The above analysis will not work on a finite lattice, primarily because we can not use 

the fact that the sequenceD Ln[Un(t)(Un+I(t)- Un(t))- Un-I(t)(Un(t)- Un-l(t))] 
will sum to zero. However the analysis up to this point will still hold. We shall 

look at the case where our system obeys the discrete analogy of the homogeneous 

Neumann problem. Thus we need to rewrite the systmn (3.1.1,3.1.2,3.1.3) as 

dun 
dt 

dUn 
dt 

dVn 
dt 

b (Un(t)) Vn(t)- f-LUn(t)- e-Jl.Tb (Un(t- r)) Vn(t- r) 

- e-JJ.Tb(Un(t-r))Vn(t- r)- (d + Tn)Un + D(AU)n 

- rVn(t)(1- Vn(t))- ')'Vn(t)Un(t) 

for n E Z := {1, 2, · · · N}, 
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(3.4.16) 

(3.4.17) 



fort> 0, subject to the initial conditions 

Un(O) - �u�~� �~� 0, 

Un(s) - �U�~�(�s�)� �~� 0, 

Vn(s) �V�~�(�s�)� �~� 0, n = 1,2,· · ·,N, s E [-r, 0), 

(3.4.18) 

where (AU)n means the nth component of the vector AU with: 

-1 1 0 0 0 
u1 

1 -2 1 0 0 

U= 
U2 

A= (3.4.19) 

0 0 0 -2 1 
UN 

0 0 0 1 -1 

It is explained in detail in Kyrychko, Gourley & Bartuccelli [38] why this is the 

discrete analogy of the homogeneous Neumann problem. 

Theorem 32 Suppose in system (3.4.15,3.4.16,3.4.11} subject to (3.4.18} that 
�V�~�(�O�)� > 0 for each n, b(O) = 0, b(U) > 0 for all U > 0 and that 

Tint= min(Tb T2, · · ·, Tn), 

( 
e-p:rb(U) ) 

sup < 1. 
U>O (d +Tin! )U 

Suppose also that E > 0 and that Un(t) is any solution to the equation 

dUn A A " dt = e-J.trb(Un(t-r))(l +E)- (d +Tin! )Un + D(AU)n, (3.4.20) 

satisfying 

for all s E [-r, 0], n E Z, 

then Un(t) :::; Un(t) for all t E (0, oo ), n E Z and furthermore the equilibrium solution 
( u*, U*, V*) = (0, 0, 1) is globally asymptotically stable. 

Proof: The proof is divided into two parts: 

Case A: b{U} is increasing for all U > 0. 
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We see that there exists an € > 0 such that 

and so with this € we have 

for all U > 0. (3.4.21) 

Fro1n (3.4.17) we see that, for each n, linlSUPt-oo Vn(t):::; 1. With € defined as above 

there exists T > 0 (which can be taken independent of n since the lattice is finite 

here) such that for all t �~� T and all n E Z, Vn(t) < 1 + €. Therefore when n E Z 
and t �~� T + T, Vn(t- r) < 1 + € and (3.4.16) becomes 

�d�~�n� =:; e-l'rb(Un(t- r))(l + €)- (d +'lin! )Un + D(AV)n, for all t > T + r. 
(3.4.22) 

We see by comparing (3.4.20) and (3.4.22) that we get 

�d�~�n�- e-"rb(Un(t- r))(l+ E)+ (d + 'linf)Un- D(AV)n 

dUn A " ,. 

< dt- e-wrb(Un(t-r))(1 +c)+ (d + TinJ)Un- D(AU)n 

and we want to conclude fro1n this that Un(t) :::; Un(t). Letting rJn(t) = Un(t)-Un(t), 
the above inequality becomes 

where '1]= (rJt, rJ2, • • ·, rJn)T. We want to show rJn(t) �~� 0 for all t �~� 0. We shall 

first establish this for t E (0, r]. Looking on the interval t E (0, r] we see that 

t - T E ( -T, 0] and so the above inequality becomes 

�d�~�n�- e-"r [b(lfn(s))- b(Un(s))] (1 + €) + (d+'linJ)'I}n- D(A'TI)n;:::: 0, 

with s = t- T E [-r, 0]. 

By hypothesis we know that Un(s) :::; Un(s) in [-r, 0] Applying the mean value 

theorem to the square bracketed term, we obtain 

(3.4.23) 
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with s = t - r E [-r, 0], where B(s) is such that Un(s) ::; B(s) ::; Un(s). Since 

the birth function is increasing, b'(B(s)) �~� 0. We wish to show that rJn(t) �~� 0 for 

all n E Z, t E (0, r]. For a contradiction let us assume this is not the case. Then 

"ln(t) must attain a negative minimum at some node n* and some timet* in the set 

(n, t) E {1, 2, · · ·, N} x [0, r]. We know that "ln(O) 2: 0, for each nand sot* > 0 (but 

t* could equal r). This implies that drJn•(t*)/dt::; 0. Looking at the n*th component 

of Ar, at timet*, we see that it will either be 'T/n•-1(t*) + 7Jn•+1(t*)- 2rJn•(t*) or, 

if n* = 1, it will be -7]1(t*) + rJ2(t*) or, if n* = N, it will be 7JN-1(t*) - rJN(t*). 
All these expressions must be non negative since "ln•(t*) is the minimum. As we 

know that "'n• (t*) < 0 and is the minimum point we see that (3.4.23) can not be 

satisfied (evaluating (3.4.23) at n = n* and t = t* shows this), therefore we must 

have that rJn(t) �~� 0 for all n E Z, t E [0, r] which implies that Un(t) ::; Un(t) for all 

t E (0, r]. We can conduct the same analysis on the interval t E (r, 2r] to achieve 

the same result. This analysis continues and from the method of steps it follows 

that Un(t) �~� Un(t) for all t E (0, oo] as required. 

Exploiting the fact that Un(t) can be any solution of (3.4.20) subject to Un(s) �~� 

Un(s), s E [-r, 0], n E Z, we shall now take Un(t) = w(t), where w(t) is indepen

dent of n and is the solution of 

dw(t) 
dt 

- e-wrb(w(t-r))(l +E)- (d + Tinf )w(t) 

w(s) - �m�~�U�n�(�s�)�,� 
nEZ 

s E [-r, 0]. 

(3.4.24) 

(3.4.25) 

We want to show that w(t) �~� 0 as t �~� oo. However, we showed earlier that all 

solutions of the differential equation (2.2.17) approach zero, subject to the condition 

e-J.Lirb(um) < d(um) + J.LTUm. As (3.4.24) is a particular case of (2.2.17) with appro

priate choice for the function d(um(t)) in the latter we conclude that w(t) �~� 0 as 

t �~� oo subject to the condition e-J.Lrb(w)(1 +E) < (d + 1inJ )w, for all w > 0, which 

holds because of (3.4.21). 

Positivity of Un(t) implies that 

0 �~� Un(t) �~� w(t), 

but w(t) �~� 0 as t -7 oo so we have that Un(t) �~� 0 as t �~� oo. 

We have shown that Un(t) �~� 0 as t �~� oo for each n, and we now want to show that 

Vn(t) �~� 1 as t �~� oo for each n. Let E3 E (0, r /1) be arbitrary. Since Un(t) -7 0 for 

each nand since there are finitely many n, there exists a T3 > 0, independent of n, 
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such that fort> T3 and all n, Un(t) < €3 • Then fort> T3 

and so, since €3/ < r and since Vn ( 0) > 0 for each n by hypothesis 

lin1 inf Vn(t) �~� 1- /€3
. 

�t�~�o�o� r 

This holds for all sufficiently small €3, therefore 

lhninfVn(t) > 1. 
�t�~�o�o� 

Also since both Vn(t) and Un(t) are positive 

so lhn �S�U�P�t�~�o�o� Vn(t) �~� 1. Hence �l�h�n�t�~�o�o� Vn(t) = 1 for each n. 

Now we look at (3.4.15) to show that un(t) ---+ 0 as t---+ oo. Let €4 > 0 be arbitrary. 

Since Un---+ 0 and Vn---+ 1 and since there are finitely many n, there exists a T4 such 

that for all t > T4 and all n 

Hence for t > T4 and all n, 

and thus lim �s�u�p�t�~�o�o� un(t) �~� €4/ J-t. Since this is for all €4 > 0 we can conclude 

lim sup un(t) �~� 0. 
�t�~�o�o� 

Similarly �l�i�m�i�n�f�t�~�o�o� un(t) �~� 0 and so un(t) --+ 0 as t --+ oo for each n. So 

un(t) --+ 0, Un(t) ---+ 0 and Vn(t) --+ 1 as t --+ oo, for each n, thus the proof is 

complete, for the case when the birth function is increasing. 

Case B: b(U} is a non-monotone junction. 

It is asstnned here that b(U) qualitatively resumbles PUe-Au. Here we wish 

to show that for each n E z, �l�i�m�S�U�P�t�~�o�o� Un(t) < umax, where umax is the value of 

U that maxhnises the birth function. 
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Let E be defined as in case A, together with the corresponding T with the property 

that n E Z and t ;::: T + r implies Vn ( t - r) < 1 + E. Then for t ;::: T + r 

�d�~�n� < e-117b(Un(t- r))(l + t)- (d +'lin! )Un + D(AV)n 

< e-JLrb(Umax)(1 +E)- (d + 7inJ )Un + D(AU)n· 

Let w2 ( t) be the solution of 

dw 
d/ = e-JLrb(Umax)(l +E)- (d + Tinf )w2, 

such that 

w2(T + r) = ma,?C Un(T + r). 
nEZ 

We can show that Un(t):::; w2(t), for all t;::: T + r. Thus we have that 

e-JLrb(Umax)(1 +E) 
lim sup Un(t) ::; lim w2(t) = d 1! · 

t-oo t-oo + inf 

This is true for all sufficiently small E > 0. Hence, for each n E Z, 
e-JLrb(Umax) 

lim sup Un(t) :::; d 1! . 
t-oo + inf 

From Figure 3.1 we can see that 

e-JLTb(Umax) __ ....:_ _ __;_ < umax 
d +Tin! ' 

so for each n, limsupt-oo Un(t) < umax. Note that this is a strict inequality and 

there are only finitely many n. So there exists T4 > 0 independent of n such that 

fort;::: max{T4, T + r}, and all n, 

Hence for t sufficiently large U n ( t) is confined to the interval of values for which the 

function b( U) is monotone increasing and the proof proceeds as for case A. 
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�e�-�~�t�b�(�U�m�a�x�)� umax 
(d + Tinf) 

Figure 3.1: Graph to show that e-P.Tb(umax) < umax. 
d+Tinf 
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4 
Introduction to Dynamics of aeolian sand 

ripples 

4.1 History 

While looking at pictures of deserts you may have noticed that the sand tends to be 

in the form of a series of small propagating waves. They are only a few centimeters 

in wavelength and their heights are only about one fifteenth of this. Their crests lie 

perpendicular to the wind. These waves are known as aeolian sand ripples. They 

get their name from the fact that they are formed by the action of the wind on the 

sand bed. As well as in the desert aeolian sand ripples can also be found on beaches, 

by the sea and have even been noticed on Mars (26]. 

Ripple crest Slip face 

Wind direction Shadow zone 

Figure 4.1: Diagram of a typical sand ripple (after Hoyle and Woods (28]), showing 
the hopping process and labelling the angle, a, between the horizontal and the sand 
bed, the angle, {3, between the incoming saltation flux and the horizontal and various 
zones of the ripple. 

Interest in aeolian sand ripples began in the early part of the 20th century and 

one of the most influential studies was The Physics of Blown Sand and Desert Dunes 

by R.A. Bagnold in 1941 (9]. One of the most important ideas to come out of this 
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study was the notion that saltation (derived fro1n the Latin word saltare meaning to 

dance or to jump) played an important part in the formation of the ripples. When 

the wind is strong enough it can start to pick up grains from the sand bed and carry 

the1n for a relatively long distance. By this point the grains have a large a1nount of 

energy and so when they finally drop back to the sand bed they do so at high speed 

(up to about 1In/s (6]). Having hit the sand bed these grains will rebound and are 

often caught up by the wind again, doo1ned to repeat this process over and over. 

This process is known as saltation. The impact of these high energy, or 'saltating', 

grains cause other grains in the neighbourhood of the impact point to be removed 

fro1n the sand bed. These grains will have a 1nuch lower energy than the saltating 

grains as they are not carried along by the wind, only by the force of the impact 

and so they will not travel as far (generally no more than one ripple wavelength). 

This process was named surface creep by Bagnold [9] but later the more scientific 

term reptation (derived fron1 the Latin for 'to crawl') was suggested by P.K. Haff 

[4] and is more commonly used today. These processes are illustrated in Figure 1 

along with a typical aeolian sand ripple and some com1non terms associated with it. 

It has been observed that the saltating grains impact the sand bed at a roughly 

constant angle of between 10° - 16° [9]. Experiments have been undertaken to 

investigate the effect of the saltating grains on the bed, for example Mitha et al. 

[45], who used steel pellets to investigate the effect of a single grain impacting a 

bed made up of shnilar grains. They noticed that a single impact by a high-energy 

pellet caused, on average, 10 pellets from the bed to be ejected, as well as rebounding 

itself. The ejected pellets are equivalent to the reptating grains and have 1nuch less 

energy and lower speeds than the incoming pellet, or saltating grain. Most of the 

energy caused by the hnpact is used up by the rebounding grain. It was noticed 

that the ejected grains came from an area roughly 10 grain dia1neters wide, whose 

centre was slightly ahead of the impact point. The inco1ning grain rebounded at 

an angle significantly higher than it came in at, which is important for the grain to 

sustain itself in saltation. As sum1narised in [16], it has been found that decreasing 

the angle of incidence increases the ratio of the rebound to impact vertical speeds. 

For angles around 10°, as in saltation, this ratio is greater than one and so the 

rebounding saltating grain can rise to the sa1ne height as it was before it started its 

previous descent. In this case the grains are able to continue in saltation indefinitely. 

Changing the impact angle has little effect on the reptating grains but increasing 

the impact speed causes an increase in the number of grains entering into reptation 
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from a single impact [45] . 

Bagnold (9] predicted that a large population of grains would be caught up in 

saltation, travelling from one ripple to another, thus creating consecutive areas of 

high and low impact intensity, which gives rise to the motion of surface grains. He 

noticed a connection between his predicted saltation path lengths and the observed 

wavelengths of the ripples and thus suggested that the 'characteristic path length' 

had an important effect on the ripple spacing. 

Bagnold's work has been hugely influential, however his concept of the origin 

of ripple spacing has been challenged over the years. Sharp [55] said that because 

ripples begin as small amplitude short-wavelength forms and grow to their eventual 

steady-state dimensions, Bagnold's concept is at least suspect. Sharp's argument 

was qualitatively based on the geometrical grounds that the ripple wavelength should 

depend on the ripple amplitude and the angle between the sand bed and incoming 

saltating grains, both of which are controlled by the particle size and air velocity. 

Later experimental work backed this up [54]. Sharp's study based on measurements 

taken in the I<elso Dunes also showed that under different wind velocities, aeolian 

sand ripples would travel between 0.35 and 3.2 inches per miniute [55]. While he 

concedes that the relationship is approximate due in part to the difficulty in measur

ing velocities of winds that constantly fluctuate in speed, sometimes increasing from 

low speeds up to 30mph within seconds, he did find that there was an approximate 

linear relationship between wind velocity and velocity of ripple movement 

v; _ Vw -15.5 
rm- 7 ' 

where Vrm is velocity of ripple movement and Vw is wind velocity in miles per hour. 

According to this model ripples would not move below a wind velocity of 15.5mph. 

This was considered reasonable as the threshold velocity for noticeable movement 

of ripples in the Kelso Dunes was between 11 and 13mph. It was also acknowledged 

that the actual relationship may not be a straight line as it may flatten out at 

velocities above 30mph, but a lack of observations at these velocities prevented 

accurate results. Sharp also observed that ripples that move 1 wavelength in 1 

minute will be able to quickly adjust to changes in wind regime. 

