University of Surrey

Test tubes in the lab Research in the ATI Dance Research

Multiple-feature object-based segmentation of video sequences.

Piroddi, R. (2004) Multiple-feature object-based segmentation of video sequences. Doctoral thesis, University of Surrey (United Kingdom)..

Full text is not currently available. Please contact, should you require it.


Emerging multimedia applications and Services require efficient and flexible coding (MPEG-4) and description (MPEG-7) of visual information. Object-based representations of visual information obtained by scene segmentation are particularly well-suited to this purpose. In this work, the segmentation of video sequences is addressed using a combination of features, such as motion, texture and colour. First, the Recursive Shortest Spanning Tree (RSST) is considered as a baseline segmentation tool and is adapted to perform single-feature segmentation using different visual cues. A novel motion- based RSST segmentation algorithm that incorporates multiple motion features into a single cost function is presented. Effective texture segmentation is achieved by a novel scheme relying on mathematical morphology operators. This approach is further extended to become applicable to colour texture segmentation. Second, multiple-feature segmentation of video sequences emerges as a major focus of this work. The RSST has been employed in order to perform simultaneous multiple-feature segmentation of video sequences in a hierarchical fashion. The presented work demonstrates that the performance of this approach rapidly degrades as the dimensionality of the feature space increases. To overcome this problem, a novel two-stage architecture for object-based segmentation is presented. The first stage locates perceptually meaningful objects using a hierarchy of single-feature segmentation processes. The second stage refines the boundaries of located objects using a suitable combination of features and a set of appropriate rules. This model is further simplified by minimizing the number of required sequence-dependent parameters and also by minimizing the number of inputs to the rule-based part of the algorithm. A comparative evaluation with state-of-the-art competing algorithms is favourable, demonstrating that the proposed architecture is capable of achieving accurate, meaningful and consistent segmentations which are intuitively correct and have good correspondence with a human viewer's notion of the decomposition of a natural scene to its constituent objects.

Item Type: Thesis (Doctoral)
Divisions : Theses
Authors :
Date : 2004
Contributors :
Depositing User : EPrints Services
Date Deposited : 09 Nov 2017 12:11
Last Modified : 09 Nov 2017 14:38

Actions (login required)

View Item View Item


Downloads per month over past year

Information about this web site

© The University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom.
+44 (0)1483 300800