University of Surrey

Test tubes in the lab Research in the ATI Dance Research

Fluid-particle flow and validation using two-way-coupled mesoscale SPH-DEM

Robinson, M, Luding, S and Ramaioli, M (2013) Fluid-particle flow and validation using two-way-coupled mesoscale SPH-DEM

Full text not available from this repository.

Abstract

First, a meshless simulation method is presented for multiphase fluid-particle flows with a two-way coupled Smoothed Particle Hydrodynamics (SPH) for the fluid and the Discrete Element Method (DEM) for the solid phase. The unresolved fluid model, based on the locally averaged Navier Stokes equations, is expected to be considerably faster than fully resolved models. Furthermore, in contrast to similar mesh-based Discrete Particle Methods (DPMs), our purely particle-based method enjoys the flexibility that comes from the lack of a prescribed mesh. It is suitable for problems such as free surface flow or flow around complex, moving and/or intermeshed geometries and is applicable to both dilute and dense particle flows. Second, a comprehensive validation procedure for fluid-particle simulations is presented and applied here to the SPH-DEM method, using simulations of single and multiple particle sedimentation in a 3D fluid column and comparison with analytical models. Millimetre-sized particles are used along with three different test fluids: air, water and a water-glycerol solution. The velocity evolution for a single particle compares well (less than 1% error) with the analytical solution as long as the fluid resolution is coarser than two times the particle diameter. Two more complex multiple particle sedimentation problems (sedimentation of a homogeneous porous block and an inhomogeneous Rayleigh Taylor instability) are also reproduced well for porosities 0.6 <= \epsilon <= 1.0, although care should be taken in the presence of high porosity gradients. Overall the SPH-DEM method successfully reproduces quantitatively the expected behaviour in the test cases, and promises to be a flexible and accurate tool for other, realistic fluid-particle system simulations.

Item Type: Article
Authors :
NameEmailORCID
Robinson, MUNSPECIFIEDUNSPECIFIED
Luding, SUNSPECIFIEDUNSPECIFIED
Ramaioli, Mm.ramaioli@surrey.ac.ukUNSPECIFIED
Date : 4 January 2013
Identification Number : https://doi.org/10.1016/j.ijmultiphaseflow.2013.11.003
Uncontrolled Keywords : physics.flu-dyn, physics.flu-dyn, physics.comp-ph
Related URLs :
Depositing User : Symplectic Elements
Date Deposited : 17 May 2017 13:22
Last Modified : 17 May 2017 15:10
URI: http://epubs.surrey.ac.uk/id/eprint/838978

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year


Information about this web site

© The University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom.
+44 (0)1483 300800