Bagnold's work on sand ripple formation has subsequently been developed and 

modified by many people, for example [28, 4, 11, 69, 51], compared with field obser

vations, for example [55, 7], and inspired numerical experiments such as [48, 49]. 
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4.2 Analytical Models 

4.2.1 One-species models 

Anderson 

Anderson [4] produced one of the most hnportant analytical models of aeolian salta

tion. He deduced that reptation was actually a more hnportant factor than saltation 

and disputed Bagnold's proposed model by arguing that such short saltation trajec

tories as Bagnold proposed would not land with enough energy to produce significant 

reptation transport. Anderson's model, based on the relation between the rate of 

change of bed elevation and the divergence of sediment flux, or the 'erosion equation', 

took the form 

(4.2.1) 

where his the height of the bed at timet, Vs is the total volu1ne of sand in transport 

per unit area of the bed, Pp is the particle density and Pb = pp(1- rJ) is the bulk 

density of the sediment in the bed where rJ = porosity of the bed. The porosity 

of a substance is the proportion of the non-solid volume to the total volume of 

material, in this case it is generally thought to be about 0.35. Q is the horizontal 

tnass flux of sand per unit width of flow. However Anderson assumed, as did tnany 

other people trying to tnodel sand ripples, that the amount of sand in transport is 

roughly constant over thne. This meant that the derivative of Vs with respect to 

thne vanishes in the above equation, leaving us with 

ah 1 aQ 
at -- Pb ax. (4.2.2) 

Thus the height of the bed is inversely proportional to the horizontaltnass flux. To 

1nake the following equations easier to read we define 

The horizontal1nass flux is given by 

ah 
ht=-, at 

op 
Pt =at· 

Q(x) = Q, + mp 1:a N.;(x)dx, 
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where Q8 is the flux due to grains in saltation, mp is the mass of a sand grain, a is 

the reptation length and Nej(x) is the number of grains ejected from the bed per 

unit time per unit surface length, at position x. Nej ( x) = nlNim ( x), where nl is the 

number of grains sent into reptation by one saltating grain impacting the bed and 

Nim ( x) is the number of particles in saltation that hit the bed per unit area per unit 

time, or the 'impact rate'. Anderson defined this to be 

N;m(x) =No [ 1 +::;]cos a, (4.2.4) 

where a and (3 are as defined in Figure 1 and N0 is the impact rate on a flat surface 

(a= 0). As tana = hx and cos �a�~� 1 for small a we get 

Q(x) = Q. + 17tp 1:a nzNo(l + hx cot (3)dx. ( 4.2.5,) 

This leads to the following expression for the mass flux 

Q(x) = Qo + qej cot (J[h(x)- h(x- a)], (4.2.6) 

where Qo = Qs + qeja and qej = mpnlN0• Q0 is the expected mass flux due to 

saltation and reptation and qej is the 'mass ejection rate' from a flat bed. Thus the 

continuity equation ( 4.2.2) becomes 

8h(x) = -(3* [8h(x) _ ah(x- a)] 
at ax ax ' 

(4.2.7) 

where {3* = (qej cot(J)(pb)-1. This version of Anderson's model chooses the prob

ability distribution of reptation lengths to be uniform which corresponds to the 

probability density being a delta function, p( a) = 6 (a - a) with a being the mean 

reptation length. However this is not a realistic distribution for the reptation lengths 

and so Anderson decided to include the probability density function, p( a), as a vari

able. Thus (4.2.6) becomes 

Q(x) = Qo + Qe; cot(31
00

[h(x)- h(x-a)]p(a)da. (4.2.8) 

Anderson found equations for the growth rate and translation speeds of bed per

turbations of various wavelengths by trying the solution h = h0 eik(x-ct) in ( 4.2. 7), 

where h0 is half the initial height from the trough to the crest of the ripple, k is the 
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wavenumber and c is the phase speed. This gave an equation in tenns of the phase 

speed 

(4.2.9) 

Splitting into real and hnaginary parts c = Cr + ci we get 

Cr = ,8*(1- cos(ka)), ci = ,B* sin(ka), (4.2.10) 

where Cr is the translation speed and ci/ ,B* is the growth rate. He found a 1naximum 

in the growth rate at the point ka = 1r /2 which gave the length of the ripple equal to 

four reptation lengths. Unfortunately he also found maxhna at every ka 1nultiple of 

21r (giving rise to successively shorter ripples of two reptation lengths, one reptation 

length, half a reptation length, etc ... ). This was due to the unrealistic growth 

of ripples caused by reptation happening on ripples upwind. He found that this 

behaviour was due to the assumption of uniform reptation lengths and that including 

a range of different lengths would da1np the growth of these shorter ripples. This is 

because the distribution in lengths allows reptations starting at the sa1ne point to 

land with similar probability on either side of the upwind ripples. This reduces the 

associated difference in size of the mass flux between the crest and the trough of 

these ripples. Indeed using (4.2.8) and choosing p(a) to be the probability density 

funcion of a gamma distribution, Anderson found his phase speed equations to be 

* 16ka 
ci = ,B [4 + (ka)2]2. (4.2.11) 

These equations produced a single maximu1n in the growth rate giving the length of 

the ripple equal to six reptation lengths, having successfully damped the shorter 

wavelengths. An exponential distribution, which is a specific case of a ga1n1na 

distribution, was also tried with shnilar results. 

Since the publication of Anderson's paper [4] it has since been suggested, [16] [28], 

that, as in aeolian sand ripples the reptation length is generally s1naller than the 

ripple wavelength, you could treat ripple formation as a local process and therefore 

Taylor expand the h(x - a) tenn in ( 4.2.6). Using this method Csah6k et al [16] 

found they could rewrite ( 4.2.6) in the fonn 

Q(x) = Qo +q.;cot,8[ahx- �~� hxx- �~� hxxx]. (4.2.12) 

Putting this into ( 4.2. 7) gave 
2 3 

ht = - ,B* ahxx - ,B* �~� hxxx - ,B* �~� hxxxx. (4.2.13) 
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The first term on the right hand side is responsible for the ripple instability. This 

is equivalent to the term that Anderson had in his model ( 4. 2. 9). However there 

are now two more terms, the second term, which represents drift and the last term, 

which is a hyperdiffusion term, that will dampen very short scales (terms with a 

big wavenumber). These higher derivative terms have the same effect on the growth 

rate as introducing a probability distribution and in fact the preferred growth rate 

is the same as the one Anderson found from ( 4. 2.11). 

Hoyle & Woods 

In 1997 an analytical model of propagating sand ripples was developed by Hoyle 

and Woods (28], which extended Anderson's model [4]. As well as reptation this 

model included the effects of rolling and avalanching. Their governing equation was 

similar to (4.2.2) but took the form 

8h = _2_ (aQhop + aQroll) ' 
at Pb 8x ax 

(4.2.14) 

where Qhop represents the hopping grains and Qroll the rolling or avalanching grains. 

The Q hop tern1 took the form 

aQ
8

hop = -ap 100 

p(a)[Nej(X, t)- Nej(X- a, t)]da, 
X -oo 

(4.2.15) 

where ap is the average cross sectional area of a grain. The evolution of the surface, 

at position (x, y), is proportional to the difference between the number of sand grains 

ejected from the bed, at position (x, y), and the number of sand grains entering the 

bed, at position (x, y). After Taylor expanding the Nej(x-a, t) term to first order 

the equation became 

(4.2.16) 

where a is the mean reptation length. The gradient of the hopping grains is inversely 

proportional to the gradient of the ejected grains. Hoyle and Woods defined 

hx + tan{J 
Nej(x) = J cos /3 (1 + hi)l/2, 

where J is a constant of proportionality. So their hopping term became 

8Qhop = {3* h (1 + hx cot /3] 
8x 1 xx [1 + (hx)2)3/2' 

128 

( 4.2.17) 

(4.2.18) 



where f3i = -Japa cos {3. 

When a stationary sand bed is tilted at an angle, grains near the surface of the 

bed may become unstuck and roll down the slope, due to a balance between gravity 

and friction [9). Over time this will have the effect of making the surface smoother. 

Thus the rolling tenn took the form 

Q F g . Fg hx 
roll = - -;:Sin a cos a= r (1 + (hx)2), (4.2.19) 

where g represents gravity, r friction and F is a constant of proportionality. If the 

sand bed is tilted too far then the nu1nber of rolling grains increases dramatically so 

that in effect the angle of the slope will not get any higher. The angle at which this 

happens is called the angle of repose, ar, and the increased nu1nber of rolling grains 

is known as an avalanche. However sand ripples are not stationary and Hoyle and 

Woods hypothesised that for a moving ripple there would be a different angle, less 

than or equal to the angle of repose, at which avalanching would occur. They called 

this the dynamic angle of repose, 'Y· This tied in with the previous observation that 

the top of the lee slope, near the crest, is roughly inclined at the angle of repose 

(55]. Consequently the rolling term (4.2.19) beca1ne 

g 2 hx 
Qroll = -Fr tan 'Y (1 + �h�~�)�(�t�a�n�2� 'Y- (hx)2)1/2. (4.2.20) 

Equation (4.2.20) shows that when the gradient of the slope approaches the dynamic 

angle of repose (tan2 'Y- (hx)2) --+ 0 and so the flux of rolling grains becomes very 

large. Conversely if the bed is flat then this term will disappear. Substituting the 

derivative of ( 4.2.20) and ( 4.2.18) into ( 4.2.14) gives 

8h ( * 1 + hx cot {3 - ) 82 h 
at = {31 [1 + �h�~�J �3 �1 �2� + D 8x2 ' 

(4.2.21) 

where D represents the evolution due to rolling and is given by 

This 1nodel also incorporated the concept of a shadow zone which was developed 

by Sharp [55]. Because the incoming saltating grains all arrive in a straight line at 

roughly the same angle there will be an area on the lee slope that will be shielded 

fro1n them by the sand bed itself. Consequently there is no saltation here and so 

hopping will not occur. This area is known as the shadow zone (see Figure 1) and 
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here the ripple evolves according to the equation 

8h 
(4.2.22) - = 

8t 

There is no contribution from the hopping term here and the ripple evolves due to 

rolling grains alone. This shadow zone controls the wavelength of the ripple. After a 

certain distance the incoming saltating grains will be able to hit the sand ripple again 

(see Figure 1). The model determines this point as the beginning of the stoss slope 

of the following ripple. From here on the ripple again evolves according to ( 4.2.21), 

until the next shadow zone. Hoyle and Woods found that they could simplify their 

model by making the assumption that lhxl �~� tan'Y rv tan30° and consequently 

(hx) 2 << 1. This led to the following equation for (4.2.21), which neglects terms of 

O(hx)2 and higher, except [tan2 7- (hx) 2], because both terms are of the same order 

of magnitude 

8h ( * Dtan
2
1 ) 8

2
h 

8t = /31 cos f3 + [tan21- (hx) 2]312 8x2 ' 
(4.2.23) 

where D = Faptan2 'Y(g/r). Equation (4.2.22) is similarly modified with 

(D tan2 1)(tan21- (hx) 2)-312 replacing D. 
Hoyle and Woods' model could predict qualitative features shown by sand ripples, 

such as a threshold value of saltation flux intensity below which ripples will not 

evolve. It also shows that at low saltation fluxes the lee slope is smooth but above 

a critical value a slip face develops near the crest, in accordance with observations, 

[9] and also with numerical simulations [5, 39]. A slip face is an area at the top 

of the lee slope that is maintained at a constant angle, roughly equal to the angle 

of repose, by avalanching. It is inclined at a steeper angle than the rest of the lee 

slope. A decrease in speed of propagation of the ripple, proportional to the size of 

the ripple, is predicted, consistent with observations that smaller ripples catch up 

to and merge with larger ones (55]. 

4.2.2 Two-species models 

A sandpile model 

In 1991 Mehta et al. [43] came up with the idea of using two parameters instead 

of just one to describe the evolution of sand piles. They used a system of coupled 

Langevin equations based on two coordinates representing the motion of indepen

dent particles (the macroscopic angle of tilt) and clusters (a variable which represents 
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the average extent to which clusters of particles protrude fro1n the surface). Sub

sequently [44] Mehta et al. chose the two variables to represent the local density 

of immobile grains (or 'height'), h(x, t) and the rolling grain density, p(x, t). This 

'two-species' model uses the idea that a ripple is actually made up of two layers of 

grains: a thin layer of flowing grains on top of the much thicker layer of relatively 

stationary grains that 1nake up the rest of the sand bed. Mehta's model was for 

deviations from hx = tan( ar) and now consisted of two partial differential equations 

that took the form 

ht - Dhhxx-T(h, p) + rJh(x, t) 

Pt - DpPxx + x(p(hx)-)x + T(h, p) + 7Jp(x, t), (4.2.24) 

where x represents the mobility of the sand grains, Dh and D P are diffusivities and 

'T/h(x, t) and rJp(x, t) are source terms which were taken to be independent normal 

rando1n variables (although it was acknowledged that the exact structure of these 

terms would depend on the physical situation). The term (hx)- was defined such 

that it would only be effective in the case where the gradient of the slope was greater 

than the angle of repose, so if this was true then (hx)- = hx otherwise (hx)- = 0. 

The term (hx)+ was also defined, to be effective if the slope was less than the angle 

of repose, in which case (hx)+ = hx, otherwise (hx)+ = 0. The first terms of (4.2.24) 

represent diffusion. In this model the diffusion terms represent the rearrangement 

of clusters (in the sand bed equation) and the relaxation of the flowing grains (in 

the flowing layer equation) which represents the collisions between the grains. The 

x(p(hx)-)x term represents flux-divergence (the variation in p due to non uniformity 

in the current of flowing grains), this only happens when the gradient of the slope 

is greater than the angle of repose. 

The T(h, p) term that appears in both equations is a transfer tern1 that models 

the exchange of grains between the sand bed and the flowing layer, it takes the form 

(4.2.25) 

In ( 4.2.25) the term J'i,Phxx only contributes in the presence of flowing grains and it 

is independent of the slope. The purpose of this term is to model the smoothing 

effect of the grains rolling down the slope. If hxx > 0 then there is a dip in the ripple 

and this term models the effect of the flowing grains in filling this in. Conversely 

if hxx < 0 then there is a bump in the ripple and this term models the effect of 
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s1noothing it out. The larger pis the more grains there are moving over the ripple 

and so the more effect this term will have. 

The v phx term smooths out deviations from the critical slope rather than changes 

in the curvature of the bed. If hx < 0 then the slope is steeper than the angle of 

repose and this term models the effect of grains from the flowing layer sticking onto 

the sand bed. If hx > 0 then the slope is shallower than the angle of repose and so 

grains from the sand bed are tipped out into the flowing layer. The larger p is the 

more grains there are moving over the ripple and so the more effect this term will 

have. 

The v(hx)- term models the effect of tilting a static sand pile, it is relevant even 

in the case where there are no flowing grains. Without this term a tilted static sand 

pile would not generate flowing grains. It only comes into effect when the gradient 

of the sandpile is greater than the angle of repose and models the effect of removing 

grains from the sand bed and tipping them into the flowing layer, reducing the 

gradient. This is because this term will be positive in the transfer term and so will 

decrease ht and increase Pt· 

The term Ap(hx)+ limits the number of grains transferred from the sand bed to 

the flowing layer when tilting occurs. It only comes into effect when the gradient of 

the sandpile is less than the angle of repose and models the effect of grains from the 

flowing layer sticking onto the sand bed. This is because this term will be negative 

in the transfer term and so will increase ht and decrease Pt· The larger p is the 

1nore grains will stick onto the sand bed. This is effectively an artificially imposed 

restriction required for accurate numerical simulations, as it prevents any grains not 

at the border of the sand bed and the flowing layer from transferring between the 

layers. 

The v phx term has a similar effect to a combination of the last two terms and was 

removed when the model was refined by Hoyle & Mehta (30]. The main difference 

was that the tipping out of grains from the sand bed was allowed in the absence of 

any flowing grains. This was the main difference between Mehta's model and the 

hydrodynamic model proposed by Bouchaud ·et al (11] 

A hydrodynamic model 

The hydrodynamic model developed by Bouchaud et al. in 1995 (11] used the same 

variables, h and p, as [ 44], as they believed them to be more directly related to the 

physics of the problem. This model has become known as the BCRE model, after 
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its authors. The governing equations of their system take the form 

ht - -T(h, p) 

Pt - DpPxx-VPx + T(h, p), 

where v represents drift velocity and 

T(h, p) = -p(chx + �~�h�x�x�)�,� 

(4.2.26) 

( 4.2.27) 

(4_.2.28) 

where c, �~� > 0. This transfer term has four properties: a) a static grain will not 

move unless dislodged by an already 1noving grain, b) grains will not be dislodged 

unless the slope of the sand pile exceeds a critical angle associated with the angle 

of repose, ac, as this model is for deviations from a slope at the angle of repose, 

so no angles are required in the formula, c) if the slope does not exceed ac then 

grains currently in motion will tend to come to rest on the bed, beco1ning static, 

d) if hx = ac but hxx f 0 then smoothing of the surface takes place, at a rate 

proportional to p. Unlike [44] a static sand pile will not generate flowing grains. 

When a static sand pile is perturbed slightly, it will evolve for a short period before 

all the grains co1ne to rest and the sand pile returns to a static state (although in 

a new configuration). This effect is com1non in powders and is important in the 

context of this 1nodel. Nu1nerical simulations showed that a static sand pile with 

a constant flowing grain density p0 on a fiat bed would move uphill with velocity 

vh = cpo. 

4.2.3 Two-Species models for aeolian sand ripples 

Hoyle & Mehta 

The models by Bouchaud and Mehta were not designed specifically for the case of 

aeolian sand ripples, but since the publication of these papers 1nany two-species 

1nodels for aeolian sand ripples have been suggested such as in Mehta's own work 

with Hoyle, [29, 30]. This model combines their previous work, [44, 28], to produce 

a two-species continuum 1nodel for aeolian sand ripples. It extends [28] to include 

transfer tenns similar to those in [44] and uses the same two-species structure. Their 

second 1nodel, [30], was deemed to be the most parshnonious model and took the 

form 

ht - Dhhxx-T(h, p) + f(x, t) 

Pt - Dpp,, + x(ph,), + T(h, p) + 1 p(a)f(x-a, t)da, 
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where x > 0 and f(x, t) = apJ cos ,B(hx+tan ,B). The f(x, t) is equivalent to equation 

( 4.2.17) from [28], but without the bottom half of the fraction i.e. neglecting terms 

of O(h;). The x(Phx)x term represents flux divergence and is similar to the term in 

(44], but it is valid whatever the gradient of the slope is. The transfer term is given 

by 

(4.2.31) 

with A, v positive constants. This is similar to the transfer term in [44]. If the 

gradient of the sand bed is less than the angle of repose then the transfer term 

acts like the Ap(hx)+ term in [44] by modelling the effect of grains from the flowing 

layer sticking onto the sand bed. In this case the transfer term will be negative as 

lhxl < tanar and so it will reduce Pt and increase ht. If the gradient is greater than 

the angle of repose, but less than the dynamic angle of repose, then the transfer 

term acts like the v(hx)- term in (44] by modelling the effect of tipping grains out 

of the sand bed into the flowing layer. In this case the transfer term will be positive 

as I hx I > tan ar and so it will reduce ht and increase Pt· However in this model 

this term also includes the effect of avalanching by dividing by (tan2 "Y- (hx)2) 112, so 

that as the gradient of the slope approaches the dynamic angle of repose the transfer 

term will tend to infinity. In their first model, [29], Hoyle & Mehta also included 

-11-phxx in the transfer term in comparison with [44], but later, after carrying out 

numerical simulations, decided that this term did not have a significant effect on 

the evolution of the ripples. 

