University of Surrey

Test tubes in the lab Research in the ATI Dance Research

Computational simulation of thermally sprayed WC–Co powder

Kamnis, S, Gu, S, Lu, TJ and Chen, C (2008) Computational simulation of thermally sprayed WC–Co powder Computational Materials Science, 43 (4, Oct). pp. 1172-1182.

Full text not available from this repository.

Abstract

WC–Co cemented carbides are a class of hard composite materials of great technological importance. They are widely used as tool materials in a large variety of applications that have high demands on hardness and toughness, including mining, turning, cutting and milling. The HVOF (high velocity oxygen fuel) technology has been very successful in spraying wear resistant WC–Co coatings with higher density, superior bond strengths and less decarburization than many other thermal spray processes, attributed mainly to its high particle impact velocities and relatively low peak particle temperatures. The degree of decomposition and bond strength is directly related to relevant particle parameters such as velocity, temperature and state of melting or solidification. These are consecutively related to process parameters such as powder particle size distribution, carrier gas flow rate, and fuel type employed. To obtain detailed particle data important for thermal spraying, mathematical models are developed in the present paper to predict the particle dynamic behavior in a liquid fuelled HVOF thermal spray gun. The particle transport equations are coupled with the three-dimensional, chemically reacting, turbulent gas flow, and solved in a Lagrangian manner. The melting and solidification within the particles as a result of heat exchange with the surrounding gas flow is solved numerically. The in-flight characteristics of WC–Co particles are studied and the effects of carrier gas parameters on particle behavior are examined. The results demonstrate that WC–Co particles smaller than 5 μm in diameter undergo melting and solidification prior to impact while most particles never reach liquid state during the HVOF thermal spraying. The flow rate of carrier gas has considerable influence on particle dynamics as well as deposition on substrate. At higher flow rate the powder particles are redirected further away from the substrate center, while smaller flow rate results in better heating, higher impact velocity and deposition closer to the substrate center.

Item Type: Article
Authors :
NameEmailORCID
Kamnis, SUNSPECIFIEDUNSPECIFIED
Gu, Ssai.gu@surrey.ac.ukUNSPECIFIED
Lu, TJUNSPECIFIEDUNSPECIFIED
Chen, CUNSPECIFIEDUNSPECIFIED
Date : 23 April 2008
Funders : UK DTI, UK DIUS, National 111 Project of China, National Natural Science Foundation of China, National Basic Research Program of China
Identification Number : https://doi.org/10.1016/j.commatsci.2008.03.015
Uncontrolled Keywords : CFD, HVOF, Gas dynamics, Particle modeling, WC–Co
Depositing User : Symplectic Elements
Date Deposited : 17 May 2017 13:51
Last Modified : 17 May 2017 15:13
URI: http://epubs.surrey.ac.uk/id/eprint/840586

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year


Information about this web site

© The University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom.
+44 (0)1483 300800