University of Surrey

Test tubes in the lab Research in the ATI Dance Research

Effect of B dose and Ge preamorphization energy on the electrical and structural properties of ultrashallow junctions in silicon-on-insulator

Hamilton, JJ, Collart, EJH, Colombeau, B, Bersani, M, Giubertoni, D, Kah, M, Cowern, NEB and Kirkby, KJ (2006) Effect of B dose and Ge preamorphization energy on the electrical and structural properties of ultrashallow junctions in silicon-on-insulator Materials Research Society Symposium Proceedings, 912. pp. 45-50.

Full text not available from this repository.

Abstract

Formation of highly activated, ultra-shallow and abrupt profiles is a key requirement for the next generations of CMOS devices, particularly for source-drain extensions. For p-type dopant implants (boron), a promising method of increasing junction abruptness is to use Ge preamorphizing implants prior to ultra-low energy B implantation and solid-phase epitaxy regrowth to re-crystallize the amorphous Si. However, for future technology nodes, new issues arise when bulk silicon is supplanted by silicon-on-insulator (SOI). Previous results have shown that the buried Si/SiO2 interface can improve dopant activation, but the effect depends on the detailed preamorphization conditions and further optimization is required. In this paper a range of B doses and Ge energies have been chosen in order to situate the end-of-range (EOR) defect band at various distances from the back interface of the active silicon film (the interface with the buried oxide), in order to explore and optimize further the effect of the interface on dopant behavior. Electrical and structural properties were measured by Hall Effect and SIMS techniques. The results show that the boron deactivates less in SOI material than in bulk silicon, and crucially, that the effect increases as the distance from the EOR defect band to the back interface is decreased. For the closest distances, an increase injunction steepness is also observed, even though the B is located close to the top surface, and thus far from the back interface. The position of the EOR defect band shows the strongest influence for lower B doses. © 2006 Materials Research Society.

Item Type: Article
Authors :
NameEmailORCID
Hamilton, JJj.hamilton@surrey.ac.ukUNSPECIFIED
Collart, EJHUNSPECIFIEDUNSPECIFIED
Colombeau, BUNSPECIFIEDUNSPECIFIED
Bersani, MUNSPECIFIEDUNSPECIFIED
Giubertoni, DUNSPECIFIEDUNSPECIFIED
Kah, MUNSPECIFIEDUNSPECIFIED
Cowern, NEBUNSPECIFIEDUNSPECIFIED
Kirkby, KJUNSPECIFIEDUNSPECIFIED
Date : 21 November 2006
Depositing User : Symplectic Elements
Date Deposited : 17 May 2017 11:16
Last Modified : 17 May 2017 11:16
URI: http://epubs.surrey.ac.uk/id/eprint/830658

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year


Information about this web site

© The University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom.
+44 (0)1483 300800