The model was then non-dimensionalised using 

where 

Dh xo---
- apJ cos,B' h 

_ Dh tan'Y 
o- ' apJ cos,B 
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Thus dropping the tildes the model equations ( 4.2.29, 4.2.30) became 

ht - hxx- ](x, t) 

_ { p cot O:r tan .B(Ihxl -cot ')'tan a,.) if 0 ::;; I hx I ::;; .cot I' tan ar 

v*(lhxl- cot')'tanar)(1-(hx)2)-112 if cot ')' tan ar ::;; I hx I ::;; 1. 

(4.2.32) 

Pt - �~�P� Pxx + x*(phx)x + ho 1 p(a)f(x-a)da 
h Po 

ho { p cot a,. tan .B (I hx I - cot ')' tan O:r) if 0 ::;; I hx I ::;; cot ')' tan ar 
+ 

Po v*(lhxl- cot')'tanar)(1-(hx)2)-112 if cot ')'tan ar ::;; I hx I ::;; 1. 

(4.2.33) 

where 

/(x, t) = hx +cot ')'tan/3, * vt0 
1J = ho' * xho 

X= Dh. 

From these equations it can be seen that a steady state exists when p = 1 and 

h =he, where he is any real constant. 

Perturbing the equations by setting p = 1 + p*eut+ikx, h = he+ h*eut+ikx and lin

earising they found two growth rates 

-h0 tan/3 cot')', 

(a - �~�:�X�*� -1) k2
. 

(4.2.34) 

(4.2.35) 

Thus they deduced that in order to see ripples evolve from a flat bed they needed 

to satisfy the condition a> p0h01x* + 1. In dimensional units this is equivalent to 

This gave a strength of saltation flux at which ripples will evolve 

J. 
DhA tanar 

e> (3' . (3' aap cos /\tan ar - xap Sln 
(4.2.36) 

which corresponds to the value found in [28]. This model is able to predict the ripple 

wavelength and speed. Numerical simulations were then undertaken using this model 

and they showed the evolution of realistic ripple profiles from a perturbed flat bed. 

The shnulations showed that, after a short period, where the initial perturbations 
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decayed away, ripples began to form on the surface. Over time the shorter ripples 

'caught up' to and merged with the larger ones until eventually there was only one 

ripple left. Also it was noticed that the stoss slope was longer and shallower than 

the lee slope. However they noticed that if their avalanching term was left out 

(by setting v = 0 in their equations) then this was not the case. Instead the ripples 

looked more symmetrical and the lee slope was shallower than the stoss slope, which 

does not agree with observations (55], suggesting that avalanching is important for 

the development of realistic ripple profiles. 

Prigozhin 

At the same time similar work was being undertaken by Prigozhin [51]. He developed 

a deterministic continuous model in order to describe better the essential physics. 

His 1nodel, which left out diffusion terms, took the form 

T(h, p)- f 2(x, t), 

Pt - -jx- T(h, p) + Q(x, t), 

(4.2.37) 

(4.2.38) 

where j = -xphx, Q(x, t) = JY !2(y, t)p(y, x)dy, !2(x, t) - fo sina(sin/J)-1, fo 

being the rate of erosion for a flat surface, and where p(y, x) is the probability 

density function of the hop lengths, which Prigozhin approximated by a normal 

distribution, p(x, y) r-.J N(x0 + m, a;), where x0 is the ejection point, m is the mean 

reptation length and a; is the variance of the reptation length. The transfer term 

is given by 

( lhxl2 
) T(h, p) = ""oP 1- 2 • 

tan ar 
(4.2.39) 

This is similar to the transfer term of (30) in the case where the gradient of the 

slope is less than the angle of repose, but here the gradient term is squared. This 

makes mathematical analysis easier. So when the gradient of the sand bed is less 

than the angle of repose the transfer term is positive and so this has the effect of 

increasing ht and decreasing Pt (grains from the flowing layer stick to the sand bed). 

If the gradient of the sand bed is greater than the angle of repose then the transfer 

term is negative and so ht is decreased and Pt is increased (grains are tilted out of 

the sand bed into the flowing layer). This model does not account for the case of a 

dynamic angle of repose, but considers that rolling grains will not stop at all if the 

gradient of the slope exceeds ar. Prigozhin also accounts for the shadow zone by 
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- - - --- --------1 

setting f 2(x, t) = 0 where the bed is shielded fro1n the incoming saltation flux. 

The 1nodel was non-dimensionalised using 

t =Jot 
L' 

- 1 x=-x 
L' 

- 1 
h=-h 

L' 

Dropping the tildes this gave 

j 

T(h, p) 

fo 
-pt 
ri,oL 

- 1 
f =!of, 

- 1 
j = foLj' 

- -vphx, 

- p ( l- JhxJ
2 

) , 
tan2 ar 

- -Jx +Q-T. 

However fo/ ( ri,oL) « 1 and so the small tenn was neglected giving 

Jx =Q-T. 

(4.2.40) 

(4.2.41) 

(4.2.42) 

( 4.2.43) 

Linearising the equations gave T(h, p) = p, / 2 = 1 +cot f3hx. Thus putting these 

linearised tenns into ( 4.2.37) gave an equation for p 

p = 1 + ht + cotf3hx. (4.2.44) 

By setting m = 1 - 'ITI1Lx and expanding the probability distribution in terms of 

p0(x), the density of the standard nonnal distribution N(1, O";), to give p(x, y) = 

Po(Y-x) + mpo'(y-x)hx, Q can be linearised to give 

Q = 1 + cot(Jpo * hx + mpo' * hx, (4.2.45) 

where * is the operator of convolution. Putting these values for j, Q and T into 

( 4.2.43) and linearising gave 

(4.2.46) 

This allowed Prigozhin to find the growth rate for his model, by substituting in the 

solution h = eat+ikx to get 

(J = -vk2 +cot (Jik(ffo- 1) - mk2p'Q, (4.2.47) 

where p0 = exp( -k20"¢ /2- ik) is the Fourier transform of p0• He noted that this was 

the same as Anderson's growth rate in the case where v = m = 0. Prigozhin found 

that initially, the ripple wavelength would be 21r / k0 where k0 is the wavenumber 
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which gives a positive maximum for the real part of (4.2.47). He found that this 

maxilnum existed and that ripples would form if 

cot{3 > m + v. (4.2.48) 

Numerical simulations showed that Prigozhin's model also produced the skewed 

ripple shape (the stoss slopes being less steep than the lee slopes) and the ripple 

merger effect seen in [28]. When a small ripple merges with a larger one it was 

found that, if the small ripple was sufficiently big, then instead of just merging an 

even smaller ripple would emerge from the front of the larger ripple, which itself had 

gained in mass. It was felt that this interaction may explain the similar phenomenon 

of small secondary ripples appearing during wind tunnel experiments [54], instead 

of the suggestion put forward by that paper that it was due to the backward eddy 

flow behind a ripple. Prigozhin felt that this was a doubtful explanation due to the 

shallowness of sand ripples producing negligible amounts of backwards eddies that 

could not cause sand grains to saltate against the direction of the wind and thus 

could not create sand ripples. 

A two-species model with wind 

In 1998 Bouchaud along with Terzidis and Claudin extended his model [11] to ac

count for the effect of an external wind acting to dislodge particles from the static 

bed (59]. Their governing equations take the same form as (4.2.26), the difference is 

in the form of the transfer term, which they define as T(h, p) = Tej +Tdep, where Tej 

represents the ejection process of grains (either in saltation or reptation, the model 

uses an averaged quantity of the two) and Tdep the deposition process. The ejection 

process depends on wind velocity and is given by 

(4.2.49) 

where the ai depend on wind velocity. They note that a 0 will only be non-zero if 

the wind velocity is strong enough, greater than some value v*. This form allows 

for sand grains to be ejected from the bed, even if there are no flowing grains. The 

minus sign in front of the second derivative models the fact that grains are more 

likely to be ejected at the crest of a ripple than in a trough. The deposition process, 

which will include the effect of the incoming saltating grains and the reptating grains 

coming to rest, is dependent on the wind velocity and the slope of the ripple, it takes 
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the form 

(4.2.50) 

where 'Yo is negative for small wind velocities, less than v* and positive for wind 

velocities greater than v*. The "/l term is positive as it 1nodels the case that more 

grains are ejected by saltation than come to rest. Similar to a 2, 'Y2 is positive as it 

again models the case that grains are more likely to move at crests than troughs. The 

(31p2 term describes the non-linear effects associated with the deposition process such 

as the collision between grains in 1notion leading to dissipation and thus reducing 

the effectiveness of the hnpacts on the sand bed, or the fact that the flowing layer 

will screen the hydrodynamical flow thus reducing the transfer of energy between 

the wind and the saltating grains . Thus the transfer term can be written as 

(4.2.51) 

Valance & Rioual 

Subsequently a new interpretation of this model was proposed by Valance and Rioual 

[60]. Their model was similar to [59], but they decided to 1nake the distinction 

between saltation and reptation. They considered that as the number of saltating 

grains remains approximately constant, they can be treated as such. Their only 

purpose is to provide energy for the syste1n. There is no transfer of grains between 

saltation and reptation, only between static grains on the sand bed and the grains 

in reptation. The governing equations are again the BCRE equations, (4.2.26), but 

without the diffusion term, D pPxx, which they dee1ned unnecessary. The transfer 

term has a shnilar setup to that of [59], T(h, p) = Tej + Tdep, but they split the 

ejection process up further, Tej = T:i + T;j, where T:i represents grains ejected due 

to the impact of the saltating grains and �T�~�j� represents grains ejected due to the 

wind force. They define these, in general, to be 

(4.2.52) 

similar to [59], where the ai and f3i are positive constants. Using the formula for 

the number of ejected grains 

(4.2.53) 

where nt is the number of grains sent into reptation by one saltating grain impacting 

the bed and d is the grain diameter, they decided that a0 = ntd3 J tan (3 and a1 = 
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cot {3 While simulations have shown that dislodgement of grains by the wind is 

relatively unimportant, [4], they felt that at the crests of ripples there would be a 

significant effect. They felt that even if the wind was not very strong it would still 

have some sort of smoothing effect and thus decided to include the second derivative 

term Tej = - {30{32hxx. The deposition process is given by 

(4.2.54) 

where this equation defines 1* and (1'*)-1 represents the time a sand grain is moving 

in reptation. The reptation length can be defined as a= V I/o, where Vis the mean 

speed of reptating grains. The first derivative term shows that the reptation length 

on the stoss slope will be longer than on the lee slope. The second derivative term 

shows that the reptation length of a grain at the crest of a ripple will be longer than 

a grain at the trough. The 1'o1 term represents the time a grain is in motion on a 

flat bed. Putting this together, the equation for the transfer term is 

T(h, p) = ntd3 J tan /3(1 +cot f3hx + a2hxx) + f3of32hxx - P/o(1 - llhx + 1'2hxx) · 

(4.2.55) 

Linearising their system around h = h0 (representing a flat bed) they found the 

steady-state Po = aollo· By setting h = h0 + h*e(ut+ikx) and p = p0 + p*e(ut+ikx) 

they found an equation for the growth rate of their system 

_ _ l 'k lopo(al + /l)ik + lopo(a2 + 'Y2)k2
- ({30{32)k2 

(j - /o 02 1 + l0ik ' (4.2.56) 

where l0 = VI lo· They found that modes of long wavelength, relative to the rep

tation length, will dominate. Therefore it can be expected that these modes will 

dominate the nonlinear dynamics near the ripple formation threshold. Thus the 

growth rate can be written as 

where E = a0IV. Close to the point where ripples start forming E �~� 1 (as it 

corresponds to a0 << V which implies that the wind is not strong enough to sustain 

saltation) and it is found that 

Re( (j) rv 'YoE( a1 + �'�Y �1 �)�l�~�k �2� 
- zgzck\ 

I m( (j) rv �!�o�l�~�l�c�k �3 �,� 
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where lc = (30(32/V. They found that the fastest growing wavelength was 

27f = 27f 
k 

(4.2.60) 

In 2000 Valance and Rioual, together with Csah6k and Misbah produced a paper 

extending their ideas of the hydrodynamic model [16]. They believed that while the 

Anderson 1nodel [4] is good for modelling the start of the ripple instability it should 

not be used to predict the following non-linear behaviour of the sand bed, which they 

attempted to consider in their model. Here, instead of defining nz to be constant, as 

Anderson did [4], they decided that it would depend on the curvature of the sand 

bed. Thus they defined the nu1nber of grains ejected per impact to ben= nz(1-crt.) 

where K. represents the bed curvature and cis a constant of proportionality. So 

r:i - d3nz(l- crt.)Nimp 

3 ( hxx ) (1 + hx cot (3) 
- d nzNo 1 - c (1 + h;)3/2 (1 + h;)l/2 . (4.2.61) 

Which can be written in a form similar to before 

(4.2.62) 

where a 0 = d3nzN0, a1 = cot (3, a2 = c, a3 = 1/2, a4 = c cot (3. In this paper they 

also define two situations. The first situation is where there is only a slight wind, 

where the equations remain the same as in [60] (with the new r:j term) and the 

second is when there is a strong wind, in which case they feel that the inco1ning 

saltation flux will be dense enough to dampen the effect of the wind near the sand 

bed. In this case they o1nit the �T�~� term. 

4.3 Numerical Models 

Not all research has concentrated on producing analytical models, many numerical 

1nodels have also been suggested. While the analytical models are mathematically 

1nore interesting because they allow for prediction of tenns such as the ripple wave

length and growth rate, it is difficult to use thmn to generate shnulations of ripples. 

The nu1nerical models are generally designed specifically with the idea of creating a 

computer programme to shnulate ripple evolution over thne while analytical models 

generally have to be discretised in order to produce a working computer programme, 

141 



in effect converting them to numerical models. Thus it is inevitable that some of 

the accuracy of the analytical models will be lost in this conversion. It is also worth 

noticing that numerical models tend to produce more stable and realistic simulations 

than analytical models. However this is mostly due to the fact that the stability is 

artificially built into the system. 

An aeolian sand ripple model 

One of the most important numerical models was produced by Nishimori and Ouchi, 

[48). This model is a discrete model in both space and time and is a kind of coupled 

map lattice model, as it has a continuous variable representing the averaged surface 

height at each site. This model incorporates both saltation and reptation. The 

saltation step is defined as 

hn' (x, y) - hn(x, y)- q, 

hn' (X + L( hn (X, Y)), Y) - hn (X + L( hn (X, Y)), Y) + q, 

(4.3.1) 

(4.3.2) 

where h(x, y) is the height of the sand bed at position (x, y) and q is the amount of 

sand transferred from position (x, y) to (x+L, y). In this model a full time step from 

n to n + 1 consists of both the saltation and reptation steps, hence after the saltation 

step we are at a time n' between n and n + 1. Contrary to most of the analytical 

models they do not treat the saltation flux as constant. In fact they assume that 

the saltation length, L(h(x, y)) is dependent on the take-off position of the grain, 

they use the following approximation 

L = Lo + bhn(x, y), (4.3.3) 

where x is the take-off position, L0 represents the force of the wind and b is related to 

the average wind velocity a grain experiences in flight, this is treated as a constant, 

due to problems associated with calculating it. This equation basically shows that 

the higher the grain is at take-off, the further it will travel in saltation. Their 

reptation equation takes the form 

hn+I(x,y) = hn'(x,y) �+�D�r�[�~� 2:hn'(x,y) + 
1

1

2 
2:: hn'(x,y)-hn'(x,y)] ,(4.3.4) 

6 
NN NNN 

where �~�N�N� h(x, y) is the sum over the nearest neighboring sites of (x, y) and LNNN 

is the sum over the second nearest neighboring sites (on a two dimensional lattice 

the nearest neighboring sites are the eight squares surrounding the ( x,y) square 
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and the second nearest neighboring sites are the sixteen squares surrounding them). 

This equation relaxes the local height of the ripple at a speed dependent on the 

convexity of the sand surface, Dr being the rate of relaxation. This form of the 

equations 1nakes it easier to conduct numerical shnulations to observe the evolution 

of the ripples over time. They ran many simulations from a perturbed flat bed, 

while varying the para1neters L0 and Dr. They found that the syste1n evolved into 

ripples when they set Dr = 1.5 and L0 = 5.0. When they fixed Dr = 1.5 and 

varied L0 they found that there was a threshold value of L0 below which ripples 

did not form. Above this there was a practically linear relationship between L0 

and the wavelength of the ripples. Varying both parameters they found that there 

was a threshold value of Dr, which depended on L0 , above which ripples would not 

develop, but that ripples would appear if L0 was big enough. To investigate these 

results Nishhnori and Ouchi actually turned their discrete system into a continuous 

one 

(4.3.5) 

where N is the outgoing sand flux, 'T/ is the x coordinate of the take-off point of sand 

grains which land at x and A is a constant of proportionality. Using the solution 

h = exp (at+ ikx) and the fact that 'T/x = (1 + L11 ) -l rv 1 - L11 they got the following 

formula for the growth rate 

(4.3.6) 

Looking for a positive growth rate, they found that there was a critical value of 

L0 , that depended on Dr, at which the two graphs y = ANej(x)bsin(kL0) and 

y = Drk intersected. This is the threshold value for ripple formation. At higher 

values of L0 you get 1nultiple intersections. They hypothesised that the wavelength 

corresponding to the maximum growth rate increases in proportion to L 0 , which 

would be consistent with Bagnold's observations [9]. Thus for their model the ripple 

wavelength was determined by the saltation length, whereas in the Anderson model 

[4] and most other analytical models the wavelength is determined by the reptation 

length. Also the ripple wavelength is of the sa1ne order of magnitude as the saltation 

length which is contradictory to previous work. 

