University of Surrey

Test tubes in the lab Research in the ATI Dance Research

Spectro-temporal post-enhancement using MMSE estimation in NMF based single-channel source separation

Grais, EM and Erdogan, H (2013) Spectro-temporal post-enhancement using MMSE estimation in NMF based single-channel source separation

Full text not available from this repository.

Abstract

We propose to use minimum mean squared error (MMSE) estimates to enhance the signals that are separated by nonnegative matrix factorization (NMF). In single channel source separation (SCSS), NMF is used to train a set of basis vectors for each source from their training spectrograms. Then NMF is used to decompose the mixed signal spectrogram as a weighted linear combination of the trained basis vectors from which estimates of each corresponding source can be obtained. In this work, we deal with the spectrogram of each separated signal as a 2D distorted signal that needs to be restored. A multiplicative distortion model is assumed where the logarithm of the true signal distribution is modeled with a Gaussian mixture model (GMM) and the distortion is modeled as having a log-normal distribution. The parameters of theGMMare learned from training data whereas the distortion parameters are learned online from each separated signal. The initial source estimates are improved and replaced with their MMSE estimates under this new probabilistic framework. The experimental results show that using the proposed MMSE estimation technique as a post enhancement after NMF improves the quality of the separated signal. Copyright © 2013 ISCA.

Item Type: Conference or Workshop Item (UNSPECIFIED)
Authors :
NameEmailORCID
Grais, EMUNSPECIFIEDUNSPECIFIED
Erdogan, HUNSPECIFIEDUNSPECIFIED
Date : 1 January 2013
Depositing User : Symplectic Elements
Date Deposited : 17 May 2017 13:54
Last Modified : 17 May 2017 13:54
URI: http://epubs.surrey.ac.uk/id/eprint/840734

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year


Information about this web site

© The University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom.
+44 (0)1483 300800