University of Surrey

Test tubes in the lab Research in the ATI Dance Research

In-vacuum and in-air ion beam analysis techniques for the investigation of diffusion in materials.

Rihawy, Mohammed Salah. (2007) In-vacuum and in-air ion beam analysis techniques for the investigation of diffusion in materials. Doctoral thesis, University of Surrey (United Kingdom)..

[img]
Preview
Text
10131080.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (29MB) | Preview

Abstract

In-vacuo and in-air ion beam analysis techniques have been developed to investigate diffusion in materials at the University of Surrey 2MV Tandem accelerator. Following Energy calibration of the accelerator, two main systems were studied using these techniques. Lithium intercalation into thin films of vanadium pentoxide was investigated using both nuclear reaction analysis and backscattering spectrometry in-vacuo. Energy loss techniques were used for both proton backscattering and the reaction 7Li(p,alpha)4He. Simulated annealing software enabled both data sets to be analysed simultaneously to give the Li profile. An in-air scanning micro-PIXE technique was developed to investigate diffusion into cementitious materials. Internal and external normalisation methods for elemental diffusion studies have been developed, applied and compared. Both Chloride and Sulphate ingress in cement, mortars and concrete have been studied. Results were obtained both from samples prepared in the lab and from large core samples taken from concrete blocks exposed to a saline environment for 30 years. Additional studies were performed both to compare results from scanning micro-PIXE and micro-XRF techniques and to compare results from an abraded small core. Another application of the technique is the study of chloride and heavy element distributions in paste, mortar and brick samples before and after electrochemical extraction methodologies. A CdTe detector was used for the first time with an external beam, to detect Kalpha X-rays induced from the heavy elements.

Item Type: Thesis (Doctoral)
Divisions : Theses
Authors :
NameEmailORCID
Rihawy, Mohammed Salah.
Date : 2007
Contributors :
ContributionNameEmailORCID
http://www.loc.gov/loc.terms/relators/THS
Depositing User : EPrints Services
Date Deposited : 09 Nov 2017 12:13
Last Modified : 15 Mar 2018 23:18
URI: http://epubs.surrey.ac.uk/id/eprint/843215

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year


Information about this web site

© The University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom.
+44 (0)1483 300800