Csah6k et al [16] say that the way of describing the saltation in this 1nodel should 

be seriously questioned. They argue that it is a problem that this 1nodel does not 

deem the ejection of grains due to saltation hnportant enough to include, despite 
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evidence to the contrary [9], and also that the variation in saltation lengths due to 

the take-off position has never been verified by experiments, so should not be used. 

Csah6k et al., [16] wrote Nishimori and Ouchi's equations in the form 

8h _ ___!__ (8Q8 + 8Qrep) 
at p9 8x ax 

3 8ry a2h 
- -d (N8 (x)- Bx Ns(1J)) +Dr ax2 , (4.3.7) 

where N8 is the saltating grain flux. To leading order, where N8 is constant this 

gave 

(4.3.8) 

Thus they found the growth rate to be 

(4.3.9) 

and the critical value of L0 to be Lc = 31fDr/(2bd3N8 ). 

In 1997 Nishimori produced a simple computational model for sand dunes [50], 

showing the evolution of dunes and the different types that were produced depending 

on the direction of the wind and whether this changed during the simulation. 

A model for particle size segregation 

Two years later Nishimori & Ouchi proposed a second model [49] in which they 

investigated particle size segregation, the phenomenon where heavier sand grains 

gather at the crest of a ripple while the lighter ones gather in the trough [53]. To do 

this they used cellular automata (CAs). Cellular automata are dynamical systems 

in which state, time and space are all discrete. They split the area you are looking 

at into many 'cells'. Each cell has different states it can be in (e.g dead or alive, 

child or teenager or adult) and there exist a set of rules that govern the transition 

from one state to another. At each time step the state of a cell will depend on its 

closest neighbours. They have been used for studying many physical and chemical 

pheno1nena. For the specific case of sand ripples Nishimori and Ouchi decided 

that each cell could be in one of three states, to represent grain size: 'l/Jo, which 

represents the cell just containing air, 'lj;1, which represents light sand grains and 'lj;2 

which represents heavy sand grains. They wrote 

(4.3.10) 
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where Sf,j represents the state of the cell at position ( i, j) at time t, i being the 

horizontal index and j being the vertical index. They use two rules to determine the 

change in state of the cells: saltation and reptation. The first rule is very similar to 

their saltation length from their previous paper (4.3.3), na1nely 

L = L0 + b
1

h(i), . (4.3.11) 

where b
1 = b / mi,j and where mi,j = �'�l�j�;�~� represents the mass of a grain. This alteration 

accounts for the fact that the saltation length of a light grain will be longer than the 

saltation length of a heavy grain. Also for this paper they set L0 = 0 and defined 

hma:c 

h(i) = L uSf,j, (4.3.12) 
j=l 

where hmax is the vertical system size and 

{ 

0, Sf,j = 'l/Jo 

a= 1/ Sf,;, SfJ = 1/Jt, �'�1�/�J�~�.� . 
(4.3.13) 

Thus the change of state due to saltation is given by 

tl 
si,h( i) = 'l/Jo, 

I 

st+L,h(i+L)+l = s;,h(i), 

h(i) = h(i)- 1, h(i + L) = h(i + L) + 1, (4.3.14) 

with t' being between t and t + 1. They assu1ne that every grain on the surface 

of the sand bed will be drawn into saltation at each thne step. To define surface 

reptation they use 

h( i) - h( i + 1) = e, (4.3.15) 

the height gradient. If B exceeds a critical value Be then the upper grain falls to 

an adjacent site. Thus () is like the maxhnu1n angle of repose, but for a single 

grain. Again they only consider the rolling 1notion of reptation and not the hopping, 

although the length scale of their saltation flux is co1nparable to a hop length. The 

change of state due to reptation is given by 

st+l _ 'l/J 
iout,h(iout) - 01 

I 

�s�~�+�l� . = �s�~� . 
�~�i�n �1 �h�(�~�i�n�)�+�l� �~�o�u�t�,�h�(�z�o�u�t�)�'� 

h( iout) = h( iout) - 1, (4.3.16) 
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where 

iout = { z, e > 0 

i + 1, e < o 
iin = { i + 1' e > 0 . 

i, e < o 

There are different values of Be depending on the size of the grain 

if s "'' iout,h(iou.t) = o/1 
(4.3.17) 

if s "'' iout,h(iout) = o/2 

As heavy grains would generally be harder to dislodge than lighter grains they set 

82c > 81c. They used the total potential energy (TPE) to measure the extent of 

particle size segregation. If heavy grains end up at higher positions than where they 

started then the TPE �~�i�l�l� increase. It is also a measure of the 'roughness' of the 

ripple. TPE is the sum of the potential energy of every grain in the system 

TPE= �~�~�m�i�,�j�g�j�,� 
j 

where g is acceleration due to gravity. It can also be written continuously 

TPE= 1N 1h xp(x,z)gzdzdx, 

(4.3.18) 

(4.3.19) 

where p is the mass density of the ripple and x is the horizontal position on the 

ripple, which goes from 0 to N. They assume that p is constant which gives 

TPE = �~�p�g� {N h2(x)dx. 
2 lo (4.3.20) 

The height, h(x), was split into the average height, hand the deviation, oh(x) giving 

h(x) = h + 5h(x). Thus by assuming mass conservation (integral of deviation= 0), 

they found that the variation of the TPE between a rough and flat surface was 

5(TPE) - TPErough-TPEflat (4.3.21) 

- 1 [1N- 2 lN -2 ] 2pg 0 (h + oh(x)) (x)dx- 0 h dx (4.3.22) 

- 1 1N 
2

pg 
0 

(oh(x))2(x)dx ;:::: 0. (4.3.23) 

However if p is not constant then it is possible for the TPE to become lower than 

the TPE of a flat surface, despite an increase in the roughness of the system. Using 

146 



p as an average value of the heavy and light grains they use �~�T� P Eseg = T P E(p) -

T P E(p) as an index for particle size segregation. 

They started simulations with a perturbed flat bed h = h0 + 8 and a ratio of heavy 

to light grains of 2 : 8 which are randomly distributed. They noticed that there were 

four types of dyna1nics that their CA 1nodel could be classified into, corresponding to 

whether there was a difference between heavy and light grains in i) the saltation and 

the reptation dynamics, ii) the reptation dynamics only, iii) the saltation dynamics 

only or iv) no change in the dyna1nics of either. They ran simulations for all four 

types to see which ones had the greatest effect on particle size segregation. They 

found that ii), the difference in creep dynamics, was the best at splitting up the 

heavy and light grains. As the crest of the ripple is the most unstable place they 

deduced that this is where segregation takes place, with the heavier grains being 

able to stay at the crest of the ripple longer than the lighter grains. 

4.4 Locality vs nonlocality 

One of the most controversial questions in tllis field is the question of locality vs 

nonlocality, or whether the dynamics of a given region depend on that of a region 

that is located at a distance which is significantly further away than the wavelength 

of the ripple. If this is true then it can be said that the sand surface dynamics are 

nonlocal. Opinion is divided on this question and more specifically on how much 

influence the saltation process has on the ripple dynamics. It is not disputed that 

the saltation length is much larger than the ripple wavelength and as such infor

lnation is being passed between two quite distant points, suggesting the importance 

of nonlocality. However it has been shown [4] that reptation is the driving force 

behind ripple evolution and these grains 1nove on a much shorter scale, generally 

several times s1naller than the ripple wavelength. There are two 1najor argu1nents 

against nonlocality as sum1narised in [16]: 1) the saltating grain population hits the 

sand bed at roughly the same angle everywhere along the bed [9], thus when they 

hnpact on a region there is no way to distinguish two grains that come from two 

different areas of the sand surface; 2) when a grain is extracted from the bed, thus 

becoming a saltating grain, it is transported by a turbulent flow where at such a 

high Reynolds nu1nber the length at which two particles stay together is so small 

that during saltation the grains 'lose the me1nory of where they came fro1n'. Using 

these two facts it is argued that it is difficult to believe that saltating grains provide 
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any effective interaction between the topography of two distant regions on the sur

face and thus it is difficult to be in favour of nonlocality [16]. Thus the argument 

against nonlocality is effectively that saltating grains serve merely to bring energy 

into the system, as they exchange very few grains with the reptating population, 

and so ripple formation depends basically on the local topography of the surface and 

the information is propagated only by the reptating grains. However, [51] argues 

that introducing the concept of a shadow zone into the model (the area on the lee 

slope that saltating grains cannot hit) introduces nonlocality. Also in models such 

as [29] the inclusion of the term that is an integral over the hop lengths taking the 

form f ( x-a), thus incorporating information from a large part of the sand bed, also 

introduces nonlocality. Although it can be argued that a Taylor expansion of this 

integral will give an adequate description, provided that the average hop lengths are 

small. This would give a local equation. 
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5 
A three dimensional analytical model of 

propagating sand ripples 

5.1 Introduction 

Here we atte1npt to extend Hoyle & Woods analytical model of sand ripples [28] to 

three dimensions. We now include two horizontal axes, x and y as well as a vertical 

z axis. We are effectively treating the sand bed as a plane. 

5.2 Hopping 

The number, N(x, y, t), of sand grains ejected per unit time, per unit surface area, 

from the surface at position ( x, y) on the sand bed, at time t, is proportional to the 

flux of saltating grains perpendicular to the surface at that point, lh: 

N(x, y, t) = Jih = -J(I · n), (5.2.1) 

where n is the unit upward nonnal vector to the ripple surface z = h(x, y, t), I is 

the inco1ning saltation flux, ( 1x, JY, Iz) and J is a constant of proportionality. To 

work out Ih we first need to find I· n. The nonnal to the suTface is 

and so 

\7(z- h(x, y, t)) 
n -

- l\7(z- h(x, y, t))l' 

-l·n -
JX( -hx) + JY( -hy) + JZ 

(1 + h; + �h�~�) �1 �1 �2� 

Therefore the equation for the number of sand grains ejected is 

-JXhx + JYhy-JZ 
N(x, y, t) = J (1 + h; + �h�~�)�l�/�2� . 
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Jz = -Isinp 

Figure 5.1: The incoming saltation flux, showing the impact angles, {3 and B. 

From Figure 5.1 we see that we can rewrite (5.2.2) as 

N( ) I jhx cos /3 cos()+ hy cos {3 sin()+ sin {3 
x, y, t = (1 +hi + �h�~�)�l�/�2� ' 

_ Jhx cos()+ hy sin()+ tan {3 
(1 +hi + �h�~�)�l�/�2� ' 

(5.2.3) 

where J = I J cos {3 . Assume each sand grain hops a distance a in the x direction 

and a distance b in the y direction, with the joint probability density function p( a, b), 

where 

11 p( a, b) da db 1. (5.2.4) 

Define 

0:= 1 ap(a)da and b = 1 bp(b) db (5.2.5) 

to be the mean hop lengths in the x and y directions respectively. Also remember 

that the marginal distributions of a and b are 

p(a) = 1 p(a, b) db and p(b) = 1 p(a, b) da. (5.2.6) 
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The net number, 8n(x, y, t), of sand grains arriving in the area between (x, y), (x + 
8x, y), (x, y + 8y) and (x +ox, y + 8y), in time ot, is the difference between the 

number hopping in and the number hopping out 

On(x, y, t) = { -11 p(a, b)[N(x, y, t)- N(x- a, y- b, t)] dadb }oxOyOt. (5.2.7) 

The change in surface elevation 8h(x, y, t) in time ot is given by 

8x8y8h(x, y, t) = av8n(x, y, t), 

where av is the average volume occupied by a sand grain in the ripple. 

Combining equations (5.2. 7) and (5.2.8) gives 

ah fj at (x, y, t) = -av }b a p(a, b) [N(x, y, t) - N(x- a, y- b, t)] da db. 

(5.2.8) 

(5.2.9) 

We can now expand the integrand in equation (5.2.9) as a Taylor series in a and b. 

We may truncate this Taylor series at first order, as we assume that the gradient 

N(x, y, t) varies slowly, except at the troughs and crests, (l\7 Nl << 1/a, 1/b) thus 

higher order terms are negligible. Applying this to equation (5.2.9) gives 

�~�~�(�x�,�y�,� t) - -a.{ 11 �a�p�(�a�,�b�)�~�~� (x,y,t) dadb+ 11 bp(a, b): (x,y, t) dadb} 

- �-�a�.�{�~�~�(�x�,�y�,�t�)� 1 a 1p(a,b)dbda+ �~�~�(�x�,�y�,�t�)� 1b 1p(a,b)dadb}. 

To leading order and using (5.2.6) we get 

C:::(x,y,t) = �-�a�.�{�~�~�(�x�,�y�,�t�)� 1 ap(a)da+ a;:(x,y,t) 1bp(b)db}. 

Then using (5.2.5) we get 

oh { aN -aN } at (X, Y, t) = -av 7i ax (X, y, t) + b ay (X, y, t) . (5.2.10) 

Now we need to work out the partial derivatives of N(x, y, t). We get these from 

equation (5.2.2). Let us define 

U - pc hx + JY hy - JZ 

v - 1 + �h�~� + �h�~�.� 
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Then 

8N 
ox 

J(Ixhxx + �J�Y�h�y�x�)�V�~�- �J�u�v�-�~�(�h�x�h�x�x� + hyhyx) 
.v 

_ J {(I" h.,,+ JYky,)v-! - �u�v�-�~� (h,h,, + hyhy,)} 

- �:�~� { (l"'h.,., + JYhy.,)V-U(h,,hx., + hyhyx)} 

- �.�:�~� { (J"h,,(1 + h; + h;) + JYky,(1 + h; + h;)- h.,h.,.,(I"(h.,) + JY(hy)-F) 

-hyhy.,(l"(h,) + JY(hy)-F)}· 
Noting that the 1x hxxh; and JY �h�y�x�h�~� terms cancel and rearranging we arrive at the 

formula 

�~�~� = ;j { h,,[/"(1 + h;)- h.,(JYhy -J")j + hy.,[JY(1 + �h�~�)�- hy(Fh., -/")] }· 

(5.2.13) 

Similarly we find the partial derivative of N(x, y, t) with respect toy to be 

a:= �.�:�~� { hyy[JY(1 + h;)- hy(rh, -/")] + h,y[I"'(l + h;)- h,(JYhy -/")] }· 

(5.2.14) 

Substituting equations (5.2.13) and (5.2.14) into equation (5.2.10) and rearranging 

we get 

: - - �~�{� { (1"(1 + hZ)- h,(JYhv-F)) (ah,, + bh,v) 

+ (JY(1 + h;)- hy(I"h, -I")) (ahyx + bhyy) }· 

We can write (5.2.15) as 

where 

cl - �~�:� (cos8(1+ h;)- h., (hysin8 + tan.B)), 

C2 - �~�:� (sin8(1+ h;)- hy (h., cosO+ tan .B)). 
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Figure 5.2: A grain rolling on the sand surface, inclined at an angle a, under the 
influence of gravity, g, and friction, ru, where r is the friction coefficient and u is 
the velocity of the grain. 

5.3 Rolling 

We now incorporate the effect of rolling of the sand grains under the influence of 

gravity, g, and friction, where the friction coefficient is r. We get an equation for 

the speed the grains roll along the surface 

ru = g - (g · n)n, (5.3.1) 

where g = (0, 0, -g)T and n = ( -hx, -hy, 1)/(1 + �h�~� + �h�~�)�~ �.� To shnplify matters we 

set r to be constant, instead of a function of the size and compactness of the sand 

grains. Substituting in these values we get 

ru _ (O 0 _ ) _ {(o 0 _ ) . (-hx, -hy, 1) } (-hx, -hy, 1) 
, , g , , g ( 1 + �h�~� + h;) �~� ( 1 + �h�~� + h;) �~� 

(
O O _ ) _ g(hx, hy, -1) 
' ' g 1 + h2 + h2 

X y 

-
1 

�~�g� h2 (hx, hy, h; + �h�~�)�.� 
+ x+ y 

We assume that the horizontal number flux, Q(x, y, t), of sand grains is proportional 

to the horizontal speed of rolling and so we have 

( ) 
Fg (hx, hy, 0) 

Q x, y, t = �-�~� (1 + �h�~� + �h�~�)�'� (5.3.2) 

where F is a constant of proportionality. 

For a static sand pile there exists a maxhnum angle of the surface slope, ar, beyond 

which the sand can no longer be supported and avalanching occurs. This angle is 
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known as the angle of repose and depends on how tightly the grains are packed 

together. For sand this angle is about 30°. For travelling sand ripples, as in our 

case, it has been proposed [28] that there is a maximum angle, 'Y, of the lee slope, no 

greater than ar, at which a slip face will develop where sand will avalanche rather 

than roll. This angle is called the dynamic angle of repose [28]. This process is in 

accord with Bagnold's [9] observations that a slip face will develop on the lee slope 

of sand dunes over a certain height. The slip face is an area on the lee slope that 

starts at the crest and that is kept at a constant angle "Y by avalanching. Thus if the 

angle of the lee slope attempts to exceed"'/, the sand flux down the slope becomes 

very large. We adjust our model so that equation (5.3.2) becomes 

Q( t) _ Fg t 2 (hx, hy, 0) 
x, y, - -- an "Y 1. 

r (1 + h; + �h�~�)�(�t�a�n �2� "Y- h;- �h�~�)�2� 
(5.3.3) 

The evolution of the surface profile depends on the surface sand flux according to 

the equation 
ah 
at= -av\1· Q. 

