University of Surrey

Test tubes in the lab Research in the ATI Dance Research

Hybrid models for complex fluids with multipolar interactions

Tronci, C (2010) Hybrid models for complex fluids with multipolar interactions arXiv.

Full text not available from this repository.

Abstract

Multipolar order in complex fluids is described by statistical correlations. This paper presents a novel dynamical approach, which accounts for microscopic effects on the order parameter space. Indeed, the order parameter field is replaced by a statistical distribution function that is carried by the fluid flow. Inspired by Doi's model of colloidal suspensions, the present theory is derived from a hybrid moment closure for Yang-Mills Vlasov plasmas. This hybrid formulation is constructed under the assumption that inertial effects dominate over dissipative phenomena, so that the total energy is conserved. After presenting the basic geometric properties of the theory, the effect of Yang-Mills fields is considered and a direct application is presented to magnetized fluids with quadrupolar order (spin nematic phases). Hybrid models are also formulated for complex fluids with symmetry breaking. For the special case of liquid crystals, the moment method can be applied to the hybrid formulation to study to the dynamics of cubatic phases.

Item Type: Article
Authors :
NameEmailORCID
Tronci, Cc.tronci@surrey.ac.ukUNSPECIFIED
Date : 19 November 2010
Related URLs :
Depositing User : Symplectic Elements
Date Deposited : 17 May 2017 12:21
Last Modified : 17 May 2017 15:03
URI: http://epubs.surrey.ac.uk/id/eprint/834965

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year


Information about this web site

© The University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom.
+44 (0)1483 300800