University of Surrey

Test tubes in the lab Research in the ATI Dance Research

The design and characterisation of a low-cost micro-satellite thermal IR imager based on COTS technology.

Oelrich, B. D. (2005) The design and characterisation of a low-cost micro-satellite thermal IR imager based on COTS technology. Doctoral thesis, University of Surrey (United Kingdom)..

Full text is not currently available. Please contact, should you require it.


The region of the optical spectrum known as the thermal infrared (TIR) has long been a waveband of interest for space-based Earth observation. By mapping thermal variations, on-orbit TIR imaging radiometers can provide a significant amount of information regarding the temperature and emissivity profiles of the ground scene. The traditional approach to space-borne TIR instrument design usually focuses on high radiometric sensitivity and hence, typically relies on expensive and bulky cryogenically-cooled detector technology. This approach yields instruments that are very precise but are cost- and/or size-limited for flight on single large-scale satellite platforms. While these systems serve the bulk of the TIR user community needs, there are numerous user groups still ill-served due to the finite data products offered by these handful of instruments. The main objective of this thesis is to advance the field of TIR instrument design by developing a novel TIR imager, affordable and compact enough for flight on multiple microsatellite platforms, therefore enabling low-cost high temporal/medium spatial resolution TIR data products. Leveraging the latest low-cost miniaturization developments in the terrestrial uncooled TIR detector industry has been the key to reducing instrument cost and size. In this thesis, a 6 kg thermal infrared (TIR) imaging radiometer, compatible with a Surrey Satellite Technology Limited (SSTL) Disaster Monitoring Constellation (DMC) micro-satellite has been designed. The flight instrument concept utilizes two commercial-off-the-shelf (COTS) un-cooled microbolometer arrays in a pushbroom configuration to collect Earth observation data in two TIR wavebands (3-5 and 8-12 mum). After the bench-top characterisation of a prototype, a computer model was created to predict the expected on-orbit performance. Analysis has shown that a flight version of this instrument flown in the DMC would yield a 0.4 K noise equivalent temperature difference (NETD) for a 300 K ground scene, a 300-metre ground sample distance (GSD), and a 1 to 7 day ground revisit time, depending on the instrument and constellation configuration. Its application in specific niche or currently ill-served mission areas, such as autonomous global thermal change detection dedicated to highly specialized user communities, is proposed.

Item Type: Thesis (Doctoral)
Divisions : Theses
Authors :
Date : 2005
Contributors :
Depositing User : EPrints Services
Date Deposited : 09 Nov 2017 12:10
Last Modified : 09 Nov 2017 14:38

Actions (login required)

View Item View Item


Downloads per month over past year

Information about this web site

© The University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom.
+44 (0)1483 300800