Now we need to work out the divergence of Q. Let us define 

Then we find 
aQx 

ax 

W = tan2 "Y- h;- �h�~�.� 

(5.3.4) 

(5.3.5) 

(5.3.6) 

where D = -Fgtan2 "'f/r and Vis defined by (5.2.12). Similarly the partial deriva

tive of QY with respect toy is 

8QY D{ } -
8 

= a hyyVW-hy(hxyhx + hyyhy)(2W-V) . 
y V2W2 

(5.3.7) 

Thus, substituting into equation (5.3.4) we see that the variation in elevation at any 

point (x, y) on the ripple, due to the process of rolling, is given by 

�~�~� = D{ VW(h,;x + hyy)- (2W- V)(hx[hxxhx + hyxhy] + hy[hxyhx + hyyhyl) }• 

(5.3.8) 

where D = �(�a�v�F�g�t�a�n �2 �"�Y�)�/�(�r�V �2 �W�~�)�.� After some algebra this gives 

�~�~� - D{ hxx ((tan2 
')'- h;)(l + h;- h;) + 2h!) + hyy ((tan2 

')'- h;)(l + h;- h;) + �2�h�~� 

+ 2hyhxh'"1J (3h; + 3h; + 1-2tan2
')') }• 
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which can be written as 
8h 
Bt = D1 hxx + D2hyy + 2D3hxy, 

where 

D3 = 

avFgtanr {(tan2r- �h�~�)�(�1� + �h�~�- �h�~�)� + 2h!} 

�r�V �2 �W�~� 
avFgtanr { (tan2r- �h�~�)�(�1� + �h�~�- �h�~�)� + �2�h�~�}� 

�r�V �2 �W�~� 
avFgtanrhyhx �{�3�h�~� + �3�h�~� + 1-2tan2 r} 

�r�V �2 �W�~� 

(5.3.9) 

We also include a hyperdiffusion term to regularise the model, damping the growth 

of large wavenu1nbers. Heuristically this tenn 1nodels a noise-induced cut-off, where 

randomness in the surface roughness and collisions between reptating grains prevent 

the growth of structures on very short length scales. The term we need to add in is 

Z = (\14h = ( { hxxxx + 2hxxyy + hyYY11 }, (5.3.10) 

where ( is a constant. 

5.4 Combined model 

Combining the effects of hopping (5.2.15), rolling (5.3.9) and hyperdiffusion (5.3.10) 

gives a pheno1nenological equation governing the evolution of the surface of the 

ripple, h(x, y, t): 

8h at - hxx{ D1- aC1} + hyy{ D2- bC2} + hxy{2D3 - bC1 - aC2}- (\14h, 

(5.4.1) 

where 

C1 - �~�~� ( cosB(l + h;)- hx (hy sin B +tan ,B)), 

C2 - �~�~� (sinB(l + h;)- hy (hx cos B +tan ,B)), 

avFgtanr{(tan2 r- �h�~�)�(�l� �+�h�~�- �h�~�)� �+�2�h�~�}� 

�r�V �2 �W�~� 
avFgtan"'j {(tan2r- �h�~�)�(�l� + �h�~�- �h�~�)� + �2�h�~�}� 

3 
rV2W2 

avFgtan"'jhyhx �{�3�h�~� + �3�h�~� + 1-2tan2 r} 
�r�V �2 �W�~� 

D3 -
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No hopping occurs on areas of the sand bed that are in shadow, since they are 

shielded from the saltation flux. In those regions the modified equation 

8h 4 at = hxxDl + hyyD2 + 2hxyD3 - (\7 h, (5.4.2) 

holds. 

156 



5.5 Stability analysis for the one-species model 

In this section we investigate the stability of our model (5.4.1). We want our model 

to be unstable to small perturbations so that we will see ripples develop from a flat 

bed subject to some initial random noise component. In the early stages of ripple 

evolution from a flat bed there are no shadow zones as IY'hl < tan,6 everywhere 

and so equation (5.4.2) is not relevant. We can therefore use equation (5.4.1) only 

to determine the initial growth rate of sand ripples and their preferred wavelength. 

First we need to find the steady states. Looking for spatially uniform steady states, 

where we would set all derivatives to zero, we see that our equation (5.4.1) reduces 

to zero on both sides. So any constant value of h would be acceptable: we call this 

he. Thus we can seth= he+ h(x, y, t) and then drop the tildes to give 

8h 
- hxx{ D1- aC1} + hyy{ D2- bC2} + hxy{2D3 - bC1 - aC2}- (\74h. at 

(5.5.1) 

We now linearise our equation, by removing all terms of order IY'hl2 and above. Note 

that we are dividing by V and W, as defined by (5.2.12,5.3.5), in certain places but 

by Taylor expanding va to first order in IV'hl2 we get that 

(1 + h; + �h�~�)�a� = 1 + a(h; + �h�~�)� + O(h!, �h�~�)� = 1, 

for all a E N. We also note that W 312 = (tan21- �h�~�- �h�~�) �3 �1 �2� and so if we are 

ignoring terms of order �h�~� and �h�~� then 

With these simplifications we can linearise our coefficients to give 

c1 - avJ (cosB-hx tan,6), 

02 - avJ (sinB- hy tan,6), 

D1 
avFgtan1 

r 

D2 
avFgtan1 

-
r 

D3 - 0. 

However these are all diffusion coefficients and so will be 1nultiplied by a second 

derivative term. Thus any hx or hy terms will contribute only at second order in the 
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derivatives, so we can remove them as well. Thus we get the linearised equation 

8h 
{ 

avFg tan "Y _ _ J ()}h { avFg tan "Y _ -b J . ()}h at - T aav COS XX + T av Sln yy 

{ ba.J cos() + aa.J sin()} hxy - ( { hxxxx + 2hxxyy + hyyyy} 0 (5.5.2) 

Now we set 

h(x y t) = h ecrt+iqx+ipy , , 0 , 

where u is the growth rate of a Fourier mode with wavevector ( q, p) and ho is a 

constant. Substituting into equation (5.5.2) gives 

( 
avFg tan "Y) 2 (- • ) a = aav J COS () - r q + av J b COS () + a Sin () pq + 

(
-b J . () avFgtan')') 2 r ( 2 2)2 av Sin - p - ':. p + q . 

r 
(5.5.3) 

This can be written in the form 

which factorises to give 

(J' = avJ(qa + pb)(qcos8 + psin8)-avFgtan"'( (q2 + p2) _ ((p2 + q2)2. 
r 

(5.5.4) 

As we are looking at the stability of a fiat bed we would like the bed to become 

unstable so that we will see some ripples forming (if it were stable then the bed 

would remain fiat). Therefore we require a > 0. As all the terms in (5.5.4) are 

positive we see that, to second order, u > 0 if and only if 

_ . ) avFgtan')'( 2 2) av J ( qa + pb) ( q cos B + p s1n B > q + p , 
r 

which gives us the inequality 

J 
Fgtan7(q2 + p2

) 
> . 

r(qa + pb)(qcos B + psin B) 
. (5.5.5) 

So for our model to be unstable we must choose J so that it satisfies (5.5.5). 
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5.5.1 Fastest growing wavelengths 

Equation (5.5.3) gives us an expression for the growth rate in terms of the wave

lengths p and q. The fastest growing wavelengths will be the values of p and q which 

give us the maximum value of a. To find this maximum we need to calculate the 

partial derivatives of O" with respect to p and q. We can simplify the calculations 

by setting the wind to be in the x direction. Therefore (), the angle of the saltation 

flux in the y direction, will be zero, as will the average reptation length in the y 

direction, b. Thus we see that (5.5.3) reduces to 

(
- J avFgtan{) 2 avFgtan{ 2 ;- ( 2 2)2 

0" = aav - q - p - �~�.�;�,� p + q , 
r r 

(5.5.6) 

which we can write in the form 

where 

A = aavJ _ avFg tan 1' 
r 

(5.5.7) 

B= 

So the partial derivatives of O" are 

80" 

8p 
820" 

8p2 
- 2B- 12(p2 - 4(q2, 

80" 
8q = 2Aq-4((p2 + q2)q, 

820" 2 2 

8
q2 = 2A - 12( q - 4(p , 

We will have a stationary point when the first derivatives are zero. It will be a 

1naximum if 

(a) 
820" 
Bp2 = 2B- 12(p2

- 4(q2 < 0, (5.5.8) 

(b) 
82u 2 2 
Bq2 = 2A- 12(q - 4(p < o, (5.5.9) 

(c) 820" 820" ( 820" ) 2 

8p2 8q2 - 8p8q = 

(2 B - 12 ( p2 
- 4 ( q2

) (2 A- 12 ( q2 
- 4 ( p2

) - ( -8 ( pq)2 > 0. 

(5.5.10) 

This extre1na occurs at values ( q, p) where 

{ 2B - 4((p2 + q2
) }P = 0, (5.5.11) 
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{ 2A- 4({p2 + q2
) }q = O. (5.5.12) 

From (5.5.11) we see that either p = 0, or 

=> ( 2 2) B 
p + q = 2(' (5.5.13) 

If p = 0, then substituting into (5.5.12) we get that 

{ 2A- 4(q2 }q = 0 => q = 0 or q
2 = �~�- (5.5.14) 

If (p2 + q2) = B/(2(), then substituting into (5.5.12) we get that 

{2A-2B}q=O => q=O or A=B. 

As we do not expect that A = B in general, we are left with the fact that q = 0 

which means that p2 = B/(2(). 
Thus we have three stationary points 

(0, 0), 

�(�o�.�~�)�.� 

- �(�~�.�o�)�.� 

(5.5.15) 

(5.5.16) 

(5.5.17) 

Now we want to know if our solutions are maxima or not. For solution (5.5.15) the 

conditions (5.5.8) give 

2B < 0, 

2A < 0, 

AB > 0. 

From this we see that we need both A and B to be negative. Because B = 
- ( av F g tan 1) ( r) -l it will always be negative, as av, F, g, tan 1 and r are all pos

itive. So the only condition we have for solution (5.5.15) to be a maximum is 

J < Fg �~�a�n� I = lc. (5.5.18) 
ar 

For solution (5.5.16), we have conditions from (5.5.8) 

(a1) �2�B�<�1�2�(�(�~�)� => -4B<O => B>O 

(b1) �2�A�-�4�(�(�~�)� <0 => 2(A-B)<O => B>A 

(c1) -8B(A-B)> 0. 
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We can see that if (a1) and (bl) are true then (c1) will also be true, but B is negative 

so this solution will never be a maximum. For our solution (5.5.17) we get that 

(a2) 2B-4( �(�~�)� < 0 => 2(B- A)< 0 => A>B 

(b2) 2A - 12( ( �~�)� < 0 => -4A< 0 => A>O 

(c2) 2(B- A)( - 4A) > 0. 

Again we see that (c2) will hold if (a2) and (b2) do. As B is always negative condition 

(a2) will hold if (b2) does. Thus we just need A > 0 for this solution to be a 

maxhnu1n. This gives us the condition 

_ J avFgtan1 aav -----
r 

> 0 => J > �F�g�~�a�n�1� = lc. 
ar 

Thus aeolian sand ripples will grow if the scaled saltation flux intensity, J, exceeds 

the threshold value, lc. So if J > Jc the maximutn growth rate occurs at ( q2, p2) = 

( �~�,� 0) . As we are working in radians we find the length of the fastest growing wave 

is 

L= (5.5.19) 

If J < Jc we have a ::::; 0 and the fiat bed is stable. 
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6 
A three-dimensional two-species continuum 

model for aeolian sand ripples 

6.1 Introduction 

Following on from the three-dimensional analytical model we now extend this one

species model to two species in order to obtain more realistic ripple profiles. Our 

modelling approach follows in a similar vein to previous work on two-dimensional 

two-species models, such as (43, 30]. We split the ripple up into a thin layer of 

flowing grains, with density p(x, y, t), on top of a relatively stationary sand bed, 

h(x, y, t), with x andy the horizontal coordinates and t time. The evolution of the 

ripple depends on the impact of the saltating grains causing other grains to hop out 

of the sand bed and land in the flowing layer, and the smoothing effects which are 

a result of the rolling and avalanching terms. 

6.2 Hopping 

From our previous model we have a constant incoming saltation flux, I = (Ix, JY, Iz), 

which we expect to dislodge grains in the sand bed sending them into reptation. 

These reptating grains will eventually land in the flowing layer. The saltating grains 

will continue in saltation after rebounding from the sand bed due to their high 

energy. The number of sand grains, N(x, y, t), ejected per unit time per unit surface 

area, from the surface at position ( x, y) on the sand bed, at time t is given by 

N( ) = Jhx cosB + hy sinB + tan/3 
x, y, t (1 + h; + �h�~�)�l�/�2� (6.2.1) 

The probability distribution of the reptation lengths are as defined for the one species 

model, (5.2.5, 5.2.6). The number, 8n0 (x, y, t), of sand grains leaving the surface in 

the area between (x, y), (x + 8x, y), (x, y + 8y) and (x + 8x, y + 8y), in time 8t, is 

given by 8n0(x, y, t) = N(x, y, t)8x8yot. The change oh in the surface height satisfies 

8x8y8h(x, y, t) = -av8n0(x, y, t) = -avN(x, y, t)ox8y8t, (6.2.2) 
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where av is the average volume of the sand grain. In the limit we find that the 

contribution to the evolution equation for h(x, y, t) from hopping alone is 

hx cos e + hy sine+ tan(3 
'TJh(x, y, t) = -avN(x, y, t) = -avJ (1 + �h�~� + h;)l/2 . (6.2.3) 

The number oni ( x, y, t) of sand grains arriving on the layer of flowing grains in the 

. area between (x, y), (x +ox, y), (x, y + oy) and (x +ox, y + oy), in time otis given 

by 

5n;(x, y, t) = { J.1p(a, b)N(x-a,y-b, t) dadb }5x5y5t. (6.2.4) 

The change in depth of the flowing layer satisfies 

5x5y5p(x, y, t) = a,5n;(x, y, t) =a,{ 1.1 p(a, b)N(x-a, y- b, t) da db }5x5y5t 

(672.5) 

and hence the contribution to the evolution equation for the flowing layer depth 

fro1n hopping alone is 

ryp(x, y, t) = 1.1 p(a, b)N(x-a, y- b, t) dadb 

- avJ 1.1p(a, b) hx(x-a, y- b, t) cos e + hy(x-a, y- b, t) sine: �~�a�n�(�3� da db. 
a b {1 + �h�~�(�x�- a, y- b, t) + h;(x- a, y- b, t)} 1 

(6.2.6) 

We can expand the integrand in (6.2.6) as a Taylor series in a and b. We 1nay also 

truncate this at first order, as we assutne that the gradient N ( x, y, t) varies slowly, 

except at the troughs and crests. Now equation (6.2.6) becomes 

'f/p(x, y, t) = 1.1 {p(a, b)N(x, y, t)- p(a, b)a �~�~� (x, y, t)- p(a, b)b �~�~� (x, y, t)} da db, 

which using probability argu1nents (5.2.6) gives 

r;p(x, y, t) = 1 { p(a, b)N(x, y, t) da db -1 ap(a) �~�N� (x, y, t) da -1bp(b) �~�N� (x, y, t) db, 
a }b a X b Y 

and using equation (5.2.5) gives 

8N -8N 
r;p(x, y, t) = N(x, y, t)- a ax (x, y, t)- b By (x, y, t). (6.2.7) 
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We include diffusion terms as well as terms for the transfer of grains between the 

flowing layer and the sand bed, leading to the equations 

ht - Dh \12h-T(x, y, t) + fJh(x, y, t) 

Pt - D/\12p- \7 · j + T(x, y, t) + fJp(x, y, t), 

(6.2.8) 

(6.2.9) 

where \1· j is the divergence of the flux of flowing grains due to gravity and is defined 

as 

\1 · J - -\1 · (xp\lh) 

- -x{ (phx)x + (phy)y} 

and so we have 

(6.2.10) 

where Dh, D P and x are positive constants. The term Dh \12 h represents the diffusion 

of the sand bed due to the rearrangement �o�~� clusters while the term Dp \72p represents 

diffusion due to the relaxation of the flowing grains. These diffusion terms are 

strictly intracluster motions. The intercluster motions are governed by T(x, y, t), 
the transfer term. It represents the interaction between the sand bed, h(x, y, t), and 

the flowing grains, p(x, y, t). It is given by 

and 

T(x, y, t) = Ap(j\7hj2- tan2 a) 

(1Vhl2 
- tan2 a) 

T(x, y, t) = vp (tan2 1- 1Vhj2) 

for 0 ::; j\7hj2 
::; tan2 a (6.2.11) 

where ;\ and v are positive constants and a is the angle of repose. Within a given 

range above the angle of repose a sandpile can be either static or flowing. The 

maximum angle of stability, 1, gives the upper bound of this region. For slopes 

greater than tan2 1 the sandpile will avalanche. Thus we have two different forms of 

the transfer term for the two regimes when different mechanisms apply. For slopes 

less than the angle of repose, tan2 a, the term .Xp(IVhl2 - tan2 a) represents the 

tendency of grains in the flowing layer to lose momentum and thus stick to the sand 

bed. For slopes greater than tan2 a this is replaced by (l\7hl2 - tan2 a)(tan2 1-

l\7hl2)-1, which models the tendency of stable grains in the sand bed to be shed 

164 



into the flowing layer due to the increasing angle of the lee slope. This process only 

begins once the slope has exceed the angle of repose. As the slope approaches "' the 

rate of shedding of grains becomes very large: avalanching occurs. 

Therefore our governing equations take the form 

ht - Dh\7 h-2 { .Ap(IVhl2 
- tan2 a) 

v(!Vhl 2
- tan2 a)(tan21- 1Vhl2)-1 for tan2 a :S 1Vhl2 �~� tan2

"' 

Pt 

J (hx cos()+ sin Bhy +tan ,B) (6.2.13) 

Dp \72p + x[(phx)x + (phy)y] 

+ { .Ap(IVhl2 
- tan2 a:) for 0 �~� 1Vhl2 �~� tan2 a: 

v(IVhl 2
- tan2 a)(tan2

"' -1Vhl2
)-

1 for tan2 a::; 1Vhl2 ::; tan2
"' 

+ 11 p(a, b)J (h.(x- a, y- b, t) cos IJ + hy(x-a, y- b, t) sinO+ tan .B) da db. 

(6.2.14) 

6.3 Nondimensionalising the two-species model 

We have many parameters in our model which can 1nake mathe1natical analysis 

tricky. However we can reduce the number of parameters by nondimensionalising 

our 1nodel to get a simpler syste1n of equations. To do this we must first set: 

h = hoh, p =PoP, x = xox, y = YoiJ, t =tat, a= xaa, b = Yob,p(a, b)= p(a, b), 

where 

We find 

to 
xo 

to 
Yo 

1 
J' 

Dh 
Xo =yo= J' 

h _ Dhtan1 
0- J ' 

J 
Po= · .A tan/ 

ho ho 
-=-=tan/, 
Xo Yo 

topo 1 
-,;;;= .Atan21' 

to 1 ---
ho tan1J' 
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Dropping the tilde's and substituting this into equations (6.2.13) and (6.2.14) gives 

us: 

ht - Dh ( �t�~�h�x�x� + �t�~�h�y�y�)� - J �(�~�h�x� cosB +to hy sine+ hto tan/3) 
Xo Yo Xo Yo o 

Atopop((!JJJ.h )2 + (ho h )2 _ tan2 a) 
ho XQ X YO y 

for IY'hl2 �~� tan2 a 

�v�(�(�~�~� hx)2 + �c�z�~� hy)2
- tan2 a)(tan2 'Y- �(�~�~� hx)2

- �(�~�h�y�) �2 �)�)�- �1� 

for tan2 a �~� IY'hl2 �~� tan2 'Y 

(6.3.1) 

Pt - Dp �(�t�~�h�x�x�+� �t�~�h�y�y�)� +xho �(�t�~�(�P�h�x�)�x�+� �t�~�(�p�h�y�)�y�)� +to { {p(a,b)J 
Xo Yo Xo Yo Po J a J b 

( ho hx(x-a, y- b, t) cose + ho hy(x-a, y- b, t) sinB + tan/3) Xodayodb 
Xo Yo 

+ 

�)�d�o�p�(�(�~�h�x�) �2� + �(�~�h�y�) �2 �- tan2 a) 

for IV' hl2 �~� tan2 a 

�~�v�(�(�~�h�x�) �2� + �(�~�h�y�) �2 �- tan2 a)(tan2 'Y- �(�~�h�x�) �2 �- �(�~�h�y�) �2 �)�)�- �1� 

for tan2 a �~� I \1 hl2 �~� tan2 'Y 

which we can write as 
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ht - \72 hx - (hx cos () + hy sin() + tan f3) -
tan7 

p(jVhj 2
- �!�:�~�~�~�)� 

for 1Vhl2 ::; tan2 a 

v*(jVhl2- tan2 o:)(1- h2 - h2)-1 
tan2 'Y x y 

(6.3.3) 

hop(j\7hj2 _ tan2a) 
Po tan2 'Y 

D ( ) for 1Vhl2 ::; tan2 
a 

Pt = Dhp\l2p + x* (phx)x + (phy)y + 
ho v*(IVhl2- tan2 a)(1-h2 - h2)-1 
PO tan2')' X y 

for tan2 a ::; I"V hl 2 ::; tan2 7 

+ �X�~� �~�h� r 1p(a, b)J (hx(X-a, y- b, t) COS()+ hy(X-a, y- b, t) sin()+ tan /3) da db, "" la b tan7 
(6.3.4) 

where 

* to v ZJ =ZJ- = --
ho Jtan7' 

* hoto xtanl' x =x-=--x6 J 
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6.4 Probability Distributions 

While deriving models it is often unnecessary to define the probability density func

tion, p( a, b), used in the splash function. This is the case in [28] where Taylor

expanding the integral to second order means that only the mean of the hop lengths 

is needed, which are given by previous experiments (45]. However in some two

species model e.g. [30], it is unreasonable to Taylor expand the integral to second 

order only as we would lose infomation from the higher order derivatives that is not 

insignificant in this case. It is particularly important to include these higher order 

times in stability analysis. The inclusion of these terms means that we now need 

to know more than just the means of the distribution. We will also need to know 

higher moments. In order to evaluate these expectations we will need to define the 

probability distribution. It has been suggested before that the actual distribution 

of the hop lengths makes little difference to the accuracy of the results [4]. Ander

son tried three different distributions. First he chose the probability distribution of 

reptation lengths to be uniform, this corresponded to the probability density being 

a delta function. Then he tried two distributions that were more representative of 

the actual reptation lengths, the gamma distribution and the exponential distribu

tion. He found that these more realistic cases damped the growth of the shorter 

wavelengths and gave rise to a single fastest growing wavenumber which was of the 

order of six times the mean reptation length. However he noticed that the fastest 

growth rate was not much affected by the choice of distribution. 

The easiest choice of probability distribution would be the bivariate normal distri

bution. This is simply the equivalent of the normal distribution but for two variables 

(the hop lengths in the x and y direction in our case). The bivariate normal distri

bution has probability density function 

p(a, b) = 
21fO"aO"bV1 - p2 

1 

exp {- 2(1 �~� p2) [ (a::·) 2- 2p (a::·) e ::b) 2 + e ::b) 2] }· 
(6.4.1) 

where -oo < /La, /Lb < +oo are the mean reptation lengths in the x and y directions 

respectively, a a, ab > 0 are the standard deviations of the reptation lengths and 

-1 < p < 1 is the covariance. We can find the expectations we want by using the 

168 



joint moment generating function. This is defined as 

Ma,b ( 81> 82) = E( e9'a+li,b) = 11 e9' a-tli,bp( a, b) da db. (6.4.2) 

We then find our required expectations by the relation 

(6.4.3) 

It can be shown that the joint 1noment generating function for the bivariate gamma 

distribution is 

This distribution would seem a logical choice as many papers have previously used 

the normal distribution for their two dimensional models, e.g. [4], [30], [51]. However 

many consider a ga1mna distribution more realistic [4]. While we would expect the 

distribution of hop lengths in the y direction to be normal (on average you would 

get the sa1ne number of grains hopping either side of the incoming saltation flux) 

it is not so obvious that the hop lengths in the x direction should be normal. In 

fact evidence shows that the grains that hop backwards from the impact point will 

not travel nearly as far as those hopping forwards [45]. This suggests that our 

distribution in the x direction will be positively skewed and thus will not be normal. 

A more obvious choice would be the gamma distribution. We therefore would like a 

bivariate distribution which acts like the gam1na distribution in the x direction and 

the normal distribution in they direction. Such a distribution exists and it is called 

the univariate normal/ gamma distribution. This is defined as follows: 

First let the random variable X represent the probability distribution of hop lengths 

in the x direction andY represent the probability of hop lengths in they direction. 

If we let the distribution of X be gamma such that: X rv G[n/2, d/2] for any n > 0 

and d > 0 and suppose that the conditional distribution of Y given X is normal 

YIX rv N[m, cx-1
], for sotne m and 0, then the joint distribution of X andy is 

called (univariate) normal/ gamtna 

p(Y,X) = (2:C)! exp [- X(Y2; m)2] �2�~�~�~�/�~�-�l�e�x�p� [- �~�d�]�.� (6.4.5) 

If we simplify the calculations by setting the wind to be in the x direction, as in our 

stability analysis, then the hop lengths in the y direction are centered around the x 
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axis and thus we know that our average hop length, m, will be zero. Using this and 

with some tidying up we can use (6.4.5) to derive a formula for the function p(a, b) 
in our model 

n-1 n [ ( 2 )] a-2-d2 a b 
p(a, b) = !!±!. 1 exp --

2 
C + d . 

2 2 �r�(�~� )(1rC)2 
(6.4.6) 

6.5 Stability analysis of the two-species model. 

Here we perform a stability analysis of our two-species model. We want the fiat bed 

to be unstable to small perturbations so that we see ripples develop. As we are only 

interested in the beginning stages of the ripple evolution with small perturbations, 

we are only interested in the regime where 0 < 1Vhl2 < tan2 a so we only need look 

at the ,\p(IV'hl2- tan2 a)( Jtan2 1 -1Vhl 2)-1 and the pK\72h (which smoothes the 

surface by filling in hollows and 'eroding' bumps) part of the transfer term. Thus 

our model equations are 

ht - D '\12h- ,\p(IVhl2- tan2 a) K \72h-N(x t) (6.5.1) 
h y'tan2 1- 1Vhl2 + p 'y, 

,\p(IV'hl2- tan2 a) 
Pt - D \72p + x{(ph ) +(ph ) } + - 11-p\12h 

P x x Y Y y'tan2 I- 1Vhl2) 

+ 11 p(a, b)N(x-a, y- b, t) da db, (6.5.2) 

where 

N( ) = Jhx cos()+ hy sin()+ tanf3 
x, y, t (1 + �h�~� + �h�~�)�l�/�2� (6.5.3) 

and where J = avl J cos {3. We can find spatially uniform steady states by setting 

all derivatives to zero. This gives, from both equations, 

tan2 a J tan {3 tan 1 
>..p---Jtanf3=0 => p- -p tan 1 - ,\ tan2 a - c 

and h can be any constant, which we define as he. We now perturb the steady states 

by setting 

P = Pc + P· 
To simplify the model we expand out the bottom half of (6.5.3). Dropping the tildes 

and linearising in h and p gives 
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Thus 

N(x, y, t) = J (hx cos e + hy sine+ tan/3). 

Taylor expanding the integrand in (6.5.2) to third order gives us 

1!. p(a, b)N(x-a,y-b, t) dadb = 

N(x,y,t) 1J.p(a,b)dadb-�~�~� (x,y,t) 11 ap(a,b)dadb 

: (x,y, t) 11 bp(a, b) dadb + H �~�;� (x, y, t) 11 a2p(a, b) dadb 

�2�~�:�~� (x,y, t) 11 abp(a,b) dadb- �~�~� (x,y,t) 11 b2p(a,b)dadb} 

H �~�;� (x, y, t) 11 a3p(a, b) dadb+ 3 �~�~� (x, y, t) 11 a2bp(a, b) dadb 

+ 3 �;
�3

�~� (x, y, t) 1 { ab2p(a, b) dadb + �~� �~� (x, y, t) 1 r b3p(a, b) dadb}, 
xy a Jb Y a Jb 

which fro1n the definitions of probability distributions (5.2.5) and (5.2.6) gives 

11 p(a, b)N(x-a, y- �~�,� t) dadb N - aN. - bNy + �~� (a2 Nxx + 2abNxy + b2 Nyy) 

�~� ( a3 Nxxx + 3a2bNxxy + 3ab2 Nxw + IJ3 Nyyy) . 

(6.5.4) 

We can shnplify the calculations by setting the wind to be in the x direction. There

fore e = 0 and consequently tan( B) = 0. Also we will expect the nu1nber of grains 

hopping to one side of the x axis to equal the number hopping to the other side, as 

we have no bias towards one side or the other. So we expect the average reptation 

length in the y direction to be zero, i.e. b = 0. Consequently we expect all expec

tations containing odd powers of b (ab, a2b and b3) to be zero as well. Taking this 

into account and substituting for N fron1 equation (6.5.3) gives us 

11 p(a, b)N(x-a,y-b, t) dadb = 

J { hx + tan/3-"lih.:x + �~� (a2hxxx + b2hxyy) - �~� ( a3hxxxx + 3ab2hxxyy) } = N*(h). 

If we were to define the probability density function p(a, b) by (6.4.6) then we could 

use this to work out the expectations. 
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From equation (6.5.1) we find 

By setting A= .-\(tan 'Y)-1, dropping the tilde and linearising we get 

(6.5.5) 

From equation (6.5.2) we have 

which after linearising and cancelling terms gives 

Now we try solutions of the form 

h = h * eat+ikx+ily' p = p* eat+ikx+ily' 

where a is the growth rate and (k, l) is the wavevector. From equations (6.5.1) and 

(6.5.2) we find 

ah* - -Dh(k2 + l2)h* +A tan2 cr.p*- KPc(k2 + l2)h*- Jikh* 

ap* - -Dp(k2 + l2)p* - XPc(k2 + l2)h* - .-\ tan2 cr.p* + ""Pc(k2 + l2)h* 

+ J { ikh* + ak2h* + �~� ( -a2ik3h*- b2ikl2h*) + �~� ( a3k4h* + ab2k2l2h*) } , 

where we have cancelled a factor of eat+ikx+ily. Rearranging gives 

ah* = -(Dh + ""Pc)(k2 + l2)h*- Jkh*i + >..p* tan2 cr. 

ap* = -(Dpp* + (x- r;,)pch*)(k2 + l2
)- >..p* tan2 cr.+ N*(h*), 

where 

N*(h*) 
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Equations (6.5.7) and(6.5.8) can be put into matrix fonn 

(6.5.9) 

For non-trivial solutions the determinant of this matrix 1nust be zero. We find that 

the determinant of (6.5.9) is 

(cr + Jki + (Dh + �~�P�c�)�(�k �2� + l2)) (cr +A tan2 a+ Dp(k2 + l2)) +A tan2 a 

( -Jki + (x �-�~�<�)�P�c�(�k �2� + 12
) + J ( -ak2 + �~�(�a �2 �e� + l?kl2)i + �~�(�a �3 �k �4� + 3ab2k2l2

))) = o. 
(6.5.10) 

We are clearly going to have an hnaginary part to our eigenvalues. Thus we will 

have a travelling wave solution. We want this solution to be unstable, so that we see 

growing waves. Thus we want the real part of cr to be greater than zero. Assuming 

lkl, Ill << 1, then to order one we have a growth rate eigenvalue associated with 

the relaxation of the flowing grain density p to its equilibrium value. Thus (6.5.10) 

reduces to cr(cr +A tan2 a) and so cr =-A tan2 a for a nonzero solution. To find the 

second eigenvalue we first take cr to be O(k2) in (6.5.10) and extract all the terms 

of order k2 or l2 and solve for (j' which gives us 

We then set a = cr0 + a where a is 0 ( k3), extract all the terms of order k3 or l3 and 

solve for a, which gives us 

_ (J (Ja + Dp- Dh- XPc) Ja2
) .k3 (J (Dp- Dh- XPc) Jb2

) 'kl2 
0"1 - - 2 + - 'l - 2 + - 'l . 

A (tan (a)) 2 A (tan (a)) 2 
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Then we set u = u0 + u1 + (J where (J is O(k4), extract all the terms of order k4 or 

l4 and solve for (J' to give 

Thus the expression for our growth rate is the sum of the above three expressions, 

u = u0 + u1 + u2. However we are only interested in the real part so it reduces to 

(}" = ( ) 2 ( ) 2 Ja3 
4 Ja- Dh - XPc k - Dh + XPc l - 5k + 

{ 
J 2 

( Dh + XPc - D p - Ja) _ 
.A2 (tan (a))4 

(Dh + XPc- Dp) �(�X�-�~�)� Pc- Ja (Dh + (2X- K)Pc- Dp) + J2
7i

2 + �~�J �2 �l�i�2�}�k �4� + 
A (tan (a))2 

{ 
J2 (Dh + XPc- Dp) 

.A2 (tan (a))4 

2 (Dh + XPc- Dp) �(�X�-�~�)� Pc- Ja(Dh + 2XPc-KPc- Dp) + �~�J �2 �1�J�2� _ �~�J�a�b �2 �}�k�2�(�2� 
.A (tan (a))2 2 

_ ((Dh + XPc- Dp) (X- K) Pc) z4 
A (tan (a))2 

' 

which we can write as 

(6.5.11) 
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where 

A2 -

B2 -

c2 -

Ja- Dh- XPc, (6.5.12) 

- (Dh + XPc), (6.5.13) 

(Dh + XPc- Dp) (x- "') Pc- Ja (Dh + (2x- "')Pc- Dp) + J2a2 + �~�J �2 �£�i�2� 
A (tan (a))2 

J 2 (Dh + XPc- Dp- Ja) Ja3 

+ A2 (tan (a))4 - 6' (6.5.14) 

2 (Dh + XPc- Dp) (X-"') Pc- Ja (Dh + 2XPc-"'Pc- Dp) + �~�J �2 �b�2� 
A (tan (a))2 

J2 (Dh + XPc- Dp) Jab2 

+ --
A2 (tan (a))4 2 ' 

(Dh + XPc- Dp) (X-"') Pc 
A (tan (a))2 

(6.5.15) 

(6.5.16) 

where all tenns are positive. To find the fastest growing mode we maximise the real 

part of (6.5.11) over k and l 

80" 
ak 
a a 
az 

(6.5.17) 

(6.5.18) 

We must have that our wavenumbers are positive (k, l > 0). FL·o1n these equations we 

can see that we have four possible types of solution, i) k = l = 0, ii) k = 0, l f:. 0, 

iii) k f:. 0, l = 0, iv) k -f= 0, l f:. 0. In order for our solutions to be a 1naximu1n they 

must satisfy the following criteria 

82a 
8k2 

82a 
8l2 

< 

< 

0, (6.5.19) 

0, (6.5.20) 

8
2

0" 8
2
a ( 8

2u) 2 
-

8k2 az2 8k8l (12C2k
2 + 2A2 + 2l2 D2) (12E2l

2 + 2B2 + 2D2k
2
) 

(6.5.21) 

Case i) is straightforward and gives a zero growth rate. Looking at the maximum 

conditions (6.5.19,6.5.20,6.5.21) fori), we see that they reduce to 

2A2 < 0, 

2B2 < 0, 

4A2B2 > 0. 
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From (6.5.13) we can see that B2 will always be negative and so (6.5.23) is satisfied. 

Now if A2 is negative it automatically follows that (6.5.24) will be satisfied and if 

it is positive then it will not be. Thus the only condition we need to consider is 

(6.5.22). Therefore the solution k = l = 0 will be a maximum if and only if 

(6.5.25) 

which gives us a threshold value below which no ripples will form. For case ii), we 

know that k = 0, so we can put this into (6.5.18) to get 

4Eh,l3 + 2B2l = o => t = o, ±M. 
If k = 0 and l = 0 we get solution i). B2 is negative so if E2 is negative then the 

square root will be negative and thus both solutions will be imaginary and thus 

invalid. If E2 is positive then we must have solution ii). However looking at the 

maximum conditions for ii) we see that they reduce to 

2A
2 

_ B2D2 
E2 

< 0, (6.5.26) 

-4B2 < 0, (6.5.27) 

( B2D2) - �2�A�2�-�~� 4B2 > 0 (6.5.28) 

and as we know that B2 is negative (6.5.27) must be positive and so ii) can not be 

a maximum. 

For iii) we know that l = 0 and so we can put this into (6.5.17) to get 

If l = 0 and k = 0 we get solution i). Looking at the maximum conditions for iii) 

we see that 

-4A2 

2B
2 

_ D2A2 
02 

( D2A2) -4A2 2B2 - G;: 

< 

< 

> 

0, 

0, 

0. 

(6.5.29) 

(6.5.30) 

(6.5.31) 

Note that (6.5.31) will be satisfied if (6.5.29) and (6.5.30) are. We can see from 

(6.5.29) that A2 > 0. This means that 0 2 must be negative for k to be a real 
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positive wavenumber. We also know that B2 is negative and so for (6.5.30) to hold 

we 1nust satisfy the inequality 

(6.5.32) 

For iv) we know that both k and l do not equal zero. Therefore the terms in the 

brackets of (6.5.18) and (6.5.17) 1nust equal zero 

( A2 + 2C2k2 + D2l2) = 0 

( B2 + D2k2 + 2E2l2) = 0. 

(6.5.33) 

(6.5.34) 

So we have four solutions for k and l, as we are looking for nonnegative solutions 

only, we will only want the positive roots of k and l. 

Looking at the 1naximum conditions, (6.5.19,6.5.20,6.5.21), we see that we can 

rewrite them as 

(6.5.35) 

2(D2k2 + B2 + 2E2l2) + 8E2l2 < 0, (6.5.36) 

(2(202k
2 + A2 + D2l2) + 802k2)(2(D2k2 + B2 + 2E2l2) + 8E2l2)- �1�6�D�~�k �2 �l �2� > 0. 

(6.5.37) 

The brackets in (6.5.35) and (6.5.36) are the same as the brackets in (6.5.17) and 

(6.5.18) and we know that for case iv) these brackets must equal zero. Therefore 

the maxhnum conditions (6.5.19,6.5.20,6.5.21) reduce to 

C2k2 

E2k2 

(402E2-�D�~�)�k �2 �l �2� 

< 

< 

> 

0, 

0, 

0. 

(6.5.38) 

(6.5.39) 

(6.5.40) 

Thus we see that for (6.5.38) to be negative we need 0 2 < 0 and for (6.5.39) to be 

negative we need E2 < 0. This gives us the condition 

(Dh+XPc-Dp)(x-"')Pc O 
2 < . 

A (tan (a)) 

177 



As we expect Dh + XPc > Dp this tells us that x > �~�.� For the Jacobian, (6.5.40), 

to be positive we need to satisfy the condition 

< (6.5.41) 

Note that 4G2E2 - D2
2 is the denominator of both wavenumbers in (6.5.33). As this 

is positive it means that the numerators must also be positive. Therefore, assuming 

A2 > 0, we must also satisfy 

D 
2E2A2 

D2B2- 2E2A2 > 0 => 2 < B
2 

D 
202B2 

A2D2 - 2C2B2 > 0 => 2 > A
2 

, 

in order for k2, l2 > 0. This second condition is interesting as it is the reverse 

inequality of (6.5.32) which was a condition needed for case iii) to be the maximum 

growth rate. Thus we have the following bounds on D2 

2C2B2 D 2E2A2 
A2 < 2 < B2 

We have shown that there exists a threshold value of saltation flux 

Dh �~�X�P�c� _ Jc. 
a 

(6.5.42) 

If the scaled saltation flux intensity, J, is less than this value then sand ripples will 

not fonn from a perturbed flat bed. 

If J > Jc, 02 < 0 and D2 < D c then sand ripples will form and the maximum 

growth rate will occur at 

(k,l) = ( &.o) 
and the length of the fastest growing wave is 

L =2?T=2 v-2C2 
k 1r A2 . (6.5.43) 

If J > Jc, 0 2 < 0, x < K and (6.5.42) is satisfied then sand ripples will form and 

the maximum growth rate will occur at 

(k, l) = ( D2B2-2E2A2 
4c2E2-D2

2 
' 

and the length of the fastest growing wave is 

L = 27r _ 2?Tj2C2E2 - �D�~� 
}k2 + l2 J A2(2E2 - D2) + B2(2C2-D2) 
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7 
Numerical Simulations 

Equations (5.4.1) and (5.4.2) were integrated using a compact finite difference code, 

[35] with second-order Ada1ns-Bashforth time-stepping and periodic boundary con

ditions on a 200 x 200 grid. All shnulations were started fro1n the same perturbed 

fiat bed. 

It is necessary to work out which parts of the sand bed are in shadow, as the 

governing equations for these points differ from those for points not in shadow. A 

point (i, j) on the sand bed is deemed to be in the shadow zone if a line from this 

point backwards along the direction of the saltation flux intersects the sand bed. In 

effect this shows that there is an obstacle between the sand bed at ( i, j) and the 

incoming saltation flux, so that the saltating grain will hit the obstacle and not the 

point ( i, j). If the point ( i, j) is deemed to be in the shadow zone then the term 

N ( i, j) representing the nu1nber of sand grains ejected per unit time is set to zero, 

as are the derivatives of N ( i, j). The height of the sand bed at points along the line 

of the saltation flux is calculated using linear interpolation. 

A typical simulation is shown in Figure 7.1, The para1neters are chosen such 

that we are above the threshold for ripple growth. Only certain co1nbinations of 

parameters are hnportant as we can scale space and thne. Parameter values are 

e = 0°, j3 = 10°, J = 5, a= 0.2, b = 0, F = 0.1. The equations are integrated from 

t = 0 tot= 250, �O�O�O�~�t�,� where �~�t� = 7.29 x 10-6 , starting fro1n a perturbed fiat bed 

with the wind in the x direction. Coarsening occurs through ripple merger, so the 

ripple wavelength increases over time. We calculate the maximum and minimum 

height of the sand bed over each ripple. From these values we find the average 

maxhnu1n and average 1ninhnu1n over the whole bed. The average amplitude is 

then taken to be the difference between these two values. The average 1naximu1n 

is calculated by taking a cross-section of the sand bed along the x axis and finding 

all the ripple peaks in that cross-section. We then find the mean of these peak 

heights. This is done for every point j on the y axis to create a vector of 200 1nean 
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peak heights. Finally we calculate the average of the mean peak heights to get our 

average maximum over the whole sand bed. We find the average minimum in a 

similar way and then calculate the average amplitude from these values. For the 

simulation shown in Figure 7.1 the average amplitude at t = 250, OOOLlt is 0.496. 

· The simulation in Figure 7.1 uses our three-dimensional shadow zone. Figure 7.2 

shows a graphical representation of the areas of the sand bed that are in shadow at 

t = 250, OOOLlt and compares it with the areas that would be in shadow if we were 

to use local shadowing, where the bed is deemed to be in shadow if e · V' h < - tan f3. 
It is clear that the three-dimensional calculation of the shadow zone leads to a 

significant difference from local shadowing. Our shadow zone covers more of the 

sand bed, including areas of positive slope, which local shadowing always excludes. 

A shnulation with the same parameter values but without a shadow zone can be 

seen in Figure 7.3. We can see that in this simulation the ripples are less broken-up. 

In this case the average amplitude of the ripples is 0.954 after 250, OOOLlt which is 

considerably larger than when we have a shadow zone. 

Next we look at simulations where we change the angle of impact, f3, gradually 

over time (Figure 7.4). First we change f3 from 10° to 5°, setting 

5t 
f3(t) = 10--, 

tmax 

where t is time and tmax is the time it takes for the angle of impact to change fully, 

which in this simulation we take to be 250, OOOLlt. This results in larger areas of 

the sand bed being in shadow. Simulations where we change the impact angle from 

10° to go and from 10° to 1 o can also be seen in Figure 7.4. This series shows that 

as f3 is decreased the ripple pattern becomes less well defined. Sand ripples are 

formed because the hopping of sand grains overcomes rolling, thus as no hopping is 

allowed to occur in the shadow zone we would expect a model with a larger shadow 

zone to evolve more slowly. Clearly as the angle of impact is decreased more of the 

sand bed will be likely to be in shadow and so we would expect slower evolution. 

Indeed looking at the average amplitude of ripples in the simulations we find that 

it decreases from 0.496 when the final angle of impact, {3/l is 10° to 0.379 when 

f3J =go, 0.273 when {31 =5° and finally to 0.126 when f3J = 1°. 

If simulations are run with f3 constant, we find the average amplitude of the 

ripples is 0.0645 at f3 = 1 o, 0.252 at (3 = 5°, 0.373 at f3 = 8° and of course 0.496 at 

f3 = 10°. As expected the shallower the angle of impact, the lower is the amplitude 

of the ripples. Comparing with the simulations shown in Figure 7.4 we also see 
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that when the angle of impact changes over time by a relatively small a1nount 

the resulting ripples tend to be similar in amplitude to ripples that evolve with 

f3 constant at the final angle of impact. As the magnitude of the change hnpact 

angle increases the average amplitude becomes increasingly larger than that for the 

corresponding simulation with constant f3. 
Next we look at the effect of gusts of wind where the angle of impact, f3(t), is 

changed rando1nly at regular intervals: 

f3(t) = w1x(t), 

where x(t) is a real number generated at random from the interval [0, 1] and w1 is the 

maximum possible angle of impact. Figure 7.5 shows that when the impact angle 

of saltating grains is varied rando1nly to a value between 0° and 90° every 100Llt 

the ripples have 1nuch lower amplitude than those in Figure 7.1. Indeed the average 

amplitude of the ripples in this case is only 0.0141 which is very small compared 

with the amplitude of 0.496 fro1n our first simulation when the angle of impact is 

constant at f3 = 10°. The ripples are also not as well defined and we can see that 

so1ne of the ripples appear to 1nerge together and others peter out. Because the 

ripples never reach a sufficiently high amplitude the shadow zone never comes into 

effect. 

A series of simulations undertaken where fJ gusts between 0° and various max

imum angles is shown in Figure 7.6. From this we can see that in the first two 

graphs, where w1 is 70° and 50°, the ripples are again quite broken-up but the last 

two graphs, where WI is 30° and 10°, show a far more ordered ripple pattern. The 

average amplitudes of the ripples in these graphs are 0.0595, 0.227, 0.406 and 0.241 

when WI = 70°, 50°, 30° and 10° respectively, which are all lower than the atnplitude 

for ripples in Figure 7.1, in which the impact angle is constant at 10°. We can also 

see that for large values of w1, the amplitude increases as WI decreases. For the 

last graph however, when w1 = 10°, the average amplitude is 0.241 which is smaller 

than the amplitude for WI = 30°. Tllis is because decreasing fJ increases the effec

tiveness of the saltation flux but also puts 1nore of the surface into shadow. These 

two effects are opposing and at shallower angles of impact the shadow zone has the 

greater effect, causing the a1nplitude of the ripples to decrease. 

Finally, we compare the case when w1 = 30° with a simulation where f3 is kept 

constant at 15°, the same average value as when w1 = 30°. The average amplitude 

in the constant case is 0.584 which is larger than that for the gusting simulation 
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with w1 = 30° suggesting that varying the angle of impact decreases the amplitude 

of the ripples. 

Looking at Figure 7. 7 we can see that varying the time interval between changes 

in {3 has an effect on the resulting ripple pattern. When changing the time interval 

from �1�0�0�~�t� to 10, �O�O�O�~�t� we see that both when w1 = goo and when w1 = 30° 

the ripples are less well defined when the interval between changes is longer. This 

effect is more pronounced when w1 = goo where we can see that when the time 

between changes is 10, �O�O�O�~�t� the wavelength of the ripples has increased, due to 

ripple merger, although the average amplitude of the ripples is smaller at 0.00477, 

as opposed to 0.0141 when the interval is �1�0�0�~�t�.� For w1 = 30° with changes every 

10, �O�O�O�~�t� the average amplitude is 0.297 which is also smaller than the amplitude 

of 0.406 when the interval is 100.6.t. 

Another effect of gusts of wind is to change the wind direction, B(t), so we 

investigate to see what will happen if B(t) is changed from oo by some random 

amount at regular intervals: 

O(t) = 2w2 (x(t) - 0.5), 

where x(t) is a real number generated at random from the interval [0, 1] and w2 is a 

constant that corresponds to the maximum deviation of () from oo. We start off by 

looking at potentially large gusts of wind, where we vary (} by some random amount 

between ±90°. In this case we notice that when the wind direction is changed at 

intervals of �1�0�0�~�t� ripples do not form properly. Figure 7.8 shows that bumps can 

be distinguished but they are of low amplitude and do not form a coherent ripple 

across the space. The average amplitude is only 0.00713. 

A series of simulations where the wind direction varies through different maxi

nlum angles (Figure 7. 9), shows that the smaller the change in wind direction the 

more coherent the ripples appear and the more the simulations look like Figure 7.1, 

where the wind direction is constant at () = oo. The amplitude of the ripples in

creases as the magnitude of the change of wind direction decreases. The average 

amplitude for a change of ±70° is 0.0156, for ±50° it is 0.0714, for ±30° it is 0.343 

and for ±10° it is 0.439, which is close to the average amplitude of 0.496 of the ripple 

pattern observed under constant wind direction. This shows that small changes in 

wind direction of around ±10° will not affect the ripple pattern too greatly, but in 

the case of larger fluctuations the ripples can be all but destroyed. 

Looking at Figure 7.10 we see that for large changes in wind direction of ±90° 
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increasing the interval between changes in wind direction from 100Llt to 10, OOOLlt 

allows a more noticeable ripple pattern to fonn although still pretty broken up and 

of low amplitude: the average amplitude for an interval of 10, OOOLlt is 0.0113. Not 

all the ripples are necessarily lined up with their crests in the current direction of 

the wind, showing the susceptibility of the ripples to adapt as the direction of the 

wind changes. This effect is also seen for smaller changes of ±30° where when the 

interval is 10, OOOLlt we see that the ripples are inclined at a slight angle to the 

average direction of the wind. This is because the most recent deviation from this 

average direction has persisted long enough to turn the ripples round. This is not 

the case when the interval is 100Llt. The change in thne interval does not have a 

great effect on the average ripple a1nplitude which is 0.344. 

Next we look at the effect of changing the wind direction, O(t), fro1n oo to 20° 

gradually over time, 

O(t) = 20t , 
tmax 

where t is time and tmax is the time it takes for the wind to fully change direction, 

which in this simulation (Figure 7.11) we take to be 250, OOOLlt. The idea behind 

this is to shnulate typical changes experienced in the field during the course of an 

observation. As expected we find that the ripples evolve with their crests perpen

dicular to the wind direction but as the wind direction is changing over the period 

of the shnulation the ripples have to keep adapting. We find that the average ampli

tude of the ripples in this simulation is only 0.437, which is smaller than the value 

of 0.496 fro1n the shnulation in Figure 7.1 where the wind direction is fixed. 

We then look at the combined effect of this systematic change of wind direction 

together with gusting where the saltation :flux direction changes randomly. We 

continue to set the wind direction going fro1n oo to 20° over a period of 250, OOOLlt, 

but superimpose changes by so1ne rando1n angle between ±30° at intervals of lOOilt, 

(Figure 7.12). In this case we set the wind direction, O(t), to be 

20t 
e(t) = e2(t) + -, 

tmax 

where 02(t) = 40 (x(t)- 0.5) and x(t) is a real nu1nber generated at random from the 

interval [0, 1]. We find that the random gusts of wind reduce the area of the sand bed 

that is in shadow at any given thne. The average amplitude of the ripples is 0.407, 

which is greater than that for wind gusting between ±30° without a systematic trend, 

but less than that achieved with the syste1natic variation alone. The frequency of 
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the gusts appears to have little effect, however: simulations which change the wind 

direction every iteration, every 10 iterations, every 100 iterations and every 1000 

iterations, all give similar results. 

Simulations where we let the ripples evolve for t = 250, 000..6.t with the wind set 

at 0° before then gradually changing the direction of the wind to 20° over the next 

250,000 iterations (Figure 7.13) have a noticeably different effect to when we change 

the wind from the beginning. In this case the ripples start off at the beginning of the 

wind change with their crests perpendicular to the x direction and end up rotated 

and with many defects. This is due to the fact that the ripples need to be broken 

up before they can start moving round by 20°. Consequently many of the ripples 

are still perpendicular to the x direction and are more fragmented. It seems that 

initially while the ripples are still forming a change in wind direction will quickly 

have an effect, but once the ripples have formed they are more resistant to change. 

Also we can see that the areas of the shadow zone are larger and more fragmented 

in this simulation as the ripples are not perpendicular to the direction of the wind. 

Simulations were also conducted where we varied the strength of the saltation 

flux, J. We found that increasing J caused the sand ripples to develop faster and 

the wavelength to shorten (Figure 7.14). However if J became too big numerical 

instabilities were introduced. A simulation with J = 8 only ran until 3, �O�O�O�~�t� before 

numerical instabilities terminated the programme. The average amplitudes taken 

at 250, 000..6.t were 0.00161 when J = 3, 0.0136 when J = 4, 0.496 when J = 5 

and 0.775 when J = 6, showing that increasing the saltation flux increases the 

ripple amplitude. These simulations also showed that if J was reduced to below the 

threshold value for saltation flux, Jc in equation (5.5.18), then ripples would not 

form. 

We have developed a three-dimensional model for aeolian sand ripples largely 

based on the models by Anderson [4] and Hoyle & Woods [28]. Our model includes 

a shadow zone that will be effective on positive as well as negative slopes. We have 

shown analytically that there exists a threshold value, Jc, for the scaled saltation 

flux above which ripples will develop. Numerical simulations show that for certain 

parameter values ripples will evolve from a flat bed and given long enough their 

crests will align perpendicular to the wind direction, in keeping with observations 

[55]. The presence of a shadow zone causes the ripples to evolve more slowly, since 

a simulation without a shadow zone run for the same length of time from the same 

initial conditions results in ripples with higher amplitude. The resulting ripple 
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10.8 16.2 21.6 27 32.4 37.8 43.2 48.6 54 

Figure 7.1: The simulated sand bed at t = 2.5 x 105 Llt, where Llt = 7.29 x 10-6 

with the wind set in the x direction blowing from left to right. Parameter values 
are () = oo, /3 = 10°, J = 5, a = 0.2, b = 0, F = 0.1. 
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Figure 7.2: Graphical representation of our shadow zone (top) and the shadow zone 
under local shadowing (bottom) for the simulation in Figure 7.1 at t = 2.5 x 105 ..6.t, 
where ..6.t = 7.29 x 10-6. The pictures are shown at t = (2.5 x 105 + 1 )..6.t. Areas 
in shadow are shaded light grey. The remaining parameter values are, e = 0°, J = 

5, a = 0.2, b = 0 and F = 0.1. 
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Figure 7.3: Comparison between a simulation run without a shadow zone (top) and 
a simulation run with our shadow zone (bottom) at t = 2.5 x 105 �~�t�,� where �~�t� = 

7.29 x 10-6. Parameter values are () = oo, j3 = 10°, J = 5, a = 0.2, b = 0, F = 0.1. 
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Figure 7.4: The simulated sand bed at t = 2.5 x 105 flt, where Llt = 7.29 x 10-6 , 

with f3 changing over time from 10° to: a) f3 does not change, b) 8°, c) 5° and d) 1° 
by t = 2.5 x 105Llt. The remaining parameter values are(}= 0°, a= 0.2, b = 0, J = 5 
and F = 0.1. 
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Figure 7.5: The simulated sand bed at t = 2.5 x 105 !:l.t, where !:l.t = 7.29 x 10- 6, 

with f3 randomly varying to angles between oo and 90° at intervals of 100/:l.t. The 
remaining parameter values are a= 0.2, b = 0, J = 5, F = 0.1. 
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Figure 7.6: The simulated sand bed at t = 2.5 x 105 �~�t�,� where �~�t� = 7.29 x 10-6, 

with {3 randomly varying at intervals of �1�0�0�~�t� between: a) oo and 70°, b) 0° and 
50°, c) oo and 30° and d) oo and 10°. The remaining parameter values are a = 
0.2, b = 0, J = 5, F = 0.1. 
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Figure 7. 7: The simulated sand bed at t = 2.5 x 105 D.t, where D.t = 7.2g x 10-6 , 

with {3 randomly varying between: a) 0° and goo at intervals of 100D.t, b) oo and 
goo at intervals of 10, OOOD.t, c) oo and 30° at intervals of 100D.t and d) 0° and 30° 
at intervals of 10, OOOD.t. The remaining parameter values are a = 0.2, b = 0, J = 
5, F = 0.1. 
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Figure 7.8: The simulated sand bed at t = 2.5 x 105 tl.t, where tl.t = 7.29 x 10-6, 

with the wind direction varying by ±90° at intervals of 100tl.t. The average hop 
lengths in the x and y directions are given by a = k cos( B) and b = k sin( B), as B 
varied. The remaining parameter values are J = 5, F = 0.1. 
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Figure 7.9: The simulated sand bed at t = 2.5 x 105 t:J.t, where t:J.t = 7.29 x 10- 6
, 

with the wind direction randomly varying at intervals of 100f:J.t between: a) ±70°, 
b) ±50°, c) ±30° and d) ± 1 oo. The average hop lengths in the x and y directions 
are given by a = �~�c�o�s�(� B) and b = �~�s�i�n�(� B), as B varied. The remaining parameter 
values are J = 5, F = 0.1. 

193 



1 
0 

54 

13.5 

13.5 

27 40.5 54 

27 40.5 54 

Figure 7.10: The simulated sand bed at t = 2.5 x 105 �~�t�,� where �~�t� = 7.29 x 10-6, 

with the wind direction varying between: a)±90° at intervals of �1�0�0�~�t�,� b) ±90° 
at intervals of 10, �O�O�O�~�t �,� c) ±30° at intervals of �1�0�0�~�t� and d) ±30° at intervals 
of 10, �O�O�O�~�t�.� The average hop lengths in the x and y directions are given by a = 
�~�c�o�s�(� B) and b = �~�s�i�n�(� B), as B varied. The remaining parameter values are J = 
5, F = 0.1. 
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Figure 7.11: The simulated sand bed at t = 2.5 x �1�0 �5 �~�t �,� where �~�t� = 7.29 x 10-6, 

with the wind direction changing from 0° to 20°, over the period 0 ::; t ::; tmax where 
tmax = 2.5 x 105 �~�t�.� The average hop lengths in the x and y directions are given 
by a = k cos( B) and b = k sin( B) , as e varied. The remaining parameter values are 
J = 5, F = 0.1. 
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Figure 7.12: The simulated sand bed at t = 2.5 x �1�0 �5 �~�t�,� where �~�t� = 7.29 x 10-6, 

with the wind direction changing from oo to 20° at t = 2.5 x 105 �~�t� and random wind 
changes to angles between ±30° at intervals of �1�0�0�~�t�.� The average hop lengths in 
the x and y directions are given by a = k cos( B) an<!_ b = k sin( B), as B varied. The 
remaining parameter values are J = 5, a= k cos( B), b = k cos( B), F = 0.1. 
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Figure 7.13: The simulated sand bed at t = 5 x 105 f::l.t, where f::l.t = 7.29 x 10-6, with 
the wind direction changing from oo to 20° after t = 2.5 x 105 f::l.t fort = 2.5 x 105 f::l.t. 
The average hop lengths in the x andy directions are given by a= �~� cos(8) and b = t sin(8), as (} varied. The remaining parameter values are J = 5, a = �~� cos(8), b = 
5 cos(8), F = 0.1. 
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Figure 7.14: Pictures of the sand bed at t = 2.5 x 105 �~�t�,� where �~�t� = 7.29 x 10-6 

with varying saltation flux intensities. The values of saltation flux are a) J = 3, 
b) J = 4, c) J = 5, d) J = 6. The remaining parameter values were (} = 0°, {3 = 
1 oo, a = o. 2, b = o, F = o .1. 
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patten when the shadow zone is incorporated is also more broken-up. We see that 

the shadow zone in our 1nodel will extend past the lee slope if need be, which is 

useful for 1nodelling the effect of changes in the wind direction as observed in the 

field. Our simulations show that such changes will disturb the evolution of ripples 

and lead to a more disordered pattern. The extent of the disorder will depend on 

the 1nagnitude and frequency of changes in wind direction. A gradual change in the 

direction of the wind will break up an ordered ripple pattern and eventually lead to 

a new pattern with the crests perpendicular to the final wind direction. Continuing 

changes in wind direction will lead to disorder or lower amplitude ripples depending 

on the frequency and 1nagnitude of the change. We also observed a similar disorder 

with variation of the angle of hnpact. We plan to develop our 1nodel further to 

consider 1negaripples, made up of two different sizes of grains, which can extend 

to wavelengths of 201n with heights of tens of centhneters. Megaripples are highly 

irregular and the effect of fully three-dimensional shadowing is likely to be in1portant 

in developing accurate 1nodels. 
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8 
Future Work 

In this thesis we have investigated ways of modelling the phenomenon of blowfly 

strikes through the use of various delay differential equations generally with the 

aim of finding conditions for the extinction of the blowfly species, which would be 

beneficial to farmers. We have found through linear and global stability analysis 

of these models that extinction can often be achieved by effective trapping. How 

effective the trapping must be depends on the conditions we have established, which 

often depend on the birth and death rates of the species. However our models are 

by no �m�e�~�n�s� exhaustive and it may be beneficial to adapt them in various ways. For 

example in the system (2.2.1,2.2.2,2.2.3) it may be useful to model the death rate 

of the sheep by the term '"'fsUi(t)N(t) instead of '"'fsUm(t)N(t). Also the assumption 

that the birth rate is proportional to N is itself a questionable assumption if N is 

very large, but the birth rate could be of the form b(um(t))B(N(t)) for a function 

B ( N ( t)) that tends to a constant for large N. Another way to address this would 

be to restrict the initial conditions for N from (2.2.4) to be no greater than the 

carrying capacity, which in our case is 1 as the model has been nondimensionalised. 

Thus we have that ¢N(s) E (0, 1), s E [-T, 0]. Therefore N will never exceed the 

carrying capacity and so the formula for the birth rate will hold. 

Our models were not dependent on temperature, but it has been observed (31] 

that blowfly strikes are less likely in mid summer as the hot dry conditions can dessi

cate eggs and flies reducing the risk of a strike, suggesting that climatic conditions 

could be an important factor in the prevalence of blowfly strikes. 

It may also be interesting to look at the effect of including a non-linear trapping term 

as there are many different ways used to control blowfly strikes and while many are 

effective some have serious side effects, such as the use of chemicals leaving residues 

in the wool [32]. Also it has been observed that a combination of preventative mea

sures can be more effective, for example mulesing, shearing and crutching [32]. Thus 

a multiple regression model, such as equation (2.1.1), used by Wall et. al. may be 
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used to 1nodel the combined effect of different methods. 

Another preventative measure that is not discussed in this thesis is the idea of 'Ster

ile Male Blowfly Release'. This involves releasing sterile male blowflies into the 

population with the aim that the fe1nales, who only mate a few thnes in their short 

life, will mate with these sterile males and thus not produce any eggs. This process 

has a history of success, for exa1nple the screworm was removed fro1n North Amer

ica and the tsetse fly fro1n Zanzibar. The sterile release method can be modelled 

Ina thematically by reducing the birth function by a factor of f / (f + n), where f 

and n are the numbers of fertile and sterile individuals, respectively [18]. However 

[18] warn that, according to their 1nodel, which is not specifically for blowfly strikes, 

it may be unwise to use the sterile release 1nethod if predation is virulent as the 

number of sterile insects needed to be released to control the population increases 

with the level of predation. 

Another area of interest would be to carry out more extensive numerical simu

lations. We have looked at shnple two dimensional shnulations of the systmns 

(2.2.1,2.2.2,2.2.3) and (2.5.1,2.5.2,2.5.3), but these could be extended to more re

alistic three dimensional1nodels. Also shnulations of a model with distributed delay 

would be interesting, where the sheep and hnmature blowflies would be allowed to 

diffuse. 

It 1nay also be useful to address the diffusion more realistically. In this thesis we 

have only allowed for Fickian diffusion, which says that the species diffuse in the 

form of a rando1n walk, i.e. with no real thought. However it is more likely in 

reality that the species will1nove with a purpose. For example the mature blowflies 

are more likely to move to areas where there are 1nore sheep. This is particularly 

relevant in the case where the n1ature blowflies obey ho1nogeneous Dirichlet bound

ary conditions and can not exist on the boundary of the domain but the sheep obey 

ho1nogeneous Neu1nann boundary conditions and can. In this case it is unlikely that 

sheep existing on the boundary will voluntarily decide to 1nove back to an area when 

they are in danger and thus will aggregate on the boundary even when allowed to 

diffuse. 

Further work could also be carried out in the area of travelling wave solutions, which 

can 1nodel a wave of invasion of the blowfly across an entire country or continent. An 

individual blowfly typically only flies a few 1niles in its life, but it only has to lay eggs 

so1newhere other than where it 1natures in order to initiate a wave of invasion which 

1night move relatively slowly but could easily cover an entire continent in the full-
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ness of time. We have not rigorously proved the existence of such a wave of invasion 

in this thesis, but we have done some linearised analysis to determine the possible 

speeds of invasion, based on the criteria that the travelling front must be positive ev

erywhere (2.8.1,2.8.2,2.8.3). Such a linearised analysis yields a semi-infinite interval 

of possible invasion speeds, and we are acting on the assumption that ecologically 

realistic initial data would evolve to a wave travelling at the minimum speed. We 

have not proved rigorously in this thesis that this is what actually happens. We 

have, however, determined an upper bound on the minimum speed (2.8.19) which 

offers us some insight into its dependence on the ecological parameters such as the 

maturation delay. A rigorous proof of the existence of a wave-front solution along 

with an analytical calculation of its stability properties could be an area for future 

research, although investigations of this kind can be very difficult even for reaction

diffusion models without delay. Even in Fisher's equation Ut = Duxx + u(l- u) it 

is quite difficult to rigorously prove the stability properties of the travelling wave 

fronts though it is known that, in this equation, evolution to anything other than 

the minimum speed Cmin = 2VJ5 requires severe restrictions on the initial data. 

Another aspect we have not considered in this thesis is advection of the mature 

blowfly population. This is likely to be relevant as mature blowflies are generally 

quite small and their movement could easily be influenced by sudden gusts of rela

tively strong wind. This could be modelled by a first derivative term coupled with 

a coefficient to measure the speed of the advection. 

Another area for future work would be to extend system (2.2.1,2.2.2,2.2.3) to include 

state-dependent time delay, so that T is an increasing function of the total population 

of both the immature and mature blowflies T(u), u = ui+um. This modification will 

1nean that the maturation time will depend on u, the total population of blowflies, 

such that the larger u becomes the longer the larva take to mature. This seems like 

a likely scenario as the larva must feed off the sheep to grow and eventually ma

ture. If there is a large number of individuals competing for the same food source it 

will take them longer to get enough and thus their maturation time would increase. 

The more ·mature blowflies there are, the more likely it is that there will be a large 

number of competing larva. 

It might also be interesting to categorise the sheep as to whether they are suscep

tible or not. It is well known [63] that a clean healthy sheep is less likely to be 

infected than one that is not, for example the smell of an open wound or faeces will 

attract the mature blowfly. These sheep will then become less susceptible again if 
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they are treated by the farmer. Therefore it 1night be appropriate to model treated, 

susceptible and infected sheep by separate equations, as is done for epidemic models 

such as those used to model rabid foxes or the spread of tuberculosis. This method 

could also incorporate the idea of vaccinating the sheep against blowfly strike [12]. 

Overwintering is another aspect we have not looked at 1nuch in this thesis. We 

produced one nu1nerical shnulation, Figure 2.21, and equation (2.9.1) suggested a 

very simple way that this 1night be 1nodelled. The length of the overwintering phase 

is dependent on soil temperature [31] which perhaps should be the defining factor 

in the length of the overwintering phase, as if there are climatic differences over the 

do1nain then the overwintering flies will mnerge at different times at different points 

in space. Also no analytical work was done to see how this may effect the extinction 

criteria. 

In our work on aeolian sand ripples we are interested in the behaviour of the system 

above the threshold value of saltation flux, when sand ripples will develop from an 

initially perturbed flat bed, and the effects of our three dhnensional shadow zone 

on the evolution of ripples. In this instance we do not expect the exact fonn of 

the smoothing terms to be critical to the behaviour of the systmn. However below 

threshold it is acknowledged that they 1nay have 1nore of an effect as in the case 

where there is no reptation our model predicts a flattening of any surface when 

actually there should be no change in surface elevation. Thus it may be useful to 

modify the way we model the rolling grains in (5.4.1), to include dependence on 

wind drag. 

In the derivation of otu 1nodel (5.4.1,5.4.2) we use a Taylor expansion truncated at 

first order which inevitably 1neans that we lose some information about the system, 

in this case some nonlocal effects of hopping. While we consider that these effects 

are minhnal it 1night be interesting to see what would happen if we retained them. 

We also note that the hyperdiffusion tenn (5.3.10) that we include to 1nodel small 

scale cut-off induced by pheno1nena such as surface roughness and intergrain colli

sions ends up influencing the 1naximum growth rate and corresponding wavelength, 

(5.5.19). While we consider that nonlinear effects such as coarsening will rapidly 

become more important such that the short scale cut-off will not influence the long · 

tenn development of ripples, it would be interesting to investigate whether the choice 

of cut-off affects ripple characteristics and if so how. 

We have produced numerical shnulations of our one species model of aeolian sand 

ripples (5.4.1,5.4.2) which show the evolution of ripples from a perturbed flat bed 
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and have investigated the effect of varying certain parameters. However it would also 

be interesting to investigate numerically our three dimensional two-species model of 

aeolian sand ripples (6.2.13). Furthermore, the connection between coarsening and 

shadowing is the subject of much debate and a satisfactory resolution of the issue 

requires further detailed study in future works. 

We plan to develop our models for aeolian sand ripples (5.4.1,5.4.2), (6.2.13) further 

to consider megaripples, made up of two different sizes of grains, which can extend 

to wavelengths of 20m with heights of tens of centimeters. Megaripples are highly 

irregular and the effect of fully three-dimensional shadowing is likely to be important 

in developing accurate models